Advertisement

Metabolomics Approaches in Microbial Research: Current Knowledge and Perspective Toward the Understanding of Microbe Plasticity

  • Paulo R. RibeiroEmail author
  • Rhaissa R. Barbosa
  • Catherine P. de Almeida
Chapter

Abstract

Microbes often show remarkable degree of morphological, physiological, biochemical, and molecular plasticity when they encounter stressful or unfavorable environments. This plasticity may involve reversible and nonreversible changes in the morphology of cells, reprograming of metabolic activity and molecular mechanisms. Metabolomics approaches in microbial research have boosted the advance of several protocols to study microbe metabolism and plasticity. In this book chapter, we present a detailed systematic literature review of the current knowledge, main findings, and perspective toward the understanding of microbe plasticity in microbial metabolomics research. Data of metabolomics applied for the characterization of bioactive metabolites, biofilms, and biomarker discovery is presented herein. The systematic literature review covered manuscripts published between January 2014 and August 2018 that were available from scientific databases such as “Google Scholar,” “PubMed,” “ScienceDirect,” “SpringerLink,” and “Web of Science – Clarivate Analytics.” The search through the scientific databases was performed using the keywords “metabolomics” or “metabolite profiling,” along with “microorganism,” “microbe,” “fungi,” “bacteria,” “plasticity,” and “biofilm.”

Keywords

Biofilms Biomarkers discovery Bioactive metabolites GC-MS LC-MS NMR UPLC-MS 

References

  1. Alcalde E, Fraser PD (2016) Metabolite profiling of Phycomyces blakesleeanus carotene mutants reveals global changes across intermediary metabolism. Microbiology (United Kingdom) 162:1963–1971Google Scholar
  2. Alves PC, Hartmann DO, Núñez O, Martins I, Gomes TL, Garcia H, Galceran MT, Hampson R, Becker JD, Pereira CS (2016) Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans. BMC Genomics 17:284PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ammons MCB, Tripet BP, Carlson RP, Kirker KR, Gross MA, Stanisich JJ, Copié V (2014) Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes. J Proteome Res 13:2973–2985PubMedPubMedCentralCrossRefGoogle Scholar
  4. Assaidi A, Ellouali M, Latrache H, Mabrouki M, Hamadi F, Timinouni M, Zahir H, El Mdaghri N, Barguigua A, Mliji EM (2018) Effect of temperature and plumbing materials on biofilm formation by Legionella pneumophila serogroup 1 and 2–15. J Adhes Sci Technol 32:1471–1484CrossRefGoogle Scholar
  5. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C (2017) Critical review on biofilm methods. Crit Rev Microbiol 43:313–351PubMedCrossRefGoogle Scholar
  6. Azzollini A, Boggia L, Boccard J, Sgorbini B, Lecoultre N, Allard PM, Rubiolo P, Rudaz S, Gindro K, Bicchi C, Wolfender JL (2018) Dynamics of metabolite induction in fungal co-cultures by metabolomics at both volatile and non-volatile levels. Front Microbiol 9:72PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baptista R, Fazakerley DM, Beckmann M, Baillie L, Mur LAJ (2018) Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). Sci Rep 8:5084PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barkal LJ, Theberge AB, Guo CJ, Spraker J, Rappert L, Berthier J, Brakke KA, Wang CCC, Beebe DJ, Keller NP, Berthier E (2016) Microbial metabolomics in open microscale platforms. Nat Commun 7:10610PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bayram O, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus GH (2016) Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genet Biol 87:30–53PubMedCrossRefGoogle Scholar
