Effects of Freezing-Thawing Cycles on Mechanical Strength of Poly (Vinyl Alcohol) Hydrogels

  • Sen Wang
  • Heng Li
  • ZhiMing Qi
  • MengHong Yin
  • ChengWei Wu
  • Wei ZhangEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Poly (vinyl alcohol) (PVA) hydrogels are widely used in biomimetic cartilage materials for its good biocompatibility and super shock absorbing properties. However, the small pore size, in general, a few micrometers, of pure PVA hydrogels prepared through freezing-thawing method can not provide the suitable microenvironment for the proliferation of chondrocytes, restricting the application of hydrogels in artificial cartilage. In order to solve this barrier, here, agarose is introduced as porogen to prepare the macroporous PVA hydrogels through freezing-thawing method. The obtained PVA hydrogel have the pore size of 20–200 μm, and macropores have good connectivity. The mechanical properties of the macroporous hydrogels are tested using uniaxial compression and tension experiments and the results show that the mechanical properties of macroporous PVA hydrogels are dependent on the preparation parameters, e.g. the duration of freezing, number of freezing-thawing cycles and the temperature of thawing. After optimization, the mechanical properties of the macroporous PVA hydrogels are closer to those of natural articular cartilage and the obtained hydrogels may be used as the artificial replacement materials.


Mechanical strength Smart materials Poly (vinyl alcohol) Hydrogel Cartilage 



This work was supported by grants from the National Natural Science Foundation of China (11772086, 51775541, 11572080, 51811530309), the Natural Science Foundation of Liaoning Province (201800935), and the Fundamental Research Funds for the Central Universities in China (DUT18ZD302).


  1. 1.
    Caplan, A.I.: Mesenchymal stem cells. J. Orthop. Res. 9(5), 641–650 (1992)CrossRefGoogle Scholar
  2. 2.
    Ito, Y., Fitzsimmons, J.S., Sanyal, A., Mello, M.A., Mukherjee, N., O’Driscoll, S.W.: Localization of chondrocyte precursors in periosteum. Osteoarthr. & Cartil. 9, 215–223 (2001)CrossRefGoogle Scholar
  3. 3.
    Bouwmeester, P.S.J.M., Kuijer, R., Homminga, G.N., Bulstra, S.K., Geesink, R.G.T.: A retrospective analysis of two independent prospective cartilage repair studies: autogenous perichondrial grafting versus subchondral drilling 10 years post-surgery. J. Orthop. Res. 20(2), 267–273 (2002)CrossRefGoogle Scholar
  4. 4.
    Hangody, L., Karpati, Z.: A new surgical treatment of localized cartilaginous defects of the knee. J. Orthop. Trauma 37, 237–243 (1994)Google Scholar
  5. 5.
    Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L.: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331(14), 889–895 (1994)CrossRefGoogle Scholar
  6. 6.
    Zeng, L., Yao, Y., Wang, D., Chen, X.: Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering. Mater. Sci. Eng., C 34(1), 168–175 (2014)CrossRefGoogle Scholar
  7. 7.
    Ma, R., Xiong, D., Miao, F., Zhang, J., Peng, Y.: Novel PVP/PVA hydrogels for articular cartilage replacement. Mater. Sci. Eng., C 29(6), 1979–1983 (2009)CrossRefGoogle Scholar
  8. 8.
    Gutiérrez, M.C., García-Carvajal, Z.Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., Ferrer, M.L.: Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Adv. Func. Mater. 17(17), 3505–3513 (2007)CrossRefGoogle Scholar
  9. 9.
    Miao, T., Miller, E.J., Mckenzie, C., Oldinski, R.A.: Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration. J. Mater. Chem. B 3(48), 9242–9249 (2015)CrossRefGoogle Scholar
  10. 10.
    Scholten, P.M., Ng, K.W., Joh, K., Serino, L.P., Warren, R.F., Torzilli, P.A., Maher, S.A.: A semi-degradable composite scaffold for articular cartilage defects. J. Biomed. Mater. Res., Part A 97A(1), 8–15 (2015)CrossRefGoogle Scholar
  11. 11.
    Ng, K.W., Torzilli, P.A., Warren, R.F., Maher, S.A.: Characterization of a macroporous polyvinyl alcohol scaffold for the repair of focal articular cartilage defects. J. Tissue Eng. Regen. Med. 8(2), 164–168 (2014)CrossRefGoogle Scholar
  12. 12.
    Cao, Y., Xiong, D., Wang, K., Niu, Y.: Semi-degradable porous poly (vinyl alcohol) hydrogel scaffold for cartilage repair: evaluation of the initial and cell-cultured tribological properties. J. Mech. Behav. Biomed. Mater. 68, 163–172 (2017)CrossRefGoogle Scholar
  13. 13.
    Zhang, W., Liu, L.F., Xiong, Y.J., Liu, Y.F., Yu, S.B., Wu, C.W.: Effect of in vitro storage duration on measured mechanical properties of brain tissue. Sci. Rep. 8, 1247 (2018)CrossRefGoogle Scholar
  14. 14.
    Zhang, W., Zhang, R.R., Feng, L.L., Li, Y., Wu, F., Wu, C.W.: Mechanical response of brain stem in compression and the differential scanning calorimetry and FTIR analyses. ASME J. Appl. Mech. 83(9), 091005 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhang, W., Zhang, R.R., Wu, F., Feng, L.L., Yu, S.B., Wu, C.W.: Differences in the viscoelastic features of white and grey matter in tension. J. Biomech. 49(16), 3990–3995 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sen Wang
    • 1
  • Heng Li
    • 1
  • ZhiMing Qi
    • 2
  • MengHong Yin
    • 2
  • ChengWei Wu
    • 1
  • Wei Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering MechanicsDalian University of TechnologyDalianChina
  2. 2.Department of Sports MedicineDalian Municipal Central HospitalDalianChina

Personalised recommendations