Advertisement

A Dielectric Modulated Polarity Controlled Electrically Doped Junctionless TFET Biosensor for IOT Applications

  • Deepak SoniEmail author
  • Amit Kumar Behera
  • Dheeraj Sharma
  • Mohd. Aslam
  • Shivendra Yadav
Conference paper
  • 222 Downloads
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 141)

Abstract

In this manuscript, we investigate a new design of dielectric modulated polarity controlled electrically doped junctionless TFET (ED-JL-TFET) as highly receptive label-free biosensors. In the proposed structure, over the extensively doped n-type silicon substrate two electrode, gate electrode (GE) and source electrode (SE) are mounted having work function of 4.72 eV to alter the layer under GE and SE of intrinsic semiconductor. Further, for the formation of p\({^+}\) region −1.2 V is applied at source electrode (SE). Therefore, the structure resembles n\({^+}\)-i-n\({^+}\)-p\({^+}\) TFET. In addition to this, for the detection of biomolecule a nanogap cavity is setup in the gate oxide region near the source side. In this manuscript, the gate electrode of electrically doped junctionless TFET (ED-JL-TFET) is used to inflect the tunneling width for label free detection. Because of reduced fabrication challenges and cost effectiveness, ED-JL-TFET has been preferred as biosensor. Finally, the detection ability of ED-JL-TFET has been explored by varying charge density and dielectric constant of the biomolecule, height and length of the nanogap cavity region for different voltage condition by employing 2D Silvaco ATLAS TCAD device simulator.

Keywords

Metallic strip Work function Band to band tunneling (BTBT) 

References

  1. 1.
    Peng, H., Zhang, L., Soeller, C., Travas-Sejdic, J.: Conducting polymers for electrochemical DNA sensing. Nat. Biomater. 30, 2132–2148 (2009)CrossRefGoogle Scholar
  2. 2.
    Reyes, P.I., Zhang, Z., Chen, H., Duan, Z., Zhong, J., Saraf, G., Lu, Y., Taratula, O., Galoppini, E., Boustany, N.N.: A ZnO nanostructure-based quartz crystal microbalance device for biochemical sensing. IEEE Trans. Electron Devices 09(10), 1302–1307 (2009)CrossRefGoogle Scholar
  3. 3.
    Rahman, Md.M., Li, X.B., Lopa, N., Ahn, S., Lee, J.J.: Electrochemical DNA hybridization sensors based on conducting polymers. Sensors 15, 3801–3829 (2015)CrossRefGoogle Scholar
  4. 4.
    Wang, B., Anzai, J.-I.: Recent progress in lectin-based biosensors. Materials 8, 8590–8607 (2015)CrossRefGoogle Scholar
  5. 5.
    Chen, X.: Electrical nanogap devices for biosensing. Mater. Today 13(11), 28–41 (2010)CrossRefGoogle Scholar
  6. 6.
    Kim, C.-H., Jung, C., Park, H.G., Choi, Y.-K.: Novel dielectricmodulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)Google Scholar
  7. 7.
    Kim, J.-Y., et al.: An underlap channel-embedded field-effect transistor for biosensor application in watery and dry environment. IEEE Trans. Nanotechnol. 11(2), 390–394 (2012)CrossRefGoogle Scholar
  8. 8.
    Gao, X.P.A., Zheng, G., Lieber, C.M.: Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 10(2), 547–552 (2010)CrossRefGoogle Scholar
  9. 9.
    Kannan, N., Kumar, M.J.: Dielectric-modulated impact-ionization MOS transistor as a label-free biosensor. IEEE Electron Device Lett. 34(12), 1575–1577 (2013)CrossRefGoogle Scholar
  10. 10.
    Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nature Nanotechnol. 2, 430–434 (2007)CrossRefGoogle Scholar
  11. 11.
    Gautam, R., Saxena, M., Gupta, R.S., Gupta, M.: Numerical model of gate-all-around MOSFET with vacuum gate dielectric for biomolecule detection. IEEE Electron Device Lett. 33(12), 1756–1758 (2012)CrossRefGoogle Scholar
  12. 12.
    Choi, J.M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)CrossRefGoogle Scholar
  13. 13.
    Kanungo, S., Chattopadhyay, S., Gupta, P.S., Sinha, K., Rahaman, H.: Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans. Electron Devices 63(6), 2589–2596 (2016)CrossRefGoogle Scholar
  14. 14.
    Bandiziol, A., Palestri, P., Pittino, F., Esseni, D., Selmi, L.: A TCADbased methodology to model the site-binding charge at ISFET/electrolyte interfaces. IEEE Trans. Electron Devices 62(10), 3379–3386 (2015)CrossRefGoogle Scholar
  15. 15.
    Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Dielectric modulated tunnel field-effect transistor a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)CrossRefGoogle Scholar
  16. 16.
    ATLAS Device Simulation Software: Silvaco Int. Santa Clara, CA, USA (2016)Google Scholar
  17. 17.
    Schenk, A.: A model for the field and temperature dependence of SRH lifetimes in silicon. Solid State Electron. 35(11), 1585–1596 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Deepak Soni
    • 1
    Email author
  • Amit Kumar Behera
    • 1
  • Dheeraj Sharma
    • 1
  • Mohd. Aslam
    • 1
  • Shivendra Yadav
    • 1
  1. 1.PDPM Indian Institute of Information Technology, Design and ManufacturingJabalpurIndia

Personalised recommendations