  10. Bean HD, Rees CA, Hill JE (2016) Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates. J Breath Res 10:047102PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beloborodova NV, Olenin AY, Pautova AK (2018) Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J Crit Care 43:246–255PubMedCrossRefGoogle Scholar
  12. Benamara H, Rihouey C, Abbes I, Ben Mlouka MA, Hardouin J, Jouenne T, Alexandre S (2014) Characterization of membrane lipidome changes in Pseudomonas aeruginosa during biofilm growth on glass wool. PLoS ONE 9:e108478PubMedPubMedCentralCrossRefGoogle Scholar
  13. Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, Acosta-González A, Padilla-Gonzalez GF, Puyana M, Castellanos L, Ramos FA (2017) Marine Actinobacteria as a source of compounds for phytopathogen control: an integrative metabolic-profiling/bioactivity and taxonomical approach. PLoS ONE 12:e0170148PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bittencourt MLF, Ribeiro PR, Franco RLP, Hilhorst HWM, de Castro RD, Fernandez LG (2015) Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: use of correlation and multivariate analyses to identify potential bioactive compounds. Food Res Int 76:449–457PubMedCrossRefGoogle Scholar
  15. Borgos SEF, Skjåstad R, Tøndervik A, Aas M, Aasen IM, Brunsvik A, Holten T, Iversen OJ, Ahlen C, Zahlsen K (2015) Rapid metabolic profiling of developing Pseudomonas aeruginosa biofilms by high-resolution mass spectrometry fingerprinting. Ann Microbiol 65:891–898CrossRefGoogle Scholar
  16. Bosso M, Ständker L, Kirchhoff F, Münch J (2018) Exploiting the human peptidome for novel antimicrobial and anticancer agents. Bioorg Med Chem 26:2719–2726CrossRefGoogle Scholar
  17. Chae TU, Choi SY, Kim JW, Ko YS, Lee SY (2017) Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 47:67–82PubMedCrossRefGoogle Scholar
  18. Chatzimitakos TG, Stalikas CD (2016) Qualitative alterations of bacterial metabolome after exposure to metal nanoparticles with bactericidal properties: a comprehensive workflow based on1H NMR, UHPLC-HRMS, and metabolic databases. J Proteome Res 15:3322–3330PubMedCrossRefGoogle Scholar
  19. Chavez-Dozal A, Gorman C, Nishiguchi MK (2015) Proteomic and metabolomic profiles demonstrate variation among free-living and symbiotic vibrio fischeri biofilms microbial genetics, genomics and proteomics. BMC Microbiol 15:226PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen JC, Tagg KA, Joung YJ, Bennett C, Watkins LF, Eikmeier D, Folster JP (2018) Report of erm(B) Campylobacter jejuni in the United States. Antimicrob Agents Chemother 62Google Scholar
  21. Chiang YM, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo HC, Ho WY, Simityan H, Kuo E, Praseuth A, Watanabe K, Oakley BR, Wang CCC (2008) Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem Biol 15:527–532PubMedCentralCrossRefPubMedGoogle Scholar
  22. Clark AM, Hufford CD, Robertson LW (1977) Two metabolites from Aspergillus flavipes. Lloydia 40:146–151Google Scholar
  23. Corcoran M, Morris D, De Lappe N, O’Connor J, Lalor P, Dockery P, Cormican M (2013) Salmonella enterica biofilm formation and density in the centers for disease control and prevention’s biofilm reactor model is related to serovar and substratum. J Food Prot 76:662–667PubMedCrossRefGoogle Scholar
  24. Davenport PW, Griffin JL, Welch M (2015) Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen Pseudomonas aeruginosa. J Bacteriol 197:2072–2082PubMedPubMedCentralCrossRefGoogle Scholar
