Gut Microbiomes and Their Impact on Human Health

  • Romit Mitra
  • Lipika Das
  • Subrata K. DasEmail author


The gut microbiome encompasses the large repertoire of microbes in the gastrointestinal system and their collective symbiotic functions for the host, viz., protection against opportunistic pathogens, body’s immune system, extraction of nutrients and energy from diet, fermentation of non-digestible carbohydrates, homeostasis, etc. Further, dysbiosis of the gut microbiome is associated with diverse human diseases including inflammatory bowel disease (IBD), cancer, type 2 diabetes (T2D), obesity, etc. Composition of the gut microbiome has been characterized through a combination of microbial culture techniques and metagenomic approach that helped in understanding the impact of gut microbiome on human health and disease. Moreover, divergences in dietary habits and varied geographical niches have a role in streamlining the diversity among gut microbiomes of different populations. Further, relative increase in Firmicutes and decrease in Bacteroidetes in the gut of people living in colder climates of higher latitudes are endowed with more storage of energy and fat from a given diet. In the case of neonates, the gut microbiota undergoes transformations and has a major role in nutrition and the development of immune system. Furthermore, the gut microbiota has been used as potential probiotics for improving the intestinal microbial balance.


Human gut microbiome Metagenome Symbiosis Dysbiosis Diet Geographical niche Probiotic Prebiotic Fecal transplantation 


  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aronsson L, Huang Y, Parini P, Korach-Andre M, Hakansson J et al (2010) Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 5(9):e13087PubMedPubMedCentralCrossRefGoogle Scholar
  3. Asahara T, Nomoto K, Shimizu K, Watanuki M, Tanaka R (2001) Increased resistance of mice to Salmonella enterica serovar Typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides. J Appl Microbiol 91:985–996PubMedCrossRefGoogle Scholar
  4. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–G1295PubMedCrossRefGoogle Scholar
  5. Backhed F, Ding H, Wang T, Hooper LV, Koh GY et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723PubMedPubMedCentralCrossRefGoogle Scholar
  6. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920PubMedCrossRefGoogle Scholar
  7. Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bailly J, Fraissinet-Tachet L, Verner MC, Debaud JC, Lemaire M et al (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642PubMedCrossRefGoogle Scholar
  9. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB et al (2014) Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 60:940–947PubMedCrossRefGoogle Scholar
  10. Benassi B, Leleu R, Bird T, Clifton P, Fenech M (2007) Cytokinesis-block micronucleus cytome assays for the determination of genotoxicity and cytotoxicity of cecal water in rats and fecal water in humans. Cancer Epidemiol Biomark Prev 16:2676–2680CrossRefGoogle Scholar
  11. Beninati C, Oggioni MR, Boccanera M, Spinosa MR, Maggi T et al (2000) Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol 18:1060–1064PubMedCrossRefGoogle Scholar
  12. Bergmann C (1847) Ueber die Verhaeltnisse der Waermeoekonomie der Thiere zu ihrer Groesse. Goettinger Studien 1:595–708Google Scholar
  13. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G (2008) Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 138:1796S–1800SPubMedCrossRefGoogle Scholar
  14. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 103:732–737PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bjorksten B (2004) Effects of intestinal microflora and the environment on the development of asthma and allergy. Springer Semin Immunopathol 25:257–270PubMedCrossRefGoogle Scholar
  16. Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C et al (2010) Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids 39:335–347PubMedCrossRefGoogle Scholar
  17. Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM et al (2011) Bioinformatics tools for cancer metabolomics. Metabolomics 7:329–343PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blottiere HM, de Vos WM, Ehrlich SD, Dore J (2013) Human intestinal metagenomics: state of the art and future. Curr Opin Microbiol 16:232–239PubMedCrossRefGoogle Scholar
  19. Booijink CC, El-Aidy S, Rajilic-Stojanovic M, Heilig HG, Troost FJ et al (2010) High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12:3213–3227PubMedCrossRefGoogle Scholar
