Advertisement

Diversity of Microbes in Hot Springs and Their Sustainable Use

  • Tanmoy Debnath
  • Ritu Rani Archana Kujur
  • Romit Mitra
  • Subrata K. DasEmail author
Chapter

Abstract

Hot spring represents diversified microbial community due to its dynamic natural environment and varied geochemical parameters. Hot spring microbiome produced many novel thermostable enzymes which have enormous industrial as well as biotechnological applications. Moreover, studies on hot spring microbiomes could provide better knowledge about the origin and evolution of earliest life, as they are considered to be most similar to the microorganisms inhabiting the primitive Earth. They have been extensively studied throughout the world mainly by 16S rRNA-based clone libraries along with culture-based methods for discovery of novel thermozymes. These thermostable enzymes have several advantages as they are stable at high temperatures (above 60 °C), tolerate wide range of pH and have less chances of getting contaminated by common mesophilic microorganisms. In addition, thermostable enzymes have other advantages like solvent tolerance, substrate selectivity and stability. In this chapter, an attempt has been made to describe the major industrially important thermozymes like lipase, esterase, protease, cellulase, amylase and xylanase, mostly reported from bacteria and archaea through culturable as well as non-culturable approaches. Many thermophilic bacteria have also been shown to produce biosurfactants which can be a better and cheaper alternative to chemically synthesized ones and are being used in enhanced oil recovery, for controlling oil spills, and can also be used as sources of antibiotics against various food-borne pathogens. Majority of the microorganisms that thrive in hot springs are non-culturable. In this regard, metagenomics has enabled the discovery of novel thermozymes which find applications in biotechnological and pharmaceutical industries.

Keywords

Hot springs Thermophiles Thermozymes Biosurfactant Biofuels 

References

  1. Abbott DW, Boraston AB (2008) Structural biology of pectin degradation by Enterobacteriaceae. Microbiol Mol Biol Rev 72:301–316PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aditiawati P, Yohandini H, Madayanti F, Akhmaloka (2009) Microbial diversity of acidic hot spring (Kawah Hujan B) in geothermal field of Kamojang area, West Java-Indonesia. Open Microbiol J 3:58–66PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akel H, Al-Quadan F, Yousef TK (2009) Characterization of a purified thermostable protease from hyperthermophilic Bacillus strain HUTBS71. Eur J Sci Res 31:280–288Google Scholar
  4. Al-Batayneh KM, Jacob JH, Hussein EI (2011) Isolation and molecular identification of new thermophilic bacterial strains of Geobacillus pallidus and Anoxybacillus flavithermus. Int J Integr Biol 11:39–43Google Scholar
  5. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  6. Andrade CM, Aguiar WB, Antranikian G (2001) Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Appl Biochem Biotechnol 91:655–669PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anthonsen HW, Baptista A, Drabløs F, Martel P, Petersen SB, Sebastião M, Vaz L (1995) Lipases and Esterases: a review of their sequences, structure and evolution. Biotechnol Annu Rev 1:315–371PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ashwini K, Gaurav K, Karthik L, Bhaskara Rao RV (2011) Optimization, production and partial purification of extracellular α-amylase from Bacillus sp. marini. Arch Appl Sci Res 3:33–42Google Scholar
  11. Ateslier ZBB, Metin K (2005) Production and partial characterization of a novel thermostable esterase from a thermophilic Bacillus sp. Enzym Microb Technol 38:628–635CrossRefGoogle Scholar
  12. Bakir ZB, Metin K (2017) Production and characterization of an alkaline lipase from thermophilic Anoxybacillus sp. HBB16. Chem Biochem Eng Q 31:303–312CrossRefGoogle Scholar
  13. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefPubMedCentralGoogle Scholar