  25. DeWitt JP, Stetson CL, Thomas KL, Carroll BJ (2018) Extensive cutaneous botryomycosis with subsequent development of Nocardia-positive wound cultures. J Cutan Med Surg 22(3):344–346PubMedCrossRefGoogle Scholar
  26. D’Sousa Costa CO, Ribeiro PR, Loureiro MB, Simões RC, De Castro RD, Fernandez LG (2015) Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius Raddi that occurs in the coast of Bahia, Brazil. Pharmacogn Mag 11:607–614CrossRefGoogle Scholar
  27. Favre L, Ortalo-Magné A, Pichereaux C, Gargaros A, Burlet-Schiltz O, Cotelle V, Culioli G (2018) Metabolome and proteome changes between biofilm and planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica TC8. Biofouling 34:132–148PubMedCrossRefGoogle Scholar
  28. Fei F, Mendonca ML, McCarry BE, Bowdish DME, Surette MG (2016) Metabolic and transcriptomic profiling of Streptococcus intermedius during aerobic and anaerobic growth. Metabolomics 12:1–13CrossRefGoogle Scholar
  29. Fernand MG, Roullier C, Guitton Y, Lalande J, Lacoste S, Dupont J, Ruiz N, Pouchus YF, Raheriniaina C, Ranaivoson E (2017) Fungi isolated from Madagascar shrimps- investigation of the Aspergillus niger metabolism by combined LC-MS and NMR metabolomics studies. Aquaculture 479:750–758CrossRefGoogle Scholar
  30. Fu Q, Liu D, Wang Y, Li X, Wang L, Yu F, Shen J, Xia X (2018) Metabolomic profiling of Campylobacter jejuni with resistance gene ermB by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and tandem quadrupole mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 1079:62–68CrossRefGoogle Scholar
  31. Gharieb MM, El-Sheekh MM, El-Sabbagh SM, Hamza WT (2013) Efficacy of pyocyanin produced by Pseudomonas aeruginosa as a topical treatment of infected skin of rabbits. Biotechnol Indian J 7:184–193Google Scholar
  32. Gnavi G, Palma Esposito F, Festa C, Poli A, Tedesco P, Fani R, Monti MC, de Pascale D, D’Auria MV, Varese GC (2016) The antimicrobial potential of algicolous marine fungi for counteracting multidrug-resistant bacteria: phylogenetic diversity and chemical profiling. Res Microbiol 167:492–500PubMedCrossRefGoogle Scholar
  33. Gökalsın B, Sesal NC (2016) Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World J Microbiol Biotechnol 32:150PubMedCrossRefPubMedCentralGoogle Scholar
  34. Götz F, Longnecker K, Kido Soule MC, Becker KW, McNichol J, Kujawinski EB, Sievert SM (2018) Targeted metabolomics reveals proline as a major osmolyte in the chemolithoautotroph Sulfurimonas denitrificans. MicrobiologyOpen 7:e00586PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hakeem Said I, Rezk A, Hussain I, Grimbs A, Shrestha A, Schepker H, Brix K, Ullrich MS, Kuhnert N (2017) Metabolome comparison of bioactive and inactive Rhododendron extracts and identification of an antibacterial cannabinoid(s) from Rhododendron collettianum. Phytochem Anal 28:454–464PubMedCrossRefPubMedCentralGoogle Scholar
  36. He J, Wijeratne EMK, Bashyal BP, Zhan J, Seliga CJ, Liu MX, Pierson EE, Pierson Iii LS, VanEtten HD, Gunatilaka AAL (2004) Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of sonoran desert plants. J Nat Prod 67:1985–1991PubMedCrossRefGoogle Scholar
  37. Honoré AH, Aunsbjerg SD, Ebrahimi P, Thorsen M, Benfeldt C, Knøchel S, Skov T (2016) Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Anal Bioanal Chem 408:83–96PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hubert J, Nuzillard JM, Renault JH (2017) Dereplication strategies in natural product research: how many tools and methodologies behind the same concept? Phytochem Rev 16:55–95CrossRefGoogle Scholar
