Advertisement

New Age Agricultural Bioinputs

  • Bhavana V. Mohite
  • Sunil H. Koli
  • Hemant P. Borase
  • Jamatsing D. Rajput
  • Chandrakant P. Narkhede
  • Vikas S. Patil
  • Satish V. Patil
Chapter

Abstract

The use of soil conditioners and biofertilizers is vital in modern agriculture. Currently, the increased prices of petroleum substances affected the supply and price of common nitrogen fertilizers like urea. The development in biofertilizer sector signifies the utilization of nitrogen fixer-based biofertilizers in comparison with Azospirillum, Azotobacter, and Rhizobium bioinputs. The unpredictable monsoon, global warming, gap of rain after sowing of seed during the rainy period, and loss of yield due to increased temperature are the major obstructions resulting to a major economic loss. The environmental variation and ever-increasing food demand necessitate the application of additional bioinputs except for nitrogen fixers and phosphate solubilizers to augment soil fertility. Phosphorous is among the essential plant macronutrients after nitrogen. There are phosphate-solubilizing bacteria and fungi which solubilize the rock phosphate, making it available to plants. However, significant phosphate is immobilized in natural organic form, so to recycle it, the exploitation of a phytase producer is the right solution. The application of ACC deaminase-producing microbes is a significant and economic solution for farmers to fight drought. The upkeep of soil productivity by utilizing conventional bioinputs turned out to be inadequate. Current findings proved that protozoans play an essential function in sustaining soil richness and mineralizing nutrients. With this, this article sheds light on modern and novel bioinputs, which are needed in the current era.

Keywords

Microbial inoculants ACC deaminase Phosphorus solubilizers Bacteria Macronutrients 

Notes

Acknowledgment

The corresponding author, SVP, is kindly acknowledging the Department of Biotechnology, New Delhi, for the Indo-US Foldscope Major Research Project grant (Grant No. BT/IN/Indo-US/Foldscope/39/2015).

References

  1. Adhya TK, Kumar N, Reddy G et al (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr Sci 108(7):1280–1287Google Scholar
  2. Aiba S, Humphrey AE, Millis NF (1973) Scale-up. In: Biochemical engineering, 2nd edn. Academic, New York, pp 195–217Google Scholar
  3. Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE (2002) Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy. J Appl Poult Res 11:471–480CrossRefGoogle Scholar
  4. Ariza A, Moroz OV, Blagova EV et al (2013) Degradation of phytate by the 6-phytase from Hafnia alvei: a combined structural and solution study. PLoS One 8(5):e65062PubMedPubMedCentralCrossRefGoogle Scholar
  5. Azam F, Fenchel T, Field JG (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 20:257–263CrossRefGoogle Scholar
  6. Bakthavatchalu S, Thiam B, Lokanath CK (2013) Partial purification and characterization of phytases from newly isolated Pseudomonas aeruginosa. Asiat J Biotechnol Resour 4:7–12Google Scholar
  7. Baldi BG, Scott JJ, Everard JD et al (1988) Localization of constitutive phytases in lily pollen and properties of the pH 8 form. Plant Sci 56:137–147CrossRefGoogle Scholar
  8. Belimov AA, Dodd IC, Safronova VI (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 24:1–11Google Scholar
  9. Bernard C, Rassoulzadegan F (1990) Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton. Mar Ecol Prog Ser 64(1):147–155CrossRefGoogle Scholar
  10. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition, a challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162(3):617–631CrossRefGoogle Scholar
  12. Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34(11):1709–1715CrossRefGoogle Scholar
  13. Brinch-Pedersen H, Sørensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bünemann EK (2008) Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients. Soil Biol Biochem 40:2116–2129CrossRefGoogle Scholar
