Advertisement

Emerging Concepts in Bacterial Taxonomy

  • Anusha Rai
  • Indu
  • N. Smita
  • G. Deepshikha
  • K. Gaurav
  • K. Dhanesh
  • G. Suresh
  • Ch. Sasikala
  • Ch. V. Ramana