  39. Illig L, Illig T (2018) Metabolomics and molecular imaging in the post-genomic era. In: P5 medicine and justice: innovation, unitariness and evidence. Springer, Cham, pp 12–21Google Scholar
  40. Jafari M, Ansari-Pour N, Azimzadeh S, Mirzaie M (2017) A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology. PLoS ONE 12:e0189922PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jin C, Yu Z, Peng S, Feng K, Zhang L, Zhou X (2018) The characterization and comparison of exopolysaccharides from two benthic diatoms with different biofilm formation abilities. An Acad Bras Cienc 90:1503–1519PubMedCrossRefPubMedCentralGoogle Scholar
  42. Joghee NN, Jayaraman G (2014) Metabolomic characterization of halophilic bacterial isolates reveals strains synthesizing rare diaminoacids under salt stress. Biochimie 102:102–111PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y (2005) Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J Antibiot 58:289–292PubMedCrossRefPubMedCentralGoogle Scholar
  44. Keelara S, Thakur S, Patel J (2016) Biofilm formation by environmental isolates of Salmonella and their sensitivity to natural antimicrobials. Foodborne Pathog Dis 13:509–516PubMedCrossRefGoogle Scholar
  45. Kildgaard S, Mansson M, Dosen I, Klitgaard A, Frisvad JC, Larsen TO, Nielsen KF (2014) Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library. Mar Drugs 12:3681–3705PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kim S, Kim J, Song JH, Jung YH, Choi IS, Choi W, Park YC, Seo JH, Kim KH (2016a) Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Biotechnol J 11:1221–1229PubMedCrossRefGoogle Scholar
  47. Kim WJ, Kim YO, Kim JH, Nam BH, Kim DG, An CM, Lee JS, Kim PS, Lee HM, Oh JS, Lee JS (2016b) Liquid chromatography-mass spectrometry-based rapid secondary-metabolite profiling of marine Pseudoalteromonas sp. M2. Mar Drugs 14:24PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kim ME, Jung I, Lee JS, Na JY, Kim WJ, Kim YO, Park YD, Lee JS (2017) Pseudane-VII isolated from Pseudoalteromonas sp. M2 ameliorates LPS-induced inflammatory response in vitro and in vivo. Mar Drugs 15:336PubMedCentralCrossRefPubMedGoogle Scholar
  49. Kim BE, Goleva E, Hall CF, Park SH, Lee UH, Brauweiler AM, Streib JE, Richers BN, Kim G, Leung DYM (2018) Skin wound healing is accelerated by a lipid mixture representing major lipid components of Chamaecyparis obtusa plant extract. J Investig Dermatol 138:1176–1186PubMedCrossRefPubMedCentralGoogle Scholar
  50. Koistinen VM, da Silva AB, Abrankó L, Low D, Villalba RG, Barberán FT, Landberg R, Savolainen O, Alvarez-Acero I, de Pascual-Teresa S, Van Poucke C, Almeida C, Petrásková L, Valentová K, Durand S, Wiczkowski W, Szawara-Nowak D, González-Domínguez R, Llorach R, Andrés-Lacueva C, Aura AM, Seppänen-Laakso T, Hanhineva K, Manach C, Bronze MR (2018) Interlaboratory coverage test on plant food bioactive compounds and their metabolites by mass spectrometry-based untargeted metabolomics. Metabolites 8Google Scholar
  51. Landini P, Antoniani D, Burgess JG, Nijland R (2010) Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86:813–823PubMedCrossRefGoogle Scholar
  52. Lang G, Mitova MI, Cole ALJ, Din LB, Vikineswary S, Abdullah N, Blunt JW, Munro MHG (2006) Pterulamides I-VI, linear peptides from a Malaysian Pterula sp. J Nat Prod 69:1389–1393PubMedCrossRefPubMedCentralGoogle Scholar
  53. Li Y, Luo Q, Yuan L, Miao C, Mu X, Xiao W, Li J, Sun T, Ma E (2012) JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells. Toxicol Appl Pharmacol 263:21–31PubMedCrossRefGoogle Scholar