  15. Cao L, Wang L, Yang W et al (2007) Application of microbial phytase in fish feed. Enzyme Microb Technol 40:497–507CrossRefGoogle Scholar
  16. Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110:313–322PubMedCrossRefPubMedCentralGoogle Scholar
  17. Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292CrossRefGoogle Scholar
  18. Chrzanowski TH, Šimek K (1990) Prey-size selection by freshwater flagellated protozoa. Limnol Oceanogr 35(7):1429–136sCrossRefGoogle Scholar
  19. D’Silva CG, Bae HD, Yanke LJ et al (2000) Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy. Can J Microbiol 46:391–395PubMedCrossRefPubMedCentralGoogle Scholar
  20. Davis PG, Sieburth JM (1984) Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria. Mar Ecol Prog Ser 19(3):237–246CrossRefGoogle Scholar
  21. De Angelis M, Gallo G, Corbo MR et al (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270PubMedCrossRefPubMedCentralGoogle Scholar
  22. Djordjevic S, Djukic D, Govedarica M et al (2003) Effects of chemical and physical soil properties on activity phosphomonoesterase. Acta Agric Serbica 8:3–10Google Scholar
  23. Duan J, Müller KM, Charles TC (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microbial Ecol 57:423–436CrossRefGoogle Scholar
  24. Eccleston-Parry JD, Leadbeater BS (1994a) A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species. Mar Ecol Prog Ser 105:167–177CrossRefGoogle Scholar
  25. Eccleston-Parry JD, Leadbeater BS (1994b) The effect of long-term low bacterial density on the growth kinetics of three marine heterotrophic nanoflagellates. J Exp Mar Biol Ecol 177:219–233CrossRefGoogle Scholar
  26. Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15(4):321–353PubMedCrossRefPubMedCentralGoogle Scholar
  27. Escobin-Mopera L, Ohtani M, Sekiguchi S et al (2012) Purification and characterization of phytase from Klebsiella pneumoniae 9-3B. J Biosci Bioeng 113:562–567PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244(1–2):221–230CrossRefGoogle Scholar
  29. Farhat A, Chouayekh H, Farhatben M et al (2008) Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Mol Biotechnol 64:1234–1245Google Scholar
  30. Farouk AE, Greiner R, Hussain ASM (2012) Purification and properties of a phytate-degrading enzyme produced by Enterobacter sakazakii ASUIA279. J Biotechnol Biodivers 3:1–9CrossRefGoogle Scholar
  31. Findenegg GR, Nelemans JA (1993) The effect of phytase on the availability of P from myo-inositol hexaphosphate (phytate) for maize roots. Plant Soil 154:189–196CrossRefGoogle Scholar
  32. Finlayson SA, Foster KR, Reid DM (1991) Transport and metabolism of 1-aminocyclopropane-carboxylic acid in sunflower (Helianthus annuus L.) seedlings. Plant Physiol 96:1360–1367PubMedPubMedCentralCrossRefGoogle Scholar
  33. First MR, Park NY, Berrang ME (2012) Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant Campylobacter jejuni. J Eukaryot Microbiol 59:12–19PubMedCrossRefGoogle Scholar
  34. Fitriatin BN, Joy B, Subroto T (2008) The influence of organic phosphorous substrate on phosphatase activity of soil microbes. In: Proceedings of international seminar on chemistry. 2008 Oct 30–31. Universitas Padjadjaran, JatinangorGoogle Scholar
  35. Frias J, Doblado R, Antezana JR et al (2003) Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chem 81:233–239CrossRefGoogle Scholar
  36. Fu S, Sun J, Qian L et al (2008) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biotechnol 151:1–8PubMedCrossRefGoogle Scholar
  37. George TS, Richardson AE, Hadobas PA et al (2004) Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ 27:1351–1361CrossRefGoogle Scholar
  38. George TS, Simpson RJ, Hadobas PA et al (2005) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J 3:129–140PubMedCrossRefGoogle Scholar
  39. George TS, Simpson RJ, Gregory PJ et al (2007) Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39:793–803CrossRefGoogle Scholar
  40. Gibson DM (1987) Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett 9:305–310CrossRefGoogle Scholar
  41. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  42. Glick BR, Cheng Z, Czarny J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  43. Goldman JC, Caron DA (1985) Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res 32:899–915CrossRefGoogle Scholar
  44. Goldman JC, Caron DA, Andersen OK (1985) Nutrient cycling in a microflagellate food chain. I. Nitrogen dynamics. Mar Ecol Prog Ser 24:231–242CrossRefGoogle Scholar
  45. Greiner R, Sajidan I (2008) Production of D-myo-inositol (1, 2, 4, 5, 6) pentakisphosphate using alginate-entrapped recombinant Pantoea agglomerans glucose-1-phosphatase. Braz Arch Biol Technol 51:235–246Google Scholar
  46. Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113PubMedCrossRefGoogle Scholar
  47. Greiner R, Lim BL, Cheng C (2007) Pathway of phytate dephosphorylation by β-propeller phytases of different origins. Can J Microbiol 53:488–495PubMedCrossRefGoogle Scholar
  48. Griffiths AJ (1970) Encystment in amoebae. Adv Microb Physiol 4:105–120CrossRefGoogle Scholar
  49. Griffiths BS, Bardgett RD (1997) Interactions between microbe-feeding invertebrates and Soil Microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 165–182Google Scholar
  50. Guimarães LH, Terenzi HF, Jorge JA et al (2004) Characterization and properties of acid phosphatases with phytase activity produced by Aspergillus caespitosus. Biotech Appl Biochem 40:201–207CrossRefGoogle Scholar
  51. Guinel FC (2015) Ethylene, a hormone at the center-stage of nodulation. Front Plant Sci 6:1121PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52:676–684PubMedCrossRefGoogle Scholar
  53. Gyaneshwar P, Kumar GN, Parekh LJ et al (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93Google Scholar
  54. Haefner S, Knietsch A, Scholten E et al (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hao X, Cho CM, Racz GJ et al (2002) Chemical retardation of phosphate diffusion in an acid soil as affected by liming. Nutr Cycle Agroecosyst 64:213–224CrossRefGoogle Scholar
  56. Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  57. Hayes JE, Richardson AE, Simpson RJ (1999) Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume species. Aust J Plant Physiol 26:801–809Google Scholar
  58. Hayes J, Simpson R, Richardson A (2000) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174CrossRefGoogle Scholar
  59. Heaton K, Drinkall J, Minett A et al (2001) Amoeboid grazing on surface associated prey. In: Gilbert P, Allison DG, Brading M et al (eds) Biofilm community interactions: chance or necessity? Bioline Press, Cardiff, pp 293–301Google Scholar
  60. Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608PubMedPubMedCentralCrossRefGoogle Scholar
  61. Herbert D (1956) Stoichiometric aspects of microbial growth. In: Evans C, Melling J (eds) Continuous culture 6: applications and new field, vol 6. Ellis Horword, Chichester, pp 1–30Google Scholar
  62. Honma M, Shimomura T (1978) Metabolism of 1- aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831Google Scholar
  63. Howson S, Davis R (1983) Production of phytate hydrolyzing enzymes by some fungi. Enzym Microb Technol 5:377–382CrossRefGoogle Scholar
  64. Hsiao A (2000) Effect of water deficit on morphological and physiological characterizes in rice (Oryza sativa). J Agric Res 3:93–97Google Scholar
  65. Huang H, Shi P, Wang Y (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516PubMedPubMedCentralCrossRefGoogle Scholar
  66. Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98:238–244PubMedCrossRefGoogle Scholar
  67. Idriss EE, Makarewicz O, Farouk A et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth-promoting effect. Microbiology 148:2097–2109PubMedCrossRefGoogle Scholar
  68. Iriberri J, Ayo B, Santamaria E (1995) Influence of bacterial density and water temperature on the grazing activity of two freshwater ciliates. Freshw Biol 33:223–231CrossRefGoogle Scholar
  69. Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025CrossRefGoogle Scholar
  70. James MR, Hall JA (1995) Planktonic ciliated protozoa: their distribution and relationship to environmental variables in a marine coastal ecosystem. J Plankton Res 17:659–683CrossRefGoogle Scholar
  71. Jassey VE, Shimano S, Dupuy C et al (2012) Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow “fen-bog” gradient using digestive vacuole content and 13C and 15N isotopic analyses. Prosit 163:451–464Google Scholar
  72. Jia YJ, Kakuta Y, Sugawara M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotech Biochem 63:542–549CrossRefGoogle Scholar
  73. Johnson SC, Yang MP, Murthy PN (2010) Heterologous expression and functional characterization of a plant alkaline phytase in Pichia pastoris. Protein Express Purif 74:196–203CrossRefGoogle Scholar
  74. Jorquera M, Martinez O, Maruyama F (2008) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23:182–191PubMedCrossRefGoogle Scholar
  75. Jousset A, Bonkowski M (2010) The model predator Acanthamoeba castellanii induces the production of 2, 4, DAPG by the biocontrol strain Pseudomonas fluorescens Q2-87. Soil Biol Biochem 42:1647–1649CrossRefGoogle Scholar
  76. Jousset A, Rochat L, Scheu S et al (2010) Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens. Appl Environ Microbiol 76:5263–5268PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kara A, Ebina S, Kondo A et al (1985) A new type of phytase from pollen of Typha latifolia L. Agric Biol Chem 49:3539–3544CrossRefGoogle Scholar
  78. Kerovuo J, Lauraeus M, Nurminen P et al (1998) Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085PubMedPubMedCentralGoogle Scholar
  79. Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myoinositol hexakisphosphate hydrolysis by Bacillus phytase, indication of a novel reaction mechanism. Biochem J 352:623–628PubMedPubMedCentralCrossRefGoogle Scholar
  80. Khan AA, Jilani G, Akhtar MS et al (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58Google Scholar
  81. Kim Y-O, Lee J-K, Kim H-K et al (1998a) Cloning of thermostable phytase gene (phy) from Bacillus sp. DS11 and it’s over expression in Escherichia coli. FEMS Microbiol Lett 162:185–191PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kim YO, Kim HK, Bae KS et al (1998b) Purification and properties of thermostable phytase from Bacillus sp. DS11. Enzym Microbiol Technol 22:2–7CrossRefGoogle Scholar
  83. Kim H-W, Kim Y-O, Lee J-H et al (2003) Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett 25:1231–1234PubMedCrossRefPubMedCentralGoogle Scholar
  84. Klee HJ, Hayford MB, Kretzmer KA (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193PubMedPubMedCentralGoogle Scholar
  85. Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytase degrading enzymes (phytases). Int J Food Sci Technol 37:791–812CrossRefGoogle Scholar
  86. Konietzny U, Greiner R (2004) Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Braz J Microbiol 35:12–18CrossRefGoogle Scholar
  87. Krome K, Rosenberg K, Dickler C (2010) Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant Soil 328:191–201CrossRefGoogle Scholar
  88. Lan GQ, Abdullah N, Jalaludin S et al (2002) Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle. J Appl Microbiol 93:668–674PubMedCrossRefPubMedCentralGoogle Scholar
  89. Levrat P (1989) Actiond’ Acanthamoeba castellarni (Protozoa: Amoebida) sur la production de siderophores par la bacterie Pseudomonas putida. C R Acad Sci Sér 3 Sci Vie 308:161–164Google Scholar
  90. Li M, Osaki M, Madhusudana Rao I et al (1997) Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169CrossRefGoogle Scholar
  91. Li XG, Porres JM, Mullaney EJ et al (2007a) Phytase: source, structure and application. In: Industrial enzymes. Springer, Dordrecht, pp 505–529CrossRefGoogle Scholar
  92. Li X, Wu Z, Li W et al (2007b) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74:1120–1125PubMedCrossRefPubMedCentralGoogle Scholar
  93. Li G, Yang S, Li M et al (2009) Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol Lett 31:1297–1303PubMedCrossRefPubMedCentralGoogle Scholar
  94. Li R, Zhao J, Sun C et al (2010) Biochemical properties, molecular characterizations, functions, and application perspectives of phytases. Front Agric China 4:195–209CrossRefGoogle Scholar
  95. Lilly VG (1965) The chemical environment for growth. 1. In: Ainsworth GC, Sussman AS (eds) The fungi, media, macro and micronutrients, vol 1. Academic, New York, pp 465–478Google Scholar
  96. Lott JN, Ockenden I, Raboy V et al (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10(1):11–33CrossRefGoogle Scholar
  97. Luria SE (1960) The bacterial protoplasm: composition and organization. Bacteria 1:1–34Google Scholar
  98. Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897PubMedPubMedCentralCrossRefGoogle Scholar
  99. Marlida Y, Delfita R, Adnadi P et al (2010) Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr 9:471–474CrossRefGoogle Scholar
  100. Mazzola M, De Bruijn I, Cohen MF et al (2009) Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl Environ Microbiol 75:6804–6811PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mellano HM, Munnecke DE, Endo RM (1970) Relationship of seedling age to development of Pythium ultimum on roots of Antirrhinum majus. Phytopathology 60:935–942CrossRefGoogle Scholar
  102. Menezes-Blackburn D, Jorquera MA, Greiner R et al (2013) Phytases and phytase-labile organic phosphorus in manures and soils. Crit Rev Environ Sci Technol 43:916–954CrossRefGoogle Scholar
  103. Minami R, Uchiyama K, Murakami T (1998) Properties, sequence and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112–1118PubMedCrossRefPubMedCentralGoogle Scholar
  104. Minggang L, Mitsuru O, Idupulapati MR, Tadano T (1997) Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169CrossRefGoogle Scholar
  105. Mittal V, Singh O, Nayyar H et al (2008) Stimulatory effect of phosphate solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv.GPF2). Soil Biol Biochem 40:718–727CrossRefGoogle Scholar
  106. Morgan PW, Drew MC (1997) Ethylene and plant response to stress. Physiol Plant 100:620–630CrossRefGoogle Scholar
  107. Mukhametzyanova AD, Akhmetova AI, Sharipova MR (2012) Microorganisms as phytase producers. Microbiology 81:267–275CrossRefGoogle Scholar
  108. Mullaney EJ, Ullah AHJ (2003) Phytases: attributes, catalytic mechanisms and applications. Biochem Biophys Res Commun 312:179–184CrossRefGoogle Scholar
  109. Mullaney EJ, Daly CB, Ullah AH (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199PubMedCrossRefGoogle Scholar
  110. Müller MS, Scheu S, Jousset A (2013) Protozoa drive the dynamics of culturable biocontrol bacterial communities. PLoS One 8:e66200PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nielsen TH, Sorensen D, Tobiasen C et al (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423PubMedPubMedCentralCrossRefGoogle Scholar
  112. Page FC (1988) A new key to freshwater and soil Gymnamoebae: with instructions for culture. Freshwater Biological Association, AmblesideGoogle Scholar
  113. Pandey A, Szakacs G, Soccol CR et al (2001) Production, purification and properties of microbial phytases. Bioresour Technol 77:203–214PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pasamontes L, Haiker M, Wyss M (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700PubMedPubMedCentralGoogle Scholar
  115. Patel KJ, Singha AK, Nareshkumarb G (2010) Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Appl Soil Ecol 44:252–261CrossRefGoogle Scholar
  116. Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530PubMedCrossRefGoogle Scholar
  117. Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47:368–372PubMedCrossRefPubMedCentralGoogle Scholar
  118. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15PubMedCrossRefPubMedCentralGoogle Scholar
  119. Powar VK, Jagannathan V (1982) Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108PubMedPubMedCentralGoogle Scholar
  120. Quan C-S, Tian W-J, Fan S-D et al (2004) Purification and properties of a low-molecular weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng 97:260–266CrossRefGoogle Scholar
  121. Quiquampoix H, Burns RG (2007) Interactions between proteins and soil mineral surfaces: environmental and health consequences. Elements 3:401–406CrossRefGoogle Scholar
  122. Raboy V, Dickinson DB (1987) The timing and rate of phytic acid accumulation in developing soybean seeds. Plant Physiol 85:841–844PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rahdari P, Hosseini SM, Tavakoli S (2012) The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. J Med Plant Res 6:1539–1547Google Scholar
  124. Ramaekers L, Remans R, Rao IM (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crop Res 117:169–176CrossRefGoogle Scholar
  125. Reddy MS, Kumar S, Babita K (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour Technol 84:187–189CrossRefGoogle Scholar
  126. Reddy CS, Kim SC, Kaul T (2017) Genetically modified phytase crops role in sustainable plant and animal nutrition and ecological development: a review. 3 Biotech 7:195PubMedCentralCrossRefGoogle Scholar
  127. Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516PubMedCrossRefPubMedCentralGoogle Scholar
  128. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996PubMedPubMedCentralCrossRefGoogle Scholar
  129. Richardson A, Hadobas P, Hayes J (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.). roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405CrossRefGoogle Scholar
  130. Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649PubMedCrossRefGoogle Scholar
  131. Richardson AE, Hadobas PA, Hayes JE (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56CrossRefGoogle Scholar
  132. Richardson AE, Barea J-M, McNeill AM (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  133. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedPubMedCentralCrossRefGoogle Scholar
  134. Rossolini GM, Schippa S, Riccio ML et al (1998) Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850PubMedCrossRefGoogle Scholar
  135. Sajidan A, Farouk A, Greiner R (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118PubMedCrossRefGoogle Scholar
  136. Sarapatka B (2002) Phosphatase activity of Eutric cambisols (Uppland, Sweden) in relation to soil properties and farming systems. Acta Agric Bohem 33:18–24Google Scholar
  137. Sayre RM (1973) Theratromyxa weberi, an amoeba predatory on plant-parasitic nematodes. J Nematol 5:258PubMedPubMedCentralGoogle Scholar
  138. Schaefer M, Schauermann J (1990) The soil fauna of beech forests: comparison between a mull and a modern soil. Pedobiologia 34:299–314Google Scholar
  139. Scholz RW, Hellums DT, Roy AA (2015) Global sustainable phosphorus management: a transdisciplinary venture. Curr Sci 108:3–12Google Scholar
  140. Schröter D, Wolters V, De Ruiter PC (2003) C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102:294–308CrossRefGoogle Scholar
  141. Scott JJ (1991) Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiol 95:1298–1301PubMedCentralCrossRefPubMedGoogle Scholar
  142. Selvakumar G, Reetha S, Thamizhiniyan P (2012) Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (Vigna mungo L. Hepper). WASJ 16:1368–1374Google Scholar
  143. Sgherri C, Stevanovic B, Navari-Izzo F (2000) Role of phenolic acids during dehydration and rehydration of Ramonda serbica. Physiol Plant 122:478–485CrossRefGoogle Scholar
  144. Sharma A, Rawat US, Yadav BK (2012) Influence of phosphorus levels and phosphorus solubilizing fungi on yield and nutrient uptake by wheat under sub-humid region of Rajasthan, India. ISRN Agron 15:2012Google Scholar
  145. Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965PubMedPubMedCentralGoogle Scholar
  146. Shimizu M (1992) Purification and characterization of a phytase from Bacillus subtilis (natto) N-77. Biosci Biotechnol Biochem 56:1266–1269CrossRefGoogle Scholar
  147. Sieburth JM, Davis PG (1982) The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Seas. Ann Inst Oceanogr 58(S):285–296Google Scholar
  148. Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 160:1267–1276PubMedCrossRefGoogle Scholar
  149. Singh B, Satyanarayana T (2015) Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. J Anim Physiol Anim Nutr 99:646–660CrossRefGoogle Scholar
  150. Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6:69–87Google Scholar
  151. Tamimi SM, Timko MP (2003) Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.). Plant Soil 257:125–131CrossRefGoogle Scholar
  152. Tanaka Y, Sano T, Tamaoki M (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tarafdar JC (1995) Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-Phytate. Plant Soil 173:97–102CrossRefGoogle Scholar
  154. Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282CrossRefGoogle Scholar
  155. Tittabutr P, Piromyou P, Longtonglang A (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and Rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–557CrossRefGoogle Scholar
  156. Tran HT, Hurley BA, Plaxton WC (2010) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27CrossRefGoogle Scholar
  157. Turk M, Sandberg AS, Carlsson N et al (2000) Inositol hexaphosphate hydrolysis by baker’s yeast. Capacity, kinetics and degradation products. J Agric Food Chem 48:100–104PubMedCrossRefGoogle Scholar
  158. Turner BL, Papházy MJ, Haygarth PM et al (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tye AJ, Siu FKY, Leung TYC et al (2002) Molecular cloning and the bio-chemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis. Appl Microbiol Biotechnol 59:190–197PubMedCrossRefGoogle Scholar
  160. Unno Y, Okubo K, Wasaki J et al (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7:396–404PubMedCrossRefGoogle Scholar
  161. Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol hexakisphosphate phosphohydrolases): an overview. Enzym Microb Technol 35:3–14CrossRefGoogle Scholar
  162. Vats P, Bhattacharyya MS, Banerjee UC (2005) Use of phytases (myo-inositolhexakis phosphate phosphohydrolases) for combating environmental pollution: a biological approach. Crit Rev Environ Sci Technol 35:469–486CrossRefGoogle Scholar
  163. Wallenstein MD, Burns RG (2011) Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In: Dick RP (ed) Methods of soil enzymology. Soil Sci Soc Am, Madison, pp 35–55Google Scholar
  164. Wallenstein MD, McMahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Chang Biol 15:1631–1639CrossRefGoogle Scholar
  165. Weidner S, Latz E, Agaras B (2017) Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant Soil 410:509–515CrossRefGoogle Scholar
  166. Wyss M, Brugger R, Kronenberger A et al (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373PubMedPubMedCentralGoogle Scholar
  167. Xiao C, Chi R, Li X et al (2011) Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Appl Biochem Biotechnol 165:719–727PubMedCrossRefGoogle Scholar
  168. Xuguang N, Lichao S, Yinong X et al (2018) Drought-tolerant plant growth-promoting Rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580CrossRefGoogle Scholar
  169. Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189CrossRefGoogle Scholar
  170. Yoon SJ, Choi YJ, Min HK et al (1996) Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzym Microb Technol 18:449–454CrossRefGoogle Scholar
  171. Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:98–169Google Scholar
  172. Zamudio M, González A, Medina JA (2001) Lactobacillus plantarum phytase activity is due to nonspecific acid phosphatase. Lett Appl Microbiol 32:181–184PubMedCrossRefGoogle Scholar
  173. Zamudio M, González A, Bastarrachea F (2002) Regulation of Raoultella terrigena comb.nov. phytase expression. Can J Microbiol 48:71–81PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bhavana V. Mohite
    • 1
  • Sunil H. Koli
    • 1
  • Hemant P. Borase
    • 1
    • 2
  • Jamatsing D. Rajput
    • 1
  • Chandrakant P. Narkhede
    • 1
  • Vikas S. Patil
    • 3
  • Satish V. Patil
    • 1
    • 4
  1. 1.School of Life SciencesKavayitri Bahinabai Chaudhari North Maharashtra UniversityJalgaonIndia
  2. 2.C. G. Bhakta Institute of BiotechnologyUka Tarsadia UniversitySuratIndia
  3. 3.University Institute of Chemical TechnologyKavayitri Bahinabai Chaudhari North Maharashtra UniversityJalgaonIndia
  4. 4.North Maharashtra Microbial Culture Collection Centre (NMCC)Kavayitri Bahinabai Chaudhari North Maharashtra UniversityJalgaonIndia

Personalised recommendations