  20. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319PubMedCrossRefGoogle Scholar
  21. Bruel L, Sulzenbacher G, Cervera Tison M, Pujol A, Nicoletti C et al (2011) Alpha-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities. J Biol Chem 286:40814–40823PubMedPubMedCentralCrossRefGoogle Scholar
  22. Buddington KK, Donahoo JB, Buddington RK (2002) Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr 132:472–477PubMedCrossRefGoogle Scholar
  23. Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9:737–743PubMedCrossRefGoogle Scholar
  24. Cani PD, Delzenne NM (2010) Involvement of the gut microbiota in the development of low grade inflammation associated with obesity: focus on this neglected partner. Acta Gastro-Enterol Belg 73:267–269Google Scholar
  25. Carrola J, Rocha CM, Barros AS, Gil AM, Goodfellow BJ et al (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 10:221–230PubMedCrossRefGoogle Scholar
  26. Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf-Filho P et al (2012) Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55:2823–2834PubMedCrossRefGoogle Scholar
  27. Chapman CM, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17PubMedCrossRefGoogle Scholar
  28. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270PubMedPubMedCentralCrossRefGoogle Scholar
  29. Christl SU, Eisner HD, Dusel G, Kasper H, Scheppach W (1996) Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci 41:2477–2481PubMedCrossRefGoogle Scholar
  30. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184PubMedCrossRefGoogle Scholar
  31. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dasu MR, Devaraj S, Park S, Jialal I (2010) Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33:861–868PubMedPubMedCentralCrossRefGoogle Scholar
  33. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563CrossRefGoogle Scholar
  34. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696PubMedPubMedCentralCrossRefGoogle Scholar
  35. De Montijo-Prieto S, Moreno E, Bergillos-Meca T, Lasserrot A, Ruiz-Lopez MD et al (2015) A Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with Yersinia enterocolitica O9 and modulates immunity in mice. Res Microbiol 166:626–632PubMedCrossRefGoogle Scholar
  36. Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, Gonzalez A, Knight R (2014) Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23:1301–1317PubMedCrossRefGoogle Scholar
  37. Delzenne NM, Neyrinck AM, Backhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7:639–646PubMedCrossRefGoogle Scholar
  38. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094PubMedCrossRefGoogle Scholar
  39. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108:4554–4561PubMedCrossRefGoogle Scholar
  40. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818PubMedCrossRefGoogle Scholar
  41. Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59:617–628PubMedPubMedCentralCrossRefGoogle Scholar
  42. Di Gioia D, Aloisio I, Mazzola G, Biavati B (2014) Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol 98:563–577PubMedCrossRefGoogle Scholar
  43. Dobrijevic D, Di Liberto G, Tanaka K, de Wouters T, Dervyn R et al (2013) High-throughput system for the presentation of secreted and surface-exposed proteins from Gram-positive bacteria in functional metagenomics studies. PLoS One 8:e65956PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975PubMedPubMedCentralCrossRefGoogle Scholar
  45. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526PubMedPubMedCentralCrossRefGoogle Scholar
  46. Drexler DM, Reily MD, Shipkova PA (2011) Advances in mass spectrometry applied to pharmaceutical metabolomics. Anal Bioanal Chem 399:2645–2653PubMedCrossRefGoogle Scholar
  47. Dubourg G, Lagier JC, Armougom F, Robert C, Hamad I et al (2013) The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. Eur J Clin Microbiol Infect Dis 32:637–645PubMedCrossRefGoogle Scholar
  48. Dumas ME, Barton RH, Toye A, Cloarec O, C B et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 103:12511–12516PubMedPubMedCentralCrossRefGoogle Scholar
  49. Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB, Flint HJ (2006) Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56:2437–2441PubMedCrossRefGoogle Scholar
  50. Eckburg PB, Bik EM, Bernstein CN, Purdom E, L D et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedPubMedCentralCrossRefGoogle Scholar
  51. Eggesbo M, Botten G, Stigum H, Nafstad P, Magnus P (2003) Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol 112:420–426PubMedCrossRefGoogle Scholar