  54. Lian J, Mishra S, Zhao H (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metab Eng 50:85–108PubMedCrossRefGoogle Scholar
  55. Liao X, Hu F, Chen Z (2018) Identification and quantitation of the bioactive components in Osmanthus fragrans fruits by HPLC-ESI-MS/MS. J Agric Food Chem 66:359–367PubMedCrossRefPubMedCentralGoogle Scholar
  56. Liu L, Gui M, Wu R, Li P (2016a) Progress in research on biofilm formation regulated by LuxS/AI-2 quorum sensing. Shipin Kexue Food Sci 37:254–262Google Scholar
  57. Liu Q, Li W, Sheng L, Zou C, Sun H, Zhang C, Liu Y, Shi J, Ma E, Yuan L (2016b) Design, synthesis and biological evaluation of novel asperphenamate derivatives. Eur J Med Chem 110:76–86PubMedCrossRefPubMedCentralGoogle Scholar
  58. López-Gresa MP, Lisón P, Campos L, Rodrigo I, Rambla JL, Granell A, Conejero V, Bellés JM (2017) A non-targeted metabolomics approach unravels the VOCs associated with the tomato immune response against Pseudomonas syringae. Front Plant Sci 8:1118CrossRefGoogle Scholar
  59. Luo X, Zhou X, Lin X, Qin X, Zhang T, Wang J, Tu Z, Yang B, Liao S, Tian Y, Pang X, Kaliyaperumal K, Li JL, Tao H, Liu Y (2017) Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Nat Prod Res 31:1958–1962PubMedCrossRefGoogle Scholar
  60. Maansson M, Vynne NG, Klitgaard A, Nybo JL, Melchiorsen J, Nguyen DD, Sanchez LM, Ziemert N, Dorrestein PC, Andersen MR, Gram L (2016) An integrated metabolomic and genomic mining workflow to uncover the biosynthetic potential of bacteria. mSystems 1Google Scholar
  61. Managamuri U, Vijayalakshmi M, Ganduri VSRK, Rajulapati SB, Bonigala B, Kalyani BS, Poda S (2017) Isolation, identification, optimization, and metabolite profiling of Streptomyces sparsus VSM-30. 3 Biotech 7:217PubMedPubMedCentralCrossRefGoogle Scholar
  62. Marcone GL, Binda E, Berini F, Marinelli F (2018) Old and new glycopeptide antibiotics: from product to gene and back in the post-genomic era. Biotechnol Adv 36:534–554PubMedCrossRefGoogle Scholar
  63. Mgbeahuruike EE, Yrjönen T, Vuorela H, Holm Y (2017) Bioactive compounds from medicinal plants: focus on Piper species. S Afr J Bot 112:54–69CrossRefGoogle Scholar
  64. Newman DJ (2016) Predominately uncultured microbes as sources of bioactive agents. Front Microbiol 7:1832.  https://doi.org/10.3389/fmicb.2016.01832CrossRefPubMedPubMedCentralGoogle Scholar
  65. Odai H, Shindo K, Odagawa A, Mochizuki J, Hamada M, Takeuchi T (1994) Inostamycins B and C, new polyether antibiotics. J Antibiot 47:939–941PubMedCrossRefPubMedCentralGoogle Scholar
  66. Ortiz-Villanueva E, Benavente F, Piña B, Sanz-Nebot V, Tauler R, Jaumot J (2017) Knowledge integration strategies for untargeted metabolomics based on MCR-ALS analysis of CE-MS and LC-MS data. Anal Chim Acta 978:10–23PubMedCrossRefGoogle Scholar
  67. Padder SA, Prasad R, Shah AH (2018) Quorum sensing: a less known mode of communication among fungi. Microbiol Res 210:51–58PubMedCrossRefPubMedCentralGoogle Scholar
  68. Patel J, Singh M, Macarisin D, Sharma M, Shelton D (2013) Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants. Food Microbiol 36:388–394PubMedCrossRefGoogle Scholar
  69. Patil MP, Patil RH, Maheshwari VL (2015) Biological activities and identification of bioactive metabolite from endophytic Aspergillus flavus L7 isolated from Aegle marmelos. Curr Microbiol 71:39–48PubMedCrossRefGoogle Scholar
  70. Pintilie L, Stefaniu A, Ioana Nicu A, Maganu M, Caproiu MT (2018) Design, synthesis and docking studies of some novel fluoroquinolone compounds with antibacterial activity. Rev Chim 69:815–822Google Scholar
