Advertisement

Fungal Diversity: Global Perspective and Ecosystem Dynamics

  • Apekcha Bajpai
  • Seema Rawat
  • Bhavdish N. Johri
Chapter

Abstract

All major biomes on earth contain a multitude of microorganisms; of this, a considerable proportion is shared by fungi in terms of abundance, genetic diversity, biomass and total biospheric DNA. In various ecosystems, fungi exist as pathogens, mutualists and decomposers and are of considerable ecological value as they influence nearly every component of the ecosystem services, viz. protection against pathogens, homeostatic balance, decomposition and other functions. Fungi are, however, functionally redundant in some ecosystems and endemic to certain bioregions. Next-generation sequencing has now uncovered unculturable fungal forms that has transformed our understanding towards their role in unexplored environments; cataloguing their diversity and study of their biogeographical patterns at local and global scale have become simpler. The data generated through advanced molecular approaches have introduced the concept of ‘mycobiome’ which was largely overlooked or considered as an integral yet small component of the ‘microbiome’ until now. In this chapter, we report new information that reveals various deterministic factors that shape fungal communities and their probable role in maintaining human, soil and plant health. Finally, we also discuss how the view of mycobiome has taken an independent shape and has more recently helped understand interkingdom interactions.

Keywords

Fungi Mycobiome Endemic Diversity Microbiome 

References

  1. Allen EA, Hoch HC, Steadman JR, Stavely RJ (1991) Influence of leaf surface features on spore deposition and the epiphytic growth of phytopathogenic fungi. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves, Brock/Springer series in contemporary bioscience. Springer, New YorkGoogle Scholar
  2. Ambardar S, Singh HR, Gowda M, Vakhlu J (2016) Comparative metagenomics reveal phylum level temporal and spatial changes in mycobiome of below ground parts of Crocus sativus. PLoS One 11:e0163300PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amend A (2014) From dandruff to deep-sea vents: malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10(8):e1004277PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrews JH, Buck JW (2002) Adhesion of yeasts to leaf surfaces. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere microbiology. APS Press, St. Paul, pp 53–68Google Scholar
  5. Araujo R (2014) Towards the genotyping of fungi: methods, benefits and challenges. Curr Fungal Infect Rep 8:203–210CrossRefGoogle Scholar
  6. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88:541–549PubMedCrossRefGoogle Scholar
  7. Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654PubMedCrossRefGoogle Scholar
  8. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545PubMedCrossRefGoogle Scholar
  9. Aylor DE (2002) Aerobiology of fungi in relation to capture and release by plants. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere microbiology. APS Press, St. Paul, pp 341–364Google Scholar
  10. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Huerta-Cepas J (2018) Structure and function of the global topsoil microbiome. Nature 60(7717):233–237CrossRefGoogle Scholar
  12. Bai L, Cui J, Jie W, Cai B (2015) Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiol Res 180:49–56PubMedCrossRefGoogle Scholar
  13. Baier MC et al (2010) Knockdown of the symbiotic sucrose synthase tSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiol 152:1000–1014PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci USA 115(25):6506–6511PubMedCrossRefGoogle Scholar
  15. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B Biol Sci 274:3069–3077CrossRefGoogle Scholar
  16. Belanger RR, Avis TJ (2002) Ecological processes and interactions occurring in leaf surface fungi. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere microbiology. APS Press, St. Paul, pp 193–207Google Scholar
  17. Bender SF, Conen F, van der Heijden MGA (2015) Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biol Biochem 80:283–292CrossRefGoogle Scholar