  52. Elsden SR, Hilton MG, Waller JM (1976) The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol 107:283–288PubMedCrossRefGoogle Scholar
  53. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF et al (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One 7:e49138PubMedPubMedCentralCrossRefGoogle Scholar
  54. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071PubMedPubMedCentralCrossRefGoogle Scholar
  55. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M et al (2003) Traces of human migrations in Helicobacter pylori populations. Science 299:1582–1585PubMedCrossRefGoogle Scholar
  56. Finegold SM, Attebery HR, Sutter VL (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469PubMedCrossRefGoogle Scholar
  57. Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88(Suppl 1):S39–S49PubMedCrossRefGoogle Scholar
  58. Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P et al (2012) NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 13:449–456PubMedPubMedCentralCrossRefGoogle Scholar
  59. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785PubMedPubMedCentralCrossRefGoogle Scholar
  60. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC et al (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105:3805–3810PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378CrossRefGoogle Scholar
  62. Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412PubMedCrossRefGoogle Scholar
  64. Gibson GR, Wang X (1994) Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412–420PubMedCrossRefGoogle Scholar
  65. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gionchetti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D et al (2000) Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119:305–309PubMedCrossRefGoogle Scholar
  67. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gloux K, Berteau O, El Oumami H, Beguet F, Leclerc M, Dore J (2011) A metagenomic beta-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci U S A 108:4539–4546PubMedCrossRefGoogle Scholar
  69. Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N et al (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447PubMedPubMedCentralCrossRefGoogle Scholar
  70. Grajek W, Olejnik A, Sip A (2005) Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol 52:665–671PubMedGoogle Scholar
  71. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedPubMedCentralCrossRefGoogle Scholar
  72. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249PubMedPubMedCentralCrossRefGoogle Scholar
  73. Harrell L, Wang Y, Antonopoulos D, Young V, Lichtenstein L et al (2012) Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS One 7:e32545PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hiergeist A, Glasner J, Reischl U, Gessner A (2015) Analyses of Intestinal Microbiota: culture versus sequencing. ILAR J 56:228–240PubMedCrossRefGoogle Scholar
  75. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H et al (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019PubMedPubMedCentralCrossRefGoogle Scholar
  76. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J et al (2014) Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant 20:640–645PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458PubMedPubMedCentralCrossRefGoogle Scholar
  78. Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 19:349–359PubMedCrossRefGoogle Scholar
  79. Hooijkaas H, Benner R, Pleasants JR, Wostmann BS (1984) Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigen-free” diet. Eur J Immunol 14:1127–1130PubMedCrossRefGoogle Scholar
  80. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118PubMedCrossRefGoogle Scholar
  81. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169PubMedCrossRefGoogle Scholar
  82. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A 96:9833–9838PubMedPubMedCentralCrossRefGoogle Scholar
  83. Human Microbiome Project C (2012) A framework for human microbiome research. Nature 486:215–221CrossRefGoogle Scholar
  84. Hussain SA, Patil GR, Reddi S, Yadav V, Pothuraju R et al (2017) Aloe vera (Aloe barbadensis Miller) supplemented probiotic lassi prevents Shigella infiltration from epithelial barrier into systemic blood flow in mice model. Microb pathog 102: 143–147PubMedCrossRefPubMedCentralGoogle Scholar
  85. Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2. J Bacteriol 114:1231–1240PubMedPubMedCentralGoogle Scholar
  86. Ito T, Simons M (2011) Probing asthenospheric density, temperature, and elastic moduli below the western United States. Science 332:947–951PubMedCrossRefGoogle Scholar
  87. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498PubMedPubMedCentralCrossRefGoogle Scholar
  88. Jialal I, Huet BA, Kaur H, Chien A, Devaraj S (2012) Increased toll-like receptor activity in patients with metabolic syndrome. Diabetes Care 35:900–904PubMedPubMedCentralCrossRefGoogle Scholar
  89. Jin C, Flavell RA (2013) Innate sensors of pathogen and stress: linking inflammation to obesity. J Allergy Clin Immunol 132:287–294PubMedCrossRefGoogle Scholar
  90. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C et al (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM et al (2013) Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 58:949–955PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kamada N, Chen GY, Inohara N, Nunez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kanno T, Matsuki T, Oka M, Utsunomiya H, Inada K et al (2009) Gastric acid reduction leads to an alteration in lower intestinal microflora. Biochem Biophys Res Commun 381:666–670PubMedCrossRefGoogle Scholar
  94. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D et al (2015) Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149:223–237PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kim K, Taylor SL, Ganti S, Guo L, Osier MV, Weiss RH (2011) Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. Omics 15:293–303PubMedPubMedCentralCrossRefGoogle Scholar
  97. Klaassens ES, de Vos WM, Vaughan EE (2007) Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73:1388–1392PubMedCrossRefPubMedCentralGoogle Scholar
  98. Klaassens ES, Boesten RJ, Haarman M, Knol J, Schuren FH et al (2009) Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl Environ Microbiol 75:2668–2676PubMedPubMedCentralCrossRefGoogle Scholar
  99. Klupczynska A, Derezinski P, Kokot ZJ (2015) Metabolomics in medical sciences – trends, challenges and perspectives. Acta Pol Pharm 72:629–641PubMedPubMedCentralGoogle Scholar
  100. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108:4578–4585PubMedCrossRefPubMedCentralGoogle Scholar
  101. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274CrossRefGoogle Scholar
  102. Kumar S, Bansal A, Chakrabarti A, Singhi S (2013) Evaluation of efficacy of probiotics in prevention of candida colonization in a PICU-a randomized controlled trial. Crit Care Med 41:565–572PubMedCrossRefGoogle Scholar
  103. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lagier JC, Million M, Hugon P, Armougom F, Raoult D (2012) Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2:136PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lakhdari O, Cultrone A, Tap J, Gloux K, Bernard F et al (2010) Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-kappa B modulation in the human gut. PLoS One 5:e13092PubMedPubMedCentralCrossRefGoogle Scholar
  106. Laubereau B, Filipiak-Pittroff B, von Berg A, Grubl A, Reinhardt D et al (2004) Caesarean section and gastrointestinal symptoms, atopic dermatitis, and sensitisation during the first year of life. Arch Dis Child 89:993–997PubMedPubMedCentralCrossRefGoogle Scholar
  107. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V et al (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489PubMedCrossRefGoogle Scholar
  108. Lepage P, Leclerc MC, Joossens M, Mondot S, Blottiere HM et al (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158PubMedCrossRefGoogle Scholar
  109. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023PubMedCrossRefGoogle Scholar
  111. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedPubMedCentralCrossRefGoogle Scholar
  112. Li X, LeBlanc J, Truong A, Vuthoori R, Chen SS et al (2011) A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface. PLoS One 6:e26542PubMedPubMedCentralCrossRefGoogle Scholar
  113. Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11:1582–1590PubMedCrossRefGoogle Scholar
  114. Lin CS, Chang CJ, Lu CC, Martel J, Ojcius DM et al (2014) Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biom J 37:259–268Google Scholar
  115. Ling WH, Hanninen O (1992) Shifting from a conventional diet to an uncooked vegan diet reversibly alters fecal hydrolytic activities in humans. J Nutr 122:924–930PubMedCrossRefGoogle Scholar
  116. Lundin A, Bok CM, Aronsson L, Bjorkholm B, Gustafsson JA et al (2008) Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol 10:1093–1103PubMedCrossRefGoogle Scholar
  117. Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN (1999) Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116:1107–1114PubMedCrossRefGoogle Scholar
  118. Mafra D, Barros AF, Fouque D (2013) Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients. Future Microbiol 8:1317–1323PubMedCrossRefGoogle Scholar
  119. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS et al (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 106:5859–5864PubMedPubMedCentralCrossRefGoogle Scholar
  120. Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P et al (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6:546–551PubMedCrossRefGoogle Scholar
  121. Markowiak P, Slizewska K (2017) Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 9:1021PubMedCentralCrossRefPubMedGoogle Scholar
  122. Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457PubMedPubMedCentralCrossRefGoogle Scholar
  123. Martinez FD (2014) The human microbiome. Early life determinant of health outcomes. Ann American Thorac Soc 11:S7–S12CrossRefGoogle Scholar
  124. Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625PubMedCrossRefGoogle Scholar
  126. Metges CC, Petzke KJ, El-Khoury AE, Henneman L, Grant I et al (1999) Incorporation of urea and ammonia nitrogen into ileal and fecal microbial proteins and plasma free amino acids in normal men and ileostomates. Am J Clin Nutr 70:1046–1058PubMedCrossRefGoogle Scholar
  127. Mills KH (2011) TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11:807–822PubMedCrossRefGoogle Scholar
  128. Millward DJ, Forrester T, Ah-Sing E, Yeboah N, Gibson N et al (2000) The transfer of 15N from urea to lysine in the human infant. Br J Nutr 83:505–512PubMedCrossRefGoogle Scholar
  129. Mishra C, Lambert J (1996) Production of anti-microbial substances by probiotics. Asia Pac J Clin Nutr 5:20–24PubMedGoogle Scholar
  130. Monleon D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B (2009) Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed 22:342–348PubMedCrossRefGoogle Scholar
  131. Murgas Torrazza R, Neu J (2011) The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol 31:S29–S34PubMedCrossRefPubMedCentralGoogle Scholar
  132. Nambiar PR, Gupta RR, Misra V (2010) An “Omics” based survey of human colon cancer. Mutat Res 693:3–18PubMedCrossRefPubMedCentralGoogle Scholar
  133. Nase L, Hatakka K, Savilahti E, Saxelin M, Ponka A et al (2001) Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res 35:412–420PubMedCrossRefPubMedCentralGoogle Scholar
  134. Nava GM, Friedrichsen HJ, Stappenbeck TS (2011) Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J 5:627–638PubMedCrossRefPubMedCentralGoogle Scholar
  135. Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC (2009) Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 15:300–310PubMedCrossRefPubMedCentralGoogle Scholar
  136. Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455:1054–1056CrossRefGoogle Scholar
  137. Nova E, Warnberg J, Gomez-Martinez S, Diaz LE, Romeo J, Marcos A (2007) Immunomodulatory effects of probiotics in different stages of life. Br J Nutr 98:S90–S95PubMedCrossRefPubMedCentralGoogle Scholar
  138. O’Mahony C, Scully P, O’Mahony D, Murphy S, O’Brien F et al (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappa B activation. PLoS Pathog 4:e1000112PubMedPubMedCentralCrossRefGoogle Scholar
  139. Oelschlaeger TA (2010) Mechanisms of probiotic actions – a review. Int J Med Microbiol 300:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  140. Orrhage K, Nord CE (1999) Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr 88:47–57CrossRefGoogle Scholar
  141. Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54:987–991PubMedCrossRefPubMedCentralGoogle Scholar
  142. Payne AN, Zihler A, Chassard C, Lacroix C (2012) Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 30:17–25PubMedCrossRefGoogle Scholar
  143. Penders J, Thijs C, Vink C, Stelma FF, Snijders B et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521PubMedCrossRefGoogle Scholar
  144. Phua LC, Chue XP, Koh PK, Cheah PY, Ho HK, Chan EC (2014) Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol Ther 15:389–397PubMedPubMedCentralCrossRefGoogle Scholar
  145. Prescott D, Lee J, Philpott DJ (2013) An epithelial armamentarium to sense the microbiota. Semin Immunol 25:323–333PubMedCrossRefGoogle Scholar
  146. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65PubMedPubMedCentralCrossRefGoogle Scholar
  147. Qin J, Li Y, Cai Z, Li S, Zhu J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60CrossRefGoogle Scholar
  148. Raj T, Dileep U, Vaz M, Fuller MF, Kurpad AV (2008) Intestinal microbial contribution to metabolic leucine input in adult men. J Nutr 138(11):2217–2221PubMedCrossRefGoogle Scholar
  149. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241PubMedCrossRefGoogle Scholar
  150. Ramakrishna BS, Roediger WE (1990) Bacterial short chain fatty acids: their role in gastrointestinal disease. Dig Dis 8:337–345PubMedCrossRefGoogle Scholar
  151. Renesto P, Crapoulet N, Ogata H, La Scola B, Vestris G, Claverie JM, Raoult D (2003) Genome-based design of a cell free-culture medium for Tropheryma whipplei. Lancet 362:447–449PubMedCrossRefGoogle Scholar
  152. Rettedal EA, Gumpert H, Sommer MO (2014) Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun 5:4714PubMedCrossRefGoogle Scholar
  153. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS (2014) Bile acids and the gut microbiome. Curr Opin Gastroenterol 30:332–338PubMedPubMedCentralCrossRefGoogle Scholar
  155. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 2:S1–S63CrossRefGoogle Scholar
  156. Robinson CJ, Bohannan BJ, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 74:453–476PubMedPubMedCentralCrossRefGoogle Scholar
  157. Rook GA (2010) 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol 160:70–79PubMedPubMedCentralCrossRefGoogle Scholar
  158. Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S et al (2017) Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol 247:9–17PubMedCrossRefPubMedCentralGoogle Scholar
  159. Salminen S, Gibson GR, McCartney AL, Isolauri E (2004) Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53:1388–1389PubMedPubMedCentralCrossRefGoogle Scholar
  160. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105:16767–16772PubMedPubMedCentralCrossRefGoogle Scholar
  161. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133PubMedCrossRefPubMedCentralGoogle Scholar
  162. Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235PubMedCrossRefPubMedCentralGoogle Scholar
  163. Scanlan PD, Marchesi JR (2008) Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J 2:1183–1193PubMedCrossRefPubMedCentralGoogle Scholar
  164. Schachtsiek M, Hammes WP, Hertel C (2004) Characterization of Lactobacillus coryniformis DSM 20001T surface protein Cpf mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol 70:7078–7085PubMedPubMedCentralCrossRefGoogle Scholar
  165. Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5:e1000605PubMedPubMedCentralCrossRefGoogle Scholar
  166. Schoster A, Arroyo LG, Staempfli HR, Weese JS (2013) Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism. BMC Res Notes 6:91PubMedPubMedCentralCrossRefGoogle Scholar
  167. Schuhmacher R, Krska R, Weckwerth W, Goodacre R (2013) Metabolomics and metabolite profiling. Anal Bioanal Chem 405:5003–5004PubMedCrossRefPubMedCentralGoogle Scholar
  168. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551PubMedCrossRefPubMedCentralGoogle Scholar
  169. Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31:69–75PubMedPubMedCentralCrossRefGoogle Scholar
  170. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161PubMedCrossRefGoogle Scholar
  171. Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A et al (2010) Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res 16:5835–5841PubMedCrossRefPubMedCentralGoogle Scholar
  172. Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81:288–302PubMedCrossRefPubMedCentralGoogle Scholar
  173. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R et al (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:548–554PubMedPubMedCentralCrossRefGoogle Scholar
  174. Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M (2013) Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145:946–953PubMedCrossRefPubMedCentralGoogle Scholar
  175. Sommer F, Backhed F (2013) The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 11:227–238PubMedCrossRefGoogle Scholar
  176. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G et al (2013) Cohabiting family members share microbiota with one another and with their dogs. elife 2:e00458PubMedPubMedCentralCrossRefGoogle Scholar
  177. Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577PubMedCrossRefGoogle Scholar
  178. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99:15451–15455PubMedPubMedCentralCrossRefGoogle Scholar
  179. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T et al (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A 101:1981–1986PubMedPubMedCentralCrossRefGoogle Scholar
  180. Suzuki H, Iwasaki E, Hibi T (2009) Helicobacter pylori and gastric cancer. Gastric Cancer 12:79–87PubMedCrossRefGoogle Scholar
  181. Thomas DW, Greer FR (2010) Probiotics and prebiotics in pediatrics. Pediatrics 126:1217–1231PubMedCrossRefGoogle Scholar
  182. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121:2126–2132PubMedPubMedCentralCrossRefGoogle Scholar
  183. Timmerman HM, Koning CJ, Mulder L, Rombouts FM, Beynen AC (2004) Monostrain, multistrain and multispecies probiotics-A comparison of functionality and efficacy. Int J Food Microbiol 96:219–233PubMedCrossRefGoogle Scholar
  184. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547PubMedCrossRefGoogle Scholar
  185. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557PubMedCrossRefGoogle Scholar
  186. Trosvik P, Stenseth NC, Rudi K (2010) Convergent temporal dynamics of the human infant gut microbiota. ISME J 4:151–158PubMedCrossRefPubMedCentralGoogle Scholar
  187. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810PubMedPubMedCentralCrossRefGoogle Scholar
  188. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCrossRefPubMedCentralGoogle Scholar
  189. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T et al (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 107:7503–7508PubMedPubMedCentralCrossRefGoogle Scholar
  190. Tyakht AV, Kostryukova ES, Popenko AS, Belenikin MS, Pavlenko AV et al (2013) Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun 4:2469PubMedPubMedCentralCrossRefGoogle Scholar
  191. van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM et al (2009) Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A 106:2371–2376PubMedPubMedCentralCrossRefGoogle Scholar
  192. Van Loo J, Clune Y, Bennett M, Collins JK (2005) The SYNCAN project: goals, set-up, first results and settings of the human intervention study. Br J Nutr 93:S91–S98PubMedCrossRefPubMedCentralGoogle Scholar
  193. Venema K, van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27:115–126PubMedCrossRefPubMedCentralGoogle Scholar
  194. Verma R, Verma AK, Ahuja V, Paul J (2010) Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J Clin Microbiol 48:4279–4282PubMedPubMedCentralCrossRefGoogle Scholar
  195. Vinje H, Almoy T, Liland KH, Snipen L (2014) A systematic search for discriminating sites in the 16S ribosomal RNA gene. Microb Inf Exp 4:2CrossRefGoogle Scholar
  196. Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996PubMedPubMedCentralCrossRefGoogle Scholar
  197. Walter J, Ley R (2011) The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol 65:411–429PubMedCrossRefGoogle Scholar
  198. Wang M, Ahrne S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231PubMedCrossRefGoogle Scholar
  199. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814PubMedPubMedCentralCrossRefGoogle Scholar
  200. Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978PubMedCrossRefGoogle Scholar
  201. Wild JM, Krutzfeldt NO (2010) Neocortical-like organization of avian auditory ‘cortex’. Commentary on Wang Y, Brzozowska-Prechtl A, Karten HJ (2010): laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci U S A 107:12676–12681CrossRefGoogle Scholar
  202. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090PubMedPubMedCentralCrossRefGoogle Scholar
  203. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108PubMedPubMedCentralCrossRefGoogle Scholar
  204. Xiong W, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL (2015) Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J Proteome Res 14:133–141PubMedCrossRefGoogle Scholar
  205. Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113(Suppl):S1–S5PubMedCrossRefGoogle Scholar
  206. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M et al (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:e156PubMedPubMedCentralCrossRefGoogle Scholar
  207. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227PubMedPubMedCentralCrossRefGoogle Scholar
  208. Yokoyama MT, Carlson JR (1981) Production of Skatole and para-Cresol by a Rumen Lactobacillus sp. Appl Environ Microbiol 41:71–76PubMedPubMedCentralGoogle Scholar
  209. Ze X, Le Mougen F, Duncan SH, Louis P, Flint HJ (2013) Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 4:236–240PubMedPubMedCentralCrossRefGoogle Scholar
  210. Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L (2018) Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol 9:765PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Molecular MicrobiologyInstitute of Life SciencesBhubaneswarIndia

Personalised recommendations