  71. Ranjbar R, Babazadeh D, Jonaidi-Jafari N (2017) Prevalence of Campylobacter jejuni in adult patients with inflammatory bacterial diarrhea, East Azerbaijan, Iran. Acta Med Mediterr 33:901–908Google Scholar
  72. Ratnaweera PB, Williams DE, de Silva ED, Wijesundera RLC, Dalisay DS, Andersen RJ (2014) Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 5:23–28PubMedPubMedCentralCrossRefGoogle Scholar
  73. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56:16–30PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ribeiro PR, Ligterink W, Hilhorst HWM (2015) Expression profiles of genes related to carbohydrate metabolism provide new insights into carbohydrate accumulation in seeds and seedlings of Ricinus communis in response to temperature. Plant Physiol Biochem 95:103–112PubMedCrossRefGoogle Scholar
  75. Ribeiro PR, Canuto GAB, Brito VC, Batista DLJ, de Brito CD, Loureiro MB, Takahashi D, de Castro RD, Fernandez LG, Hilhorst HWM, Ligterink W (2018) Castor bean metabolomics: current knowledge and perspectives toward understanding of plant plasticity under stress condition. In: Disaster risk reduction, 1st edn. Springer Singapore, pp 237–253.Google Scholar
  76. Romoli R, Papaleo MC, De Pascale D, Tutino ML, Michaud L, LoGiudice A, Fani R, Bartolucci G (2014) GC-MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics 10:42–51CrossRefGoogle Scholar
  77. Sander K, Asano KG, Bhandari D, Van Berkel GJ, Brown SD, Davison B, Tschaplinski TJ (2017) Targeted redox and energy cofactor metabolomics in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Mike Himmel. Biotechnol Biofuels 10:285CrossRefGoogle Scholar
  78. Sanmanoch W, Mongkolthanaruk W, Kanokmedhakul S, Aimi T, Boonlue S (2016) Helvolic acid, a secondary metabolite produced by neosartorya spinosa KKU-1NK1 and its biological activities. Chiang Mai J Sci 43:483–493Google Scholar
  79. Santos PM, Batista DLJ, Ribeiro LAF, Boffo EF, de Cerqueira MD, Martins D, de Castro RD, de Souza-Neta LC, Pinto E, Zambotti-Villela L, Colepicolo P, Fernandez LG, Canuto GAB, Ribeiro PR (2018) Identification of antioxidant and antimicrobial compounds from the oilseed crop Ricinus communis using a multiplatform metabolite profiling approach. Ind Crop Prod 124:834–844CrossRefGoogle Scholar
  80. Saroj SD, Rather PN (2013) Streptomycin inhibits quorum sensing in Acinetobacter baumannii. Antimicrob Agents Chemother 57:1926–1929PubMedCentralCrossRefPubMedGoogle Scholar
  81. Schatz A, Bugle E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc Soc Exp Biol Med 55:66–69CrossRefGoogle Scholar
  82. Schelli K, Rutowski J, Roubidoux J, Zhu J (2017) Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling. J Chromatogr B Anal Technol Biomed Life Sci 1047:124–130CrossRefGoogle Scholar
  83. Scrutton NS (2017) Enzymes make light work of hydrocarbon production. Science 357:872–873PubMedCrossRefGoogle Scholar
  84. Sfeir MM (2018) Burkholderia cepacia complex infections: more complex than the bacterium name suggest. J Infect 77:166–170PubMedCrossRefGoogle Scholar
  85. Singh RK, Lee JK, Selvaraj C, Singh R, Li J, Kim SY, Kalia VC (2018) Protein engineering approaches in the post-genomic era. Curr Protein Pept Sci 19:5–15PubMedCrossRefGoogle Scholar
  86. Sohlenkamp C, Geiger O (2015) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159PubMedCrossRefGoogle Scholar
  87. Stipetic LH, Dalby MJ, Davies RL, Morton FR, Ramage G, Burgess KEV (2016) A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics 12:75PubMedPubMedCentralCrossRefGoogle Scholar