  14. Banat IM (1993) The isolation of thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594CrossRefGoogle Scholar
  15. Banerjee V, Saani K, Azmi W, Soni R (1999) Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry additive. Process Biochem 35:213–219CrossRefGoogle Scholar
  16. Barett AJ (1994) Proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol 244:1–15CrossRefGoogle Scholar
  17. Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bataillon M, Nunes CAP, Castillon N, Duchiron F (2000) Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzym Microb Technol 26:187–192CrossRefGoogle Scholar
  19. Bauer MW, Driskill LE, Kelly RM (1998) Glycosyl hydrolases from hyperthermophilic microorganisms. Curr Opin Biotechnol 9:141–145PubMedCrossRefPubMedCentralGoogle Scholar
  20. Becker P, Abu-Reesh I, Markossian S, Antranikian G, Markl H (1997) Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl Microbiol Biotechnol 48:184–190PubMedCrossRefPubMedCentralGoogle Scholar
  21. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bertoldo C, Antranikian G (2001) Amylolytic enzymes from hyperthermophiles. Methods Enzymol 330:269–289PubMedCrossRefPubMedCentralGoogle Scholar
  23. Beynon RJ, Bond JS (1989) Proteolytic enzymes: a practical approach. IRL. Oxford University Press, p 259Google Scholar
  24. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759PubMedCrossRefPubMedCentralGoogle Scholar
  25. Blackebrough N, Birch G (1981) Enzymes of food processing. Applied Science Publishers, LondonGoogle Scholar
  26. Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781PubMedPubMedCentralGoogle Scholar
  27. Bora L, Bora M (2012) Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp. isolated from hot spring of Arunachal Pradesh, India. Braz J Microbiol 43:30–42PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 733:1–9Google Scholar
  29. Bragger JM, Daniel RM, Coolbear T, Morgan HW (1989) Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Appl Microbiol Biotechnol 31:55Google Scholar
  30. Brown SH, Kelly RM (1993) Characterization of Amylolytic Enzymes, Having Both alpha-1,4 and alpha-1,6 Hydrolytic Activity, from the Thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol 59:2614–2621PubMedPubMedCentralGoogle Scholar
  31. Bruins ME, Janssen AE, Boom RM (2001) Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol 90:155–186PubMedCrossRefPubMedCentralGoogle Scholar
  32. Bryant RS (1987) Potential uses of microorganisms in petroleum recovery technology. Proc Oklahoma Acad Sci 67:97–104Google Scholar
  33. Busscher HJ, Van der Kuijl-Booil M, Van der Mei HC (1996) Biosurfactants from thermophilic dairy Streptococci and their potential role in the fouling control heat exchanger plates. J Ind Microbiol Biotechnol 16:15–21Google Scholar
  34. Canganella F, Andrade CM, Antranikian G (1994) Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new Fervidobacterium species. Appl Microbiol Biotechnol 42:239–245Google Scholar
  35. Chahiniana H, Sarda L (2009) Distinction between esterases and lipases: Comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149–1161CrossRefGoogle Scholar
  36. Charbonneau DM, Meddeb-Mouelhi F, Beauregard M (2010) A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: Evidence for a new carboxylesterase family. J Biochem 148:299–308PubMedCrossRefPubMedCentralGoogle Scholar
  37. Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T (1995) Purification and Properties of Extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 61:1502–1506PubMedPubMedCentralGoogle Scholar
  38. Colak A, Sisik D, Saglam N, Güner S, Canakci S, Belduz AO (2005) Characterization of a thermoalkalophilic esterase from a novel thermophilic bacterium, Anoxybacillus gonensis G2. Bioresour Technol 96:625–631PubMedCrossRefPubMedCentralGoogle Scholar
  39. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23PubMedCrossRefPubMedCentralGoogle Scholar
  40. Cortes-Sanchez Ade J, Hernandez-Sanchez H, Jaramillo-Flores ME (2013) Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 168:22–32PubMedCrossRefPubMedCentralGoogle Scholar
  41. Couto SR, Sanromán MÁ (2006) Application of solid-state fermentation to food industry – a review. J Food Eng 76:291–302CrossRefGoogle Scholar
  42. Cygler M, Schrag JD (1997) Structure as basis for understanding interfacial properties of lipases. Methods Enzymol 284:3–27PubMedCrossRefPubMedCentralGoogle Scholar
  43. De Martin L, Ebert C, Gardossi L, Linda P (2001) High isolate yields in thermolysin catalyzed synthesis of Z-L-aspartyl-L-phenylalanine methyl ester in toluene at controlled water activity. Tetrahedron Lett 42:3395–3397CrossRefGoogle Scholar
  44. Dong G, Vieille C, Savchenko A, Zeikus JG (1997) Cloning, sequencing, and expression of the gene encoding extracellular alpha-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 63:3569–3576PubMedPubMedCentralGoogle Scholar
  45. Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119PubMedCrossRefPubMedCentralGoogle Scholar
  46. Elleuche S, Schroder C, Sahm K, Antranikian G (2014) Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123PubMedCrossRefPubMedCentralGoogle Scholar
  47. El-Gayar KE, Al-Abboud MA, Essa AMM (2017) Characterization of thermophilic bacteria Isolated from two hot springs in Jazan, Saudi Arabia. J Pure Appl Microbiol 11:743–752CrossRefGoogle Scholar
  48. Ellis JT, Magnuson TS (2012) Thermostable and alkali stable xylanases produced by the thermophilic bacterium Anoxybacillus flavithermus TWXYL3. ISRN Microbiol ID: 517524:1–8Google Scholar
  49. Fakruddin M (2012) Biosurfactant: Production and Application. J Pet Environ Biotechnol 3:124Google Scholar
  50. Fardeau ML, Ollivier B, Patel BK, Magot M, Thomas P et al (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fuciños P, Abadín CM, Sanromán A, Longo MA, Pastrana L, Rúa ML (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. J Biotechnol 117:233–241PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fuciños P, Atanes E, López-López O, Solaroli M, Cerdán ME, González-Siso MI et al (2014) Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochem 49:927–935CrossRefGoogle Scholar
  53. Fujiwara S (2002) Extremophiles: developments of their special functions and potential resources. J Biosci Bioeng 94:518–525PubMedCrossRefPubMedCentralGoogle Scholar
  54. Fukumori F, Kudo T, Horikoshi K (1985) Purification and properties of a cellulase from Alkalophilic Bacillus sp. No. 1139. J Gen Microbiol 131:3339–3345Google Scholar
  55. Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour Technol 99:4597–4602PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gantelet H, Ladrat C, Godfroy A, Barbier G, Duchiron F (1998) Characteristics of pullulanases from extremely thermophilic archaea isolated from deep-sea hydrothermal vents. Biotechnol Lett 20:819–823CrossRefGoogle Scholar
  57. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235Google Scholar
  58. Govind NS, Mehta B, Sharma M, Modi VV (1981) Protease and carotenogenesis in Blakeslea trispora. Phytochemistry 20:2483–2485CrossRefGoogle Scholar
  59. Gross RA, Kalra B, Kumar A (2001) Polyester and polycarbonate synthesis by in vitro enzyme catalysis. Appl Microbiol Biotechnol 55:655–660PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gudina EJ, Rocha V, Teixeira JA, Rodrigues LR (2010) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett Appl Microbiol 50:419–424PubMedCrossRefPubMedCentralGoogle Scholar
  61. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  62. Gutarra MLE, Godoy MG, Maugeri F, Rodrigues MI, Freire DMG, Castilho LR (2009) Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol 100:5249–5254PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hatanaka K (2012) Incorporation of fluorous glycosides to cell membrane and saccharide chain elongation by cellular enzymes. Top Curr Chem 308:291–306PubMedCrossRefPubMedCentralGoogle Scholar
  64. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788PubMedPubMedCentralCrossRefGoogle Scholar
  65. Henrissat B, Coutinho PM (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol 330:183–201PubMedCrossRefPubMedCentralGoogle Scholar
  66. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedPubMedCentralGoogle Scholar
  67. Hou W, Wang S, Dong H, Jiang H, Briggs BR et al (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 8:53350CrossRefGoogle Scholar
  68. Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulose from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049Google Scholar
  70. Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57:624–629PubMedCrossRefPubMedCentralGoogle Scholar
  72. Inskeep WP, Jay ZJ, Tringe SG, Herrgard MJ, Rusch DB et al (2013) The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem. Front Microbiol 4:67PubMedPubMedCentralGoogle Scholar
  73. Iulek J, Franco OL, Silva M, Slivinski CT, Bloch C Jr et al (2000) Purification, biochemical characterisation and partial primary structure of a new alpha-amylase inhibitor from Secale cereale (rye). Int J Biochem Cell Biol 32:1195–1204PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ja’afaru MI (2013) Screening of fungi isolated from environmental samples for xylanase and cellulase production. ISRN Microbiol 2013:1–7CrossRefGoogle Scholar
  75. Jenneman GE, McInerney MJ, Knapp RM, Clark JB, Feero JM, Revus DE, Menzie DE (1983) A halotolerant biosurfactants producing Bacillus species potential useful for enhanced oil recovery. Dev Ind Microbiol 24:485–492Google Scholar
  76. Jiang Y, Xin F, Lu J, Dong W, Zhang W et al (2017) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol 245:1498–1506PubMedCrossRefPubMedCentralGoogle Scholar
  77. Jyoti V, Narayan KD, Das SK (2010) Gulbenkiania indica sp. nov., isolated from a sulfur spring. Int J Syst Evol Microbiol 60:1052–1055PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kandra L (2003) α-Amylases of medical and industrial importance. J Mol Struct THEOCHEM 666–667:487–498CrossRefGoogle Scholar
  79. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569CrossRefGoogle Scholar
  80. Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW (2006) Screening and characterization of a novel esterase from a metagenomic library. Protein Expr Purif 45:315–323PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kim SB, Lee W, Ryu YW (2008) Cloning and characterization of thermostable esterase from Archaeoglobus fulgidus. J Microbiol 46:100–107PubMedCrossRefPubMedCentralGoogle Scholar
  82. Koch R, Zablowski P, Spreinat A, Antranikian G (1990) Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71:21–26CrossRefGoogle Scholar
  83. Koeck DE, Hahnke S, Zverlov VV (2016) Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 66:4132–1437PubMedCrossRefPubMedCentralGoogle Scholar
  84. Konhauser KO, Jones B, Phoenix VR, Ferris G, Renaut RW (2004) The microbial role in hot spring silicification. Ambio 33:552–558PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lasa I, Berenguer J (1993) Thermophilic enzymes and their biotechnological potential. Microbiol SEM 9:77–89Google Scholar
  87. Lee DW, Koh YS, Kim KJ, Kim BC, Choi HJ, Kim DS, Suhartono MT, Pyun YR (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400PubMedCrossRefPubMedCentralGoogle Scholar
  88. Lee JT, Kanai H, Kobayashi T, Akiba T, Kudo T (1996) Cloning, nucleotide sequence, and hyperexpression of α-amylase gene from an archaeon, Thermococcus profundus. J Ferment Bioeng 82:432–438CrossRefGoogle Scholar
  89. Lee JW, Park JY, Kwon M, Choi IG (2009) Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J Biosci Bioeng 107:33–37PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lewin A, Wentzel A, Valla S (2013) Metagenomics of microbial life in extreme temperature environments. Curr Opin Biotechnol 24:516–525PubMedCrossRefPubMedCentralGoogle Scholar
  91. Liang C, Xue Y, Fioroni M, Rodriguez-Ropero F, Zhou C et al (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89:315–326PubMedCrossRefPubMedCentralGoogle Scholar
  92. López-López O, Cerdán ME, González-Siso MI (2013) Hot spring metagenomics. Life 3:308–320PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lopez G, Chow J, Bongen P, Lauinger B, Pietruszka J, Streit WR, Baena S (2014) A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes. Appl Microbiol Biotechnol 98:8603–8616PubMedCrossRefPubMedCentralGoogle Scholar
  94. Luna JM, Sarubbo LA, Campos-Takaki GM (2009) A new biosurfactant produced by Candida glabrata UCP1002: Characteristics of stability and application in oil recovery. Braz Arch Biol Technol 52:785–793CrossRefGoogle Scholar
  95. Madren D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98CrossRefGoogle Scholar
  96. Makkar RS, Cameotra SS (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18:37–42CrossRefGoogle Scholar
  97. Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M (1998) Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem J 332:203–212PubMedPubMedCentralCrossRefGoogle Scholar
  98. Marsh CL, Larsen DH (1953) Characterization of some thermophilic bacteria from the hot springs of Yellowstone National Park. J Bacteriol 65:193–197PubMedPubMedCentralGoogle Scholar
  99. Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B (2000) Purification and characterization of cellulases produced by two Bacillus strains. J Biotechnol 83:177–187PubMedCrossRefPubMedCentralGoogle Scholar
  100. Mazar FM, Mohammadi HS, Ebrahimi-Rad M, Gregorian A, Omidinia E (2012) Isolation, purification and characterization of a thermophilic alkaline protease from Bacillus subtilis BP-36. J Sci 23:7–13Google Scholar
  101. Namsaraev ZB, Babasanova OB, Dunaevsky YE, Akimov VN, Barkhutova DD, Gorlenko VM, Namsaraev BB (2010) Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring, Central Mongolia. Microbiology 79:491–499CrossRefGoogle Scholar
  102. Narayan KD, Pandey SK, Das SK (2010) Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Curr Microbiol 61:248–253PubMedCrossRefPubMedCentralGoogle Scholar
  103. Neveu J, Regeard C, DuBow MS (2011) Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Appl Microbiol Biotechnol 91:635–644PubMedCrossRefPubMedCentralGoogle Scholar
  104. Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial applications. Appl Microbiol Biotechnol 51:711–729PubMedCrossRefPubMedCentralGoogle Scholar
  105. Nigam P, Singh D (1995) Enzyme and microbial systems involved in starch processing. Enzym Microb Technol 17:770–778CrossRefGoogle Scholar
  106. Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F (1998) Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci U S A 95:7018–7023PubMedPubMedCentralCrossRefGoogle Scholar
  107. Olajuyigbe FM, Kolawale AO (2011) Purification and partial characterization of a thermostable alkaline protease from Bacillus licheniformis LHSB-05 isolated from hot spring. Afr J Biotechnol 10:11703–11710Google Scholar
  108. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740PubMedCrossRefPubMedCentralGoogle Scholar
  109. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84CrossRefGoogle Scholar
  110. Parkkinen T, Koivula A, Vehmaanpera J, Rouvinen J (2008) Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 17:1383–1394PubMedPubMedCentralCrossRefGoogle Scholar
  111. Paula S, Alexandra M, Jose C, Maria R, Maria C (2002) Rapid detection of thermostable cellulase free xylanases by a strain of Bacillus subtilis and its properties. Enzym Microb Technol 30:924–933CrossRefGoogle Scholar
  112. Prade RA (1995) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:100–131Google Scholar
  113. Pyaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils. J Pet Sci Eng 50:71–77CrossRefGoogle Scholar
  114. Rathi P, Sapna B, Sexena R, Gupta R (2000) A hyperthermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol Lett 22:495–498CrossRefGoogle Scholar
  115. Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G et al (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314PubMedCrossRefPubMedCentralGoogle Scholar
  116. Reigstad LJ, Jorgensen SL, Schleper C (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J 4:346–356PubMedCrossRefPubMedCentralGoogle Scholar
  117. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:118PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sahm K, John P, Nacke H, Wemheuer B, Grote R et al (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662PubMedCrossRefPubMedCentralGoogle Scholar
  120. Salameh MA, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73:7725–7731PubMedPubMedCentralCrossRefGoogle Scholar
  121. Salihu A, Alam MZ (2014) Thermostable lipase: an overview of production, purification and characterization. Biotechnol Res Asia 11:1095–1107CrossRefGoogle Scholar
  122. Shariff FM, Rahman RNZRA, Basri M, Salleh (2011) ABA newly isolated thermostable lipase from Bacillussp. Int J Mol Sci 2:2917–2934CrossRefGoogle Scholar
  123. Sharma D Singh SB (2014). Simultaneous production of biosurfactants and bacteriocins by Probiotic Lactobacillus casei MRTL3. Int J Microbiol ID: 698713.  https://doi.org/10.1155/2014/698713 CrossRefGoogle Scholar
  124. Sharma PK, Singh K, Singh R, Capalash N, Ali A, Mohammad O, Kaur J (2012) Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature. Mol Biol Rep 39:2795–2804PubMedCrossRefPubMedCentralGoogle Scholar
  125. Sharma R, Soni S, Vohra R, Gupta L, Gupta J (2002) Purification and characterization of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem 37:1075–1084CrossRefGoogle Scholar
  126. Singh R, Chopra C, Gupta VK, Akhlaq B, Verma V, Rasool S (2015) Purification and characterization of CHpro1, a thermotolerant, alkali-stable and oxidation-resisting protease of Chumathang hotspring. Sci Bull 60:1252–1260CrossRefGoogle Scholar
  127. Singh R, Dhawan S, Singh K, Kaur J (2012) Cloning, expression and characterization of a metagenome derived thermoactive/thermostable pectinase. Mol Biol Rep 39:8353–8361PubMedCrossRefPubMedCentralGoogle Scholar
  128. Singh V, Pandey VC, Agrawal S (2013) Potential of Laceyella sacchari strain B42 crude xylanase in biobleaching of kraft pulp. Afr J Biotechnol 12:570–579Google Scholar
  129. Suzuki Y, Miyamoto K, Ohta H (2004) A novel thermostable esterase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7. FEMS Microbiol Lett 236:97–102PubMedCrossRefPubMedCentralGoogle Scholar
  130. Synowiecki J (2008). Thermostable enzymes in food processing. In: Recent research developments in food biotechnology, Enzymes as additives or processing aids. Research Signpost, TrivandrumGoogle Scholar
  131. Takagi H, Takahashi T, Momose H, Inouye M, Maeda I, Matsuzawa H, Ohta T (1990) Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J Biol Chem 265:6874–6878PubMedPubMedCentralGoogle Scholar
  132. Tanyildizi MS, Özer D, Elibol M (2007) Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochem Eng J 37:294–297CrossRefGoogle Scholar
  133. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405PubMedCrossRefPubMedCentralGoogle Scholar
  134. Teplitsky A, Shulami S, Moryles S, Shoham Y, Shoham G (2000) Crystallization and preliminary X-ray analysis of an intracellular xylanase from Bacillus stearothermophilus T-6. Acta Crystallogr Sect D: Biol Crystallogr 56:181–184CrossRefGoogle Scholar
  135. Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongaram T, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  136. Trebbau de-Acevedo G, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol Biotechnol 16:1–7Google Scholar
  137. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol Adv 33:633–647PubMedCrossRefPubMedCentralGoogle Scholar
  138. Varki A, Cummings RD, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M (1999) Essentials of glycobiology. Cold Spring Harbour J. Cold Spring Harbor Laboratory PressGoogle Scholar
  139. Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38CrossRefGoogle Scholar
  140. Verma D, Satyanarayana T (2013) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8(1):e52459: 1–8CrossRefGoogle Scholar
  141. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015) Hydrolytic enzyme production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 Isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250Google Scholar
  142. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43PubMedPubMedCentralCrossRefGoogle Scholar
  143. Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145PubMedPubMedCentralGoogle Scholar
  144. Vlasenko E, Schulein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411PubMedCrossRefPubMedCentralGoogle Scholar
  145. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125:1–43PubMedCrossRefPubMedCentralGoogle Scholar
  147. Wagner ID, Zhao W, Zhang CL, Romanek CS, Rohde M, Wiegel J (2008) Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia. Int J Syst Evol Microbiol 58:2565–2573PubMedCrossRefPubMedCentralGoogle Scholar
  148. Waino M, Ingvorsen K (2003) Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93PubMedCrossRefPubMedCentralGoogle Scholar
  149. Walia A, Mehta P, Chauhan A, Kulshrestha S, Shirkot CK (2014) Purification and characterization of cellulase-free low molecular weight endo beta-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost. World J Microbiol Biotechnol 30:2597–2608PubMedCrossRefPubMedCentralGoogle Scholar
  150. Walia A, Mehta P, Chauhan A, Shirkot CK (2013) Optimization of cellulase-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Ann Microbiol 63:187–198CrossRefGoogle Scholar
  151. Wang SD, Guo GS, Li L, Cao LC, Tong L, Ren GH et al (2014) Identification and characterization of an unusual glycosyltransferase-like enzyme with β-galactosidase activity from a soil metagenomic library. Enzym Microb Technol 57:26–35CrossRefGoogle Scholar
  152. Wang B, Lu D, Gao R, Yang Z, Cao S, Feng Y (2004) A novel phospholipase A2/esterase from hyperthermophilic archaeon Aeropyrum pernix K1. Protein Expr Purif 35:199–205PubMedCrossRefPubMedCentralGoogle Scholar
  153. Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hotspring Cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370PubMedPubMedCentralGoogle Scholar
  154. Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula. Archaea 2013:136714PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647PubMedCrossRefPubMedCentralGoogle Scholar
  156. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
  157. Woldesenbet F, Virk AP, Gupta N, Sharma P (2012) Effect of microwave irradiation on xylanase production from wheat bran and biobleaching of eucalyptus kraft pulp. Appl Biochem Biotechnol 167:100–108PubMedCrossRefPubMedCentralGoogle Scholar
  158. Wood AN, Fernandez-Lafuente R, Cowan DA (1995) Purification and partial characterization of a novel thermophilic carboxylesterase with high mesophilic specific activity. Enzym Microb Technol 17:816–825CrossRefGoogle Scholar
  159. Yan F, Yong-Goe J, Kazuhiko I, Hiroyasu I, Susumu A, Tohru Y, Hiroshi N, Shugui C, Ikuo M, Yoshitsugu K (2000) Thermophilic phospholipase A2 in the cytosolic fraction from the archaeon Pyrococcus horikoshii. J Am Oil Chem Soc 77:1075–1084Google Scholar
  160. Yang CH, Liu WH (2004) Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca. Enzym Microb Technol 35(2):254–260CrossRefGoogle Scholar
  161. Yao C, Cao Y, Wu S, Li S, He B (2013) An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ01: Purification, characteristics and application for chiral resolution of mandelic acid. J Mol Catal B Enzym 85/86:105–110CrossRefGoogle Scholar
  162. Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15:611–618PubMedCrossRefPubMedCentralGoogle Scholar
  164. Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209PubMedPubMedCentralCrossRefGoogle Scholar
  165. Zheng YY, Guo XH, Song NN, Li DC (2011) Thermophilic lipase from Thermomyces lanuginosus: Gene cloning, expression and characterization. J Mol Catal B Enzym 69:127–132CrossRefGoogle Scholar
  166. Zhu Y, Li J, Cai H, Ni H, Xiao A, Hou L (2013) Characterization of a new and thermostable esterase from a metagenomic library. Microbiol Res 168:589–597PubMedCrossRefPubMedCentralGoogle Scholar
  167. Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tanmoy Debnath
    • 1
  • Ritu Rani Archana Kujur
    • 1
  • Romit Mitra
    • 1
  • Subrata K. Das
    • 1
    Email author
  1. 1.Division of Molecular MicrobiologyInstitute of Life SciencesBhubaneswarIndia

Personalised recommendations