  18. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148PubMedPubMedCentralGoogle Scholar
  19. Blachowicz A, Mayer T, Bashir M, Pieber TR, De León P, Venkateswaran K (2017) Human presence impacts fungal diversity of inflated lunar/Mars analog habitat. Microbiome 5(1):62PubMedPubMedCentralCrossRefGoogle Scholar
  20. Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438PubMedCrossRefGoogle Scholar
  21. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33(3):382–431PubMedCrossRefGoogle Scholar
  22. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PloS Gen 10:e1004283CrossRefGoogle Scholar
  24. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48PubMedCrossRefGoogle Scholar
  25. Botschuijver S, Roeselers G, Levin E, Jonkers DM, Welting O, Heinsbroek SEM, de Weerd HH, Boekhout T, Fornai M, Masclee AA et al (2017) Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153:1026–1039PubMedCrossRefGoogle Scholar
  26. Bradley DJ, Gilbert GS, Martiny JBH (2008) Pathogens promote plant diversity through a compensatory response. Ecol Lett 11:461–469PubMedCrossRefGoogle Scholar
  27. Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655PubMedCrossRefGoogle Scholar
  28. Cáceres MES, Dal Forno M, Barreto FMO and Aptroot A (2018) Unexpected basidiolichen diversity discovered in lowland Brazilian forests. S05-5 Abstract. symposium session 5. International Mycological Congress, p 35.Google Scholar
  29. Cassman NA, Leite MFA, Pan Y, de Hollander M, van Veen JA, Kuramae EE (2016) Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci Rep 6:23680PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, Wang J, Li L (2011) Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 70:492–498PubMedCrossRefPubMedCentralGoogle Scholar
  31. Cicatiello P, Gravagnuolo AM, Gnavi G, Varese GC, Giardina P (2016) Marine fungi as source of new hydrophobins. Int J Biol Macromol 92:1229–1233PubMedCrossRefPubMedCentralGoogle Scholar
  32. Comandini O, Rinaldi AC, Kuyper TW (2012) Measuring and estimating ectomycorrhizal fungal diversity: a continuous challenge. In: Pagano M (ed) Mycorrhiza: occurrence in natural and restored environments. Nova Science Publishers, New York, pp 165–200Google Scholar
  33. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  34. Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau ML, Vacher C (2012a) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol 196:510–519PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cordier T, Robin C, Capdeville X, Desprez-Loustau ML, Vacher C (2012b) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 5:509–520CrossRefGoogle Scholar
  36. Cotton WR, Yuter S (2009) Principles of cloud and precipitation formation. In: Levin Z, Cotton WR (eds) Aerosol pollution impact on precipitation. Springer, Dordrecht, pp 13–43CrossRefGoogle Scholar
  37. Cox F, Newsham KK, Bol R, Dungait JA, Robinson CH (2016) Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol Lett 19:528–536PubMedCrossRefPubMedCentralGoogle Scholar
  38. Didari T, Mozaffari S, Nikfar S, Abdollahi M (2015) Effectiveness of probiotics in irritable bowel syndrome: updated systematic review with meta-analysis. World J Gastroenterol 21:3072–3084PubMedPubMedCentralCrossRefGoogle Scholar
  39. Doyle SM, Sangwan N, Wang G, Gilbert JA, Christner BC, Zhu TF (2018) Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome 6(1):123PubMedPubMedCentralCrossRefGoogle Scholar
  40. Drake H, Ivarsson M (2017) The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biol Rev.  https://doi.org/10.1016/j.fbr.2017.10.001 CrossRefGoogle Scholar
  41. Drappatz J, Schiff D, Kesari S, Norden AD, Wen PY (2007) Medical Management of Brain Tumor Patients. Neurol Clin 25:1035–1071PubMedCrossRefGoogle Scholar
  42. Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29CrossRefGoogle Scholar
  43. Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588CrossRefGoogle Scholar
  44. Enaud R, Vandenborght LE, Coron N, Bazin T, Prevel R, Schaeverbeke T et al (2018) The mycobiome: a neglected component in the microbiota-gut-brain axis. Microorganisms 6(1):22PubMedCentralCrossRefGoogle Scholar
  45. Falih AMK, Wainwright M (1995) Nitrification in-vitro by a range of filamentous fungi and yeasts. Lett Appl Microbiol 21:18–19PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J Forensic Res 33:612–623CrossRefGoogle Scholar
  47. Findlay SEG, Dye S, Kuehn KA (2002) Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands 22:616–625CrossRefGoogle Scholar
  48. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M (2013) NIH Intramural Sequencing Center Comparative Sequencing Program, KongHH, Segre JA: Topographic diversity of fungal and bacterial communities inhuman skin. Nature 498:367–370PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP (2016) The cacti microbiome: interplay between habitat-filtering and host- specificity. Front Microbiol 7:891.  https://doi.org/10.3389/fmicb.2016.00150 CrossRefGoogle Scholar
  50. Foster JA, Rinaman L, Cryan JF (2017) Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci 106(31):12814–11281PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378PubMedCrossRefGoogle Scholar
  53. Gang G-H, Cho G, Kwak YS, Park EH (2017) Distribution of rhizosphere and endosphere fungi on the first-class endangered plant Cypripedium japonicum. Mycobiology 45:97–100PubMedPubMedCentralCrossRefGoogle Scholar
  54. Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathol 6:e1000713CrossRefGoogle Scholar
  56. Gosiewski T, Salamon D, Szopa M, Sroka A, Malecki MT, Bulanda M (2014) Quantitative evaluation of fungi of the genus Candida in the feces of adult patients with type 1 and 2 diabetes-a pilot study. Gut Pathog 6(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gouba N, Drancourt M (2015) Digestive tract mycobiota: a source of infection. Med Mal Infect 45:9–16PubMedCrossRefGoogle Scholar
  58. Gouba N, Raoult D, Drancourt M (2014) Gut microeukaryotes during anorexia nervosa: a case report. BMC Res Notes 7:33PubMedPubMedCentralCrossRefGoogle Scholar
  59. Grosberg RK, Vermeij GJ, Wainwright PC (2012) Biodiversity in water and on land. Curr Biol 22:R900–R903PubMedCrossRefGoogle Scholar
  60. Gulis V, Kuehn K, Suberkropp K (2006) The role of fungi in carbon and nitrogen cycles in freshwater ecosystems. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 404–435CrossRefGoogle Scholar
  61. Guyon P, Graham B, Roberts GC, Mayol-Bracero OL, Maenhaut W, Artaxo P et al (2004) Sources of optically active aerosol particles over the Amazon forest. Atmos Environ 38:1039–1051CrossRefGoogle Scholar
  62. Haga DI, Burrows SM, Iannone R, Wheeler MJ, Mason RH, Chen J et al (2014) Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores. Atmos Chem Phys 14:8611–8630CrossRefGoogle Scholar
  63. Halbwachs H, Simmel J (2018) Some like it hot, some not–tropical and arctic mushrooms. Fungal Biol Rev 32:143–l55CrossRefGoogle Scholar
  64. Haleem Khan AA, Mohan Karuppayil S (2012) Fungal pollution of indoor environments and its management. Saudi J Biol Sci 19:405–426PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hassan SED (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8:687–695PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hassett MO, Fischer MWF, Money NP (2015) Mushrooms as rainmakers: how spores act as nuclei for raindrops. PLoS One 10:e0140407.  https://doi.org/10.1371/journal.pone.0140407 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  68. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  69. Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. In: Heitman J, Howlett BJ, Crous PW, Stukenbrock EH, James TY, Gow NAR (eds) The fungal kingdom. The American Society for Microbiology, Washington, DC, pp 79–95Google Scholar
  70. Heald CL, Spracklen DV (2009) Atmospheric budget of primary biological aerosol particles from fungal spores. Geophys Res Lett 36:L09806CrossRefGoogle Scholar
  71. Heisel T, Podgorski H, Staley CM, Knights D, Sadowsky MJ, Gale CA (2015) Complementary amplicon-based genomic approaches for the study of fungal communities in humans. PLoS One 10(2):e0116705PubMedPubMedCentralCrossRefGoogle Scholar
  72. Helmus MR, Savage K, Diebel MW, Maxted JT, Ar I (2007) Separating the determinants of phylogenetic community structure. Ecol Lett 10:917–925PubMedCrossRefGoogle Scholar
  73. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019PubMedPubMedCentralCrossRefGoogle Scholar
  74. Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21(7):334–341PubMedPubMedCentralCrossRefGoogle Scholar
  75. Huseyin CE, O’toole PW, Cotter PD, Scanlan PD (2017) Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiol Rev 41:479–511PubMedCrossRefGoogle Scholar
  76. Husman T (1996) Health effects of indoor-air microorganisms. Scand J Work Environ Health 22:5–13PubMedCrossRefGoogle Scholar
  77. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP et al (2012) Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336(6086):1314–1317PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ishibashi K, Fukazawa R, Miura NN, Adachi Y, Ogawa S, Ohno N (2014) Diagnostic potential of antibody titres against Candida cell wall β-glucan in Kawasaki disease. Clin Exp Immunol 177(1):161–167PubMedPubMedCentralCrossRefGoogle Scholar
  79. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  80. Jansa J, Finlay R, Wallender H, Smith AF, Smith SE (2010) Role of mycorrhizal symbioses in phosphorus cycling. In: Phosphorus in action, Soil biology series. Springer, Heidelberg, pp 137–168Google Scholar
  81. Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJA (2007) Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 104:1720–1725PubMedCrossRefGoogle Scholar
  82. Jeffery IB, O’Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EMM, Simrén M (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61:997–1006PubMedCrossRefGoogle Scholar
  83. Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513PubMedCrossRefGoogle Scholar
  84. Kendrick B (2001) Fungi: ecological importance and impact on humans. In: e LS.  https://doi.org/10.1002/9780470015902.a0000369.pub2 CrossRefGoogle Scholar
  85. Kinkel LL (1997) Microbial population dynamics on leaves. Annu Rev Phytopathol 35:327–347PubMedCrossRefGoogle Scholar
  86. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 108:4578–4585PubMedCrossRefGoogle Scholar
  87. Kosuta S et al (2003) Diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedPubMedCentralCrossRefGoogle Scholar
  88. Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F (2011) Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 35:620–651PubMedCrossRefGoogle Scholar
  89. Kuhn H, Kuster H, Requena N (2010) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185:716–733PubMedCrossRefGoogle Scholar
  90. Landenmark HKE, Forgan DH, Cockell CS (2015) An estimate of the total DNA in the biosphere. PLoS Biol 13:e1002168PubMedPubMedCentralCrossRefGoogle Scholar
  91. Laughlin RJ, Stevens RJ (2002) Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci Soc Am J 66:1540–1548CrossRefGoogle Scholar
  92. Le Van A, Quaiser A, Duhamel M, Michon-Coudouel S, Dufrense A, Vandenkoornhuyse P (2017) Ecophylogeny of the endospheric root fungal microbiome of co-occurring Agrostis stolonifera. Peer J 5:e3454.  https://doi.org/10.7717/peerj.3454 CrossRefPubMedGoogle Scholar
  93. Levetin E (2002) Bioaerosols in agricultural and outdoor settings. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 404–416Google Scholar
  94. Levetin E, Dorsey K (2006) Contribution of leaf surface fungi to the air spora. Aerobiologia 22:3–12CrossRefGoogle Scholar
  95. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D et al (2015) Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18(4):489–500PubMedPubMedCentralCrossRefGoogle Scholar
  96. Li A, Fahey TJ (2013) Nitrogen translocation to fresh litter in northern hardwood forest. Ecosystems 16:521–528CrossRefGoogle Scholar
  97. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883PubMedPubMedCentralCrossRefGoogle Scholar
  98. Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A 113:5970–5975PubMedPubMedCentralCrossRefGoogle Scholar
  99. Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:497–506CrossRefGoogle Scholar
  100. Martin F et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  101. May RM (1988) How many species are there on earth? Science 241:1441–1449PubMedCrossRefGoogle Scholar
  102. McKenzie H, Main J, Pennington CR, Parratt D (1990) Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. Gut 31(5):536–538PubMedPubMedCentralCrossRefGoogle Scholar
  103. Methvin BR, Suberkropp K (2003) Annual production of leaf-decaying fungi in 2 streams. J North Am Benth Soc 22:554–564CrossRefGoogle Scholar
  104. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mogilnicka I, Ufnal M (2018) Gut mycobiota and fungal metabolites in human homeostasis. Curr Drug Targets 20(2):232–240CrossRefGoogle Scholar
  106. Möhler O, DeMott PJ, Vali G, Levin Z (2007) Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosci Discuss 4:1059–1071CrossRefGoogle Scholar
  107. Money NP (2011) Mushroom. Oxford University Press, OxfordCrossRefGoogle Scholar
  108. Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196CrossRefGoogle Scholar
  109. Moradi R, Nosrati R, Zare H, Tahmasebi T, Saderi H, Owlia P (2018) Screening and characterization of in-vitro probiotic criteria of Saccharomyces and Kluyveromyces strains. Iranian J Microbiol 10:123–131Google Scholar
  110. Moser M (1993) Fungal growth and fructification under stress conditions. Ukraine Bot J 50:5e11Google Scholar
  111. Mu C, Yang Y, Zhu W (2016) Gut microbiota: the brain peacekeeper. Front Microbiol 7:345PubMedPubMedCentralGoogle Scholar
  112. Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Ghannoum MA (2014) Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10:e1003996PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mumy KL, Chen X, Kelly CP, McCormick BA (2007) Saccharomyces boulardii interferes with Shigella pathogenesis by post-invasion signaling events. Am J Physiol Gastrointest Liver Physiol 294:G599–G609PubMedPubMedCentralCrossRefGoogle Scholar
  114. Nambu M, Kouno H, Aihara-Tanaka M, Shirai H, Takatori K (2009) Detection of fungi in indoor environments and fungus-specific IgE sensitization in allergic children. World Allergy Organ J 2(9):208PubMedPubMedCentralCrossRefGoogle Scholar
  115. Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC et al (2017) The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5(1):153PubMedPubMedCentralCrossRefGoogle Scholar
  116. Naumann M, Schussler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 4:862–871PubMedCrossRefGoogle Scholar
  117. Newell SY (1993) Decomposition of shoots of a saltmarsh grass: methodology and dynamics of microbial assemblages. Adv Microb Ecol 13:301–326CrossRefGoogle Scholar
  118. Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18:365–373PubMedCrossRefGoogle Scholar
  119. O’Brien BL, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550PubMedPubMedCentralCrossRefGoogle Scholar
  120. Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576PubMedCrossRefGoogle Scholar
  121. Onofri S, Seltimann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:1657–1664CrossRefGoogle Scholar
  122. Pagano MC, Correa EJA, Duarte NF, Yelikbayev B, O’Donovan A, Gupta VK (2017) Advances in eco-efficient agriculture: the plant-soil mycobiome. Agriculture 7:14CrossRefGoogle Scholar
  123. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):e177PubMedPubMedCentralCrossRefGoogle Scholar
  124. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  125. Paszowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses. Tansley Rev New Phytol 172:35–46CrossRefGoogle Scholar
  126. Pöschl U, Martin ST, Sinha B, Chen Q, Gunthe SS, Huffman JA et al (2010) Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329:1513–1516PubMedCrossRefGoogle Scholar
  127. Pumplin N et al (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61:482–494PubMedCrossRefGoogle Scholar
  128. Riccioni C et al (2008) Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180:466–478PubMedCrossRefGoogle Scholar
  129. Rima H, Steve L, Ismail F (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421Google Scholar
  130. Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L’Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043PubMedCrossRefGoogle Scholar
  131. Rodríguez MM, Pérez D, Chaves FJ, Esteve E, Marin-Garcia P, Xifra G, Vendrell J, Jové M, Pamplona R, Ricart W, Portero-Otin M (2015) Obesity changes the human gut mycobiome. Sci Rep 5:14600CrossRefGoogle Scholar
  132. Roy M, Watthana S, Stier A, Richard F, Vessabutr S, Selosse MA (2009) Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol 7:51PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ross AA, Neufeld JD (2015) Microbial biogeography of a university campus. Microbiome 3(1):66PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sapkota R, Jorgensen LN, Nicolaisen M (2017) Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Front Plant Sci 8:1357PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schappe T, Albornoz FE, Turner BL, Neat A, Condit R, Jones AF (2017) The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. J Ecol 105:569–579CrossRefGoogle Scholar
  136. Schimann H, Bach C, Lengelle J, Louisanna E, Barantal S, Murat C, Buée M (2017) Diversity and structure of fungal communities in neotropical rainforest soils: the effect of host recurrence. Microb Ecol 73:310–320PubMedCrossRefGoogle Scholar
  137. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602CrossRefGoogle Scholar
  138. Schlaeppi K, Dombrowski N, Oter RG, Van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad USA 111:585–592CrossRefGoogle Scholar
  139. Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70PubMedCrossRefGoogle Scholar
  140. Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36PubMedCrossRefGoogle Scholar
  141. Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, Adamos MB, Sweeney KM, Origoni AE, Khushalani S et al (2016) Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophr 2:16018PubMedPubMedCentralCrossRefGoogle Scholar
  142. Shoun H, Kim DH, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–281CrossRefGoogle Scholar
  143. Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N, Valle G, Bartlett DH (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25PubMedCrossRefGoogle Scholar
  144. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New YorkGoogle Scholar
  145. Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I et al (2017) Fungal microbiota dysbiosis in IBD. Gut 66:1039–1048PubMedCrossRefGoogle Scholar
  146. Stolze-Rybczynski JL, Cui Y, Stevens MHH, Davis DJ, Fischer MW, Money NP (2009) Adaptation of the spore discharge mechanism in the Basidiomycota. PLoS One 4:e4163PubMedPubMedCentralCrossRefGoogle Scholar
  147. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, Jousson O, Leoncini S, Renzi D, Calabrò A, De Filippo C (2017) New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5:24PubMedPubMedCentralCrossRefGoogle Scholar
  148. Suberkropp K (1995) The influence of nutrients on fungal growth, productivity, and sporulation during leaf breakdown in streams. Can J Bot 73(Suppl. 1):S1361–S1369CrossRefGoogle Scholar
  149. Suda W, Nagasaki A, Shishido M (2009) Powdery mildew-infection changes bacterial community composition in the phyllosphere. Microbes Environ 24:217–223PubMedCrossRefGoogle Scholar
  150. Sun S, Li S, Avera BN, Strahm BD, Badgley BD (2017) Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.00966-17
  151. Sundin GW (2002) Ultraviolet radiation on leaves: its influence on microbial communities and their adaptations. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere microbiology. APS Press, St. Paul, pp 27–42Google Scholar
  152. Takata K, Tomita T, Okuno T, Kinoshita M, Koda T, Honorat JA et al (2015) Dietary yeasts reduce inflammation in central nerve system via microflora. Ann Clin Transl Neurol 2(1):56–66PubMedCrossRefGoogle Scholar
  153. Takeda N et al (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J 58:766–777PubMedCrossRefGoogle Scholar
  154. Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME, Peay KG (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci U S A 111:6341–6346PubMedPubMedCentralCrossRefGoogle Scholar
  155. Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354PubMedCrossRefPubMedCentralGoogle Scholar
  156. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R et al (2014) Global diversity and geography of soil fungi. Science 346:1256688PubMedCrossRefPubMedCentralGoogle Scholar
  157. Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46CrossRefGoogle Scholar
  158. Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2015:132635PubMedPubMedCentralCrossRefGoogle Scholar
  159. Todd JD, Curson ARJ, Dupont CL, Nicholson P, Johnston AWB (2009) The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol 11:1376–1385PubMedCrossRefPubMedCentralGoogle Scholar
  160. Tong X, Leung MH, Wilkins D, Lee PK (2017) City-scale distribution and dispersal routes of mycobiome in residences. Microbiome 5(1):131PubMedPubMedCentralCrossRefGoogle Scholar
  161. Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79:243–262PubMedPubMedCentralCrossRefGoogle Scholar
  162. Treseder KK, Maltz MR, Hawkins BA, Fierer N, Stajich JE, McGuire KL (2014) Evolutionary histories of soil fungi are reflected in their large scale biogeography. Ecol Lett 17:1086–1093PubMedCrossRefGoogle Scholar
  163. Trojanowska D, Zwolinska-Wcislo M, Tokarczyk M, Kosowski K, Mach T, Budak A (2010) The role of Candida in inflammatory bowel disease. Estimation of transmission of C albicans fungi in gastrointestinal tract based on genetic affinity between strains. Med Sci Monitor 16(10):CR451–CR457Google Scholar
  164. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209PubMedPubMedCentralCrossRefGoogle Scholar
  165. Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 4(405):416Google Scholar
  166. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423PubMedCrossRefGoogle Scholar
  167. Vandenkoornhuyse P, Quaiser A, Duhamel M, Lê Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206PubMedCrossRefGoogle Scholar
  168. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840PubMedCrossRefGoogle Scholar
  169. Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191:515–527PubMedCrossRefGoogle Scholar
  170. Wardle DA, Lindahl BD (2014) Disentangling global soil fungal diversity. Science 346(6213):1052–1053PubMedCrossRefPubMedCentralGoogle Scholar
  171. Webster JR, Meyer JL (1997) Stream organic matter budgets. J North Am Benth Soc 16:3–161CrossRefGoogle Scholar
  172. Webster J, Davey RA, Turner JCR (1989) Vapour as the source of water in Buller’s drop. Mycol Res 93:297–302CrossRefGoogle Scholar
  173. Webster J, Davey RA, Smirnoff N, Fricke W, Hinde P, Tomos D et al (1995) Mannitol and hexoses are components of Buller’s drop. Mycol Res 99:833–838CrossRefGoogle Scholar
  174. Wilkins D, Leung MHY, Lee PKH (2016) Indoor air bacterial communities in Hong Kong households assemble independently of occupant skin microbiomes. Environ Microbiol 18:1754–1763PubMedCrossRefPubMedCentralGoogle Scholar
  175. Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microbe Int 13:1027–1033CrossRefGoogle Scholar
  176. Woo C, Choa A, Siyu X, Yi S-M, Yamamoto N (2018) Taxonomic diversity of fungi deposited from the atmosphere. ISME J 12:2051–2060PubMedPubMedCentralCrossRefGoogle Scholar
  177. Woodward FI, Lomas MR (2004) Vegetation dynamics – simulating response to climatic change. Biol Rev Camb Philos Soc 79:643–670PubMedCrossRefGoogle Scholar
  178. Yamamoto N, Bibby K, Qian J, Hospodsky D, Rismani-Yazdi H, Nazaroff WW et al (2012) Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J 6:1801–1811PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yang T, Sun H, Shen C, Chu H (2016) Fungal assemblages in different habitats in an Erman’s Birch forest. Front Microbiol 7:1368.  https://doi.org/10.3389/fmicb.2016.01368 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Yano K et al (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci 105:20540–20545PubMedCrossRefGoogle Scholar
  181. Zanello G, Meurens F, Berri M, Salmon H (2009) Saccharomyces boulardii effects on gastrointestinal diseases. Curr Issues Mol Biol 11(1):47PubMedGoogle Scholar
  182. Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula Half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497PubMedPubMedCentralCrossRefGoogle Scholar
  183. Zoll J, Snelders E, Verweij PE, Melchers WJC (2016) Next generation sequencing in the mycology lab. Curr Fungal Infect Rep 10:37–42PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Apekcha Bajpai
    • 1
  • Seema Rawat
    • 2
  • Bhavdish N. Johri
    • 1
  1. 1.Department of BiotechnologyBarkatullah UniversityBhopalIndia
  2. 2.School of Life ScienceGujarat Central UniversityGandhinagarIndia

Personalised recommendations