  88. Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328PubMedCrossRefGoogle Scholar
  89. Tracanna V, de Jong A, Medema MH, Kuipers OP (2017) Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev 41:417–429PubMedCrossRefGoogle Scholar
  90. Tredwell GD, Aw R, Edwards-Jones B, Leak DJ, Bundy JG (2017) Rapid screening of cellular stress responses in recombinant Pichia pastoris strains using metabolite profiling. J Ind Microbiol Biotechnol 44:413–417PubMedPubMedCentralCrossRefGoogle Scholar
  91. Van Dalem A, Herpol M, Echahidi F, Peeters C, Wybo I, De Wachter E, Vandamme P, Piérard D (2018) In vitro susceptibility of Burkholderia cepacia complex isolated from cystic fibrosis patients to ceftazidime-avibactam and ceftolozane-tazobactam. Antimicrob Agents Chemother 62Google Scholar
  92. Van Der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, Van Wezel GP (2018) Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 35:575–604PubMedCrossRefGoogle Scholar
  93. Vinci G, Cozzolino V, Mazzei P, Monda H, Savy D, Drosos M, Piccolo A (2018) Effects of Bacillus amyloliquefaciens and different phosphorus sources on maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 429:437–450CrossRefGoogle Scholar
  94. Wahyuni TS, Widyawaruyanti A, Lusida MI, Fuad A, Soetjipto, Fuchino H, Kawahara N, Hayashi Y, Aoki C, Hotta H (2014) Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia 99:276–283PubMedCrossRefGoogle Scholar
  95. Wang Y, Zhang M, Deng F, Shen Z, Wu C, Zhang J, Zhang Q, Shen J (2014) Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob Agents Chemother 58:5405–5412PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wang Z, Li MY, Peng B, Cheng ZX, Li H, Peng XX (2016) GC-MS-based metabolome and metabolite regulation in serum-resistant Streptococcus agalactiae. J Proteome Res 15:2246–2253PubMedCrossRefGoogle Scholar
  97. Wong HS, Maker GL, Trengove RD, O’Handley RM (2015) Gas chromatography-mass spectrometry-based metabolite profiling of Salmonella enterica serovar typhimurium differentiates between biofilm and planktonic phenotypes. Appl Environ Microbiol 81:2660–2666PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yang MH, Li TX, Wang Y, Liu RH, Luo J, Kong LY (2017) Antimicrobial metabolites from the plant endophytic fungus Penicillium sp. Fitoterapia 116:72–76PubMedCrossRefGoogle Scholar
  99. Yang YT, Zhu JF, Liao G, Xu HJ, Yu B (2018) The development of biologically important spirooxindoles as new antimicrobial agents. Curr Med Chem 25:2233–2244CrossRefGoogle Scholar
  100. Yogabaanu U, Weber JFF, Convey P, Rizman-Idid M, Alias SA (2017) Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi. Pol Sci 14:60–67CrossRefGoogle Scholar
  101. Yuan L, Li Y, Zou C, Wang C, Gao J, Miao C, Ma E, Sun T (2012) Synthesis and in vitro antitumor activity of asperphenamate derivatives as autophagy inducer. Bioorg Med Chem Lett 22:2216–2220CrossRefGoogle Scholar
  102. Ząbek A, Junka A, Szymczyk P, Wojtowicz W, Klimek-Ochab M, Młynarz P (2017) Metabolomics analysis of fungal biofilm development and of arachidonic acid-based quorum sensing mechanism. J Basic Microbiol 57:428–439CrossRefGoogle Scholar
  103. Zhang Y, Pei G, Chen L, Zhang W (2016) Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface. Biofouling 32:725–736CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Paulo R. Ribeiro
    • 1
    Email author
  • Rhaissa R. Barbosa
    • 1
  • Catherine P. de Almeida
    • 1
  1. 1.Metabolomics Research Group, Departamento de Química Orgânica, Instituto de QuímicaUniversidade Federal da BahiaSalvadorBrazil

Personalised recommendations