Quantification of Mitochondrial Network Characteristics in Health and Disease

  • Andrew J. Valente
  • Joao Fonseca
  • Fereshteh Moradi
  • Gregory Foran
  • Alexander Necakov
  • Jeffrey A. StuartEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1158)


The term ‘mitochondrial dynamics’ is commonly used to refer to ongoing fusion and fission of mitochondrial structures within a living cell. A growing number of diseases, from Charcot Marie Tooth Type 2a neuropathies to cancer, is known to be associated with the dysregulation of mitochondrial dynamics, leading to irregularities of mitochondrial network morphology that are associated with aberrant metabolism and cellular dysfunction. Studying these phenomena, and potential pharmacological interventions to correct them, in cultured cells is a powerful approach to developing treatments or cures. Appropriately designed experiments and quantitative approaches for characterizing mitochondrial morphology and function are essential for furthering our understanding. In this chapter, we discuss the importance of cell incubation conditions, choices around imaging modalities, and data analysis tools with respect to experimental outcomes and the interpretation of results from studies of mitochondrial dynamics. We focus primarily on the quantitative analysis of mitochondrial morphology, providing an overview of the available tools and approaches currently being used and discussing some of the strengths and weaknesses associated with each. Finally, we discuss how the ongoing development of imaging and analysis tools continues to improve our ability to study normal and aberrant mitochondrial physiology in vitro and in vivo.


MiNA Mitochondrial networks Mitochondrial dynamics Fusion Fission Cell physiology Live cell imaging 


  1. 1.
    Lewis MR, Lewis WH (1914) Mitochondria in tissue culture. Science 39:330–333CrossRefGoogle Scholar
  2. 2.
    Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–994CrossRefGoogle Scholar
  3. 3.
    Johnson LV (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535CrossRefGoogle Scholar
  4. 4.
    Harwig MC, Viana MP, Egner JM, Harwig JJ, Widlansky ME, Rafelski SM et al (2018) Methods for imaging mammalian mitochondrial morphology: a prospective on MitoGraph. Anal Biochem 552:81–99CrossRefGoogle Scholar
  5. 5.
    Rafelski SM, Marshall WF (2008) Building the cell: design principles of cellular architecture. Nat Rev Mol Cell Biol 9:593–602CrossRefGoogle Scholar
  6. 6.
    Rafelski SM (2013) Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 11:71CrossRefGoogle Scholar
  7. 7.
    Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360CrossRefGoogle Scholar
  8. 8.
    Yu SB, Pekkurnaz G (2018) Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J Mol Biol 430(21):3922–3941. Scholar
  9. 9.
    Cid-Castro C, Hernández-Espinosa DR, Morán J (2018) ROS as regulators of mitochondrial dynamics in neurons. Cell Mol Neurobiol 38:995–1007CrossRefGoogle Scholar
  10. 10.
    Schorr S, van der Laan M (2018) Integrative functions of the mitochondrial contact site and cristae organizing system. Semin Cell Dev Biol 76:191–200CrossRefGoogle Scholar
  11. 11.
    Rambold AS, Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10:4032–4038CrossRefGoogle Scholar
  12. 12.
    Pareyson D, Saveri P, Sagnelli A, Piscosquito G (2015) Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett 596:66–77CrossRefGoogle Scholar
  13. 13.
    Bagli E, Zikou AK, Agnantis N, Kitsos G (2017) Mitochondrial membrane dynamics and inherited optic neuropathies. In Vivo 31:511–525CrossRefGoogle Scholar
  14. 14.
    Filadi R, Pendin D, Pizzo P (2018) Mitofusin 2: from functions to disease. Cell Death Dis 9:330CrossRefGoogle Scholar
  15. 15.
    Kameoka S, Adachi Y, Okamoto K, Iijima M, Sesaki H (2018) Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol 28:67–76CrossRefGoogle Scholar
  16. 16.
    Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z et al (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. Federation of American Societies for Experimental Biology Bethesda, MD, USA 26:2175–2186CrossRefGoogle Scholar
  17. 17.
    Sarder P, Nehorai A (2006) Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process Mag 23:32–45CrossRefGoogle Scholar
  18. 18.
    Goodwin PC (2014) Quantitative deconvolution microscopy. Methods Cell Biol 123:177–192CrossRefGoogle Scholar
  19. 19.
    Biggs DSC (2010) 3D Deconvolution Microscopy. Curr Protoc Cytom 52:12.19.1–12.19.20CrossRefGoogle Scholar
  20. 20.
    Pawley J (2010) Handbook of biological confocal microscopy. Springer Science & Business Media, New YorkGoogle Scholar
  21. 21.
    Conchello J-A, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2:920–931CrossRefGoogle Scholar
  22. 22.
    Gräf R, Rietdorf J, Zimmermann T (2005) Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol 95:57–75PubMedGoogle Scholar
  23. 23.
    Paddock SW, Eliceiri KW (2013) Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques. Methods Mol Biol 1075:9–47CrossRefGoogle Scholar
  24. 24.
    Neil MA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22:1905–1907CrossRefGoogle Scholar
  25. 25.
    Weigel A, Schild D, Zeug A (2009) Resolution in the ApoTome and the confocal laser scanning microscope: comparison. J Biomed Opt 14:014022CrossRefGoogle Scholar
  26. 26.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780CrossRefGoogle Scholar
  27. 27.
    Hell SW, Stelzer EHK, Lindek S, Cremer C (1994) Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. Opt Lett, OL Optical Soc Am 19:222–224Google Scholar
  28. 28.
    Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION. J Microsc 198:82–87CrossRefGoogle Scholar
  29. 29.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796CrossRefGoogle Scholar
  30. 30.
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272CrossRefGoogle Scholar
  31. 31.
    Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MGL (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci U S A 109:5311–5315CrossRefGoogle Scholar
  32. 32.
    Shao L, Kner P, Rego EH, Gustafsson MGL (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8:1044–1046CrossRefGoogle Scholar
  33. 33.
    Shim S-H, Xia C, Zhong G, Babcock HP, Vaughan JC et al (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci 109:13978–13983CrossRefGoogle Scholar
  34. 34.
    Gugel H, Bewersdorf J, Jakobs S, Engelhardt J, Storz R, Hell SW (2004) Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy. Biophys J 87:4146–4152CrossRefGoogle Scholar
  35. 35.
    Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci U S A 99:3370–3375CrossRefGoogle Scholar
  36. 36.
    Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10:413–420CrossRefGoogle Scholar
  37. 37.
    Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG et al (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8:417–423CrossRefGoogle Scholar
  38. 38.
    Laissue PP, Alghamdi RA, Tomancak P, Reynaud EG, Shroff H (2017) Assessing phototoxicity in live fluorescence imaging. Nat Methods 14:657–661CrossRefGoogle Scholar
  39. 39.
    Güemes M, Rahman SA, Hussain K (2016) What is a normal blood glucose? Arch Dis Child 101:569–574CrossRefGoogle Scholar
  40. 40.
    Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506CrossRefGoogle Scholar
  41. 41.
    Twig G, Graf SA, Wikstrom JD, Mohamed H, Haigh SE, Elorza A et al (2006) Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. Am J Physiol Cell Physiol 291:C176–C184CrossRefGoogle Scholar
  42. 42.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods Nat Publ Group 9:676CrossRefGoogle Scholar
  43. 43.
    Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42:71–75CrossRefGoogle Scholar
  44. 44.
    van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N et al (2014) scikit-image: image processing in python. PeerJ 2:e453CrossRefGoogle Scholar
  45. 45.
    MacCoun R, Perlmutter S (2015) Blind analysis: Hide results to seek the truth. Nature 526:187–189CrossRefGoogle Scholar
  46. 46.
    Iannetti EF, Smeitink JAM, Beyrath J, Willems PHGM, Koopman WJH (2016) Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy. Nat Protoc 11:1693–1710CrossRefGoogle Scholar
  47. 47.
    Koopman WJH, Visch H-J, Smeitink JAM, Peter HG (2005) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A 69A:1–12CrossRefGoogle Scholar
  48. 48.
    Nikolaisen J, Nilsson LIH, Pettersen IKN, Peter HG, Lorens JB, Koopman WJH et al (2014) Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties. PLoS One 9:e101365CrossRefGoogle Scholar
  49. 49.
    Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855CrossRefGoogle Scholar
  50. 50.
    Vowinckel J, Hartl J, Butler R, Ralser M (2015) MitoLoc: a method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells. Mitochondrion 24:77–86CrossRefGoogle Scholar
  51. 51.
    Ouellet M, Guillebaud G, Gervais V, St-Pierre DL, Germain M (2017) A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images. PLoS Comput Biol 13:e1005612CrossRefGoogle Scholar
  52. 52.
    Viana MP, Lim S, Rafelski SM (2015) Quantifying mitochondrial content in living cells. Methods Cell Biol 125:77–93CrossRefGoogle Scholar
  53. 53.
    Lihavainen E, Mäkelä J, Spelbrink JN, Ribeiro AS (2012) Mytoe: automatic analysis of mitochondrial dynamics. Bioinformatics 28:1050–1051CrossRefGoogle Scholar
  54. 54.
    Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA (2017) A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119:315–326CrossRefGoogle Scholar
  55. 55.
    Peng J-Y, Lin C-C, Chen Y-J, Kao L-S, Liu Y-C, Chou C-C et al (2011) Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Comput Biol 7:e1002212CrossRefGoogle Scholar
  56. 56.
    Westrate LM, Drocco JA, Martin KR, Hlavacek WS, MacKeigan JP (2014) Mitochondrial morphological features are associated with fission and fusion events. PLoS One 9:e95265CrossRefGoogle Scholar
  57. 57.
    Milas A, Jagrić M, Martinčić J, Tolić IM (2018) Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells. Methods Cell Biol 145:191–215. Epub 2018 Apr 26. PubMed PMID: 29957204CrossRefPubMedGoogle Scholar
  58. 58.
    Wang H, Vilela M, Winkler A, Tarnawski M, Schlichting I, Yumerefendi H, Kuhlman B, Liu R, Danuser G, Hahn KM (2016) LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods 13(9):755–758. Epub 2016 Jul 18. PubMed PMID: 27427858; PubMed Central PMCID: PMC5137947CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang H, Hahn KM (2016) LOVTRAP: a versatile method to control protein function with light. Curr Protoc Cell Biol 73:21.10.1–21.10.14. PubMed PMID: 27906450; PubMed Central PMCID: PMC5137945CrossRefGoogle Scholar
  60. 60.
    Valon L, Marín-Llauradó A, Wyatt T, Charras G, Trepat X (2017) Optogenetic control of cellular forces and mechanotransduction. Nat Commun 8:14396. PubMed PMID: 28186127; PubMed Central PMCID: PMC5309899CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Shi F, Kawano F, Park SE, Komazaki S, Hirabayashi Y, Polleux F, Yazawa M (2018) Optogenetic control of endoplasmic reticulum-mitochondria tethering. ACS Synth Biol 7(1):2–9. Epub 2017 Dec 4. PubMed PMID: 29172503CrossRefPubMedGoogle Scholar
  62. 62.
    Tkatch T, Greotti E, Baranauskas G, Pendin D, Roy S, Nita LI, Wettmarshausen J, Prigge M, Yizhar O, Shirihai OS, Fishman D, Hershfinkel M, Fleidervish IA, Perocchi F, Pozzan T, Sekler I (2017) Optogenetic control of mitochondrial metabolism and Ca(2+) signaling by mitochondria-targeted opsins. Proc Natl Acad Sci U S A 114(26):E5167–E5176. Epub 2017 Jun 13. PubMed PMID: 28611221; PubMed Central PMCID: PMC5495261CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wojtovich AP, Wei AY, Sherman TA, Foster TH, Nehrke K (2016) Chromophore-assisted light inactivation of mitochondrial electron transport chain complex II in Caenorhabditis elegans. Sci Rep 6:29695. PubMed PMID: 27440050; PubMed Central PMCID: PMC4954975CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cunniff B, McKenzie AJ, Heintz NH, Howe AK (2016) AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell 27(17):2662–2674. Epub 2016 Jul 6. PubMed PMID: 27385336; PubMed Central PMCID: PMC5007087CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ballister ER, Ayloo S, Chenoweth DM, Lampson MA, Holzbaur ELF (2015) Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization. Curr Biol 25(10):R407–R408. PubMed PMID: 25989077; PubMed Central PMCID: PMC4737597CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Duan L, Che D, Zhang K, Ong Q, Guo S, Cui B (2015) Optogenetic control of molecular motors and organelle distributions in cells. Chem Biol 22(5):671–682. Epub 2015 May 9. PubMed PMID: 25963241; PubMed Central PMCID: PMC4443846CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC (2015) Optogenetic control of organelle transport and positioning. Nature 518(7537):111–114. Epub 2015 Jan 7. PubMed PMID: 25561173; PubMed Central PMCID: PMC5063096CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Andrew J. Valente
    • 1
  • Joao Fonseca
    • 1
  • Fereshteh Moradi
    • 1
  • Gregory Foran
    • 1
  • Alexander Necakov
    • 1
  • Jeffrey A. Stuart
    • 1
    Email author
  1. 1.Department of Biological SciencesBrock UniversitySt. CatharinesCanada

Personalised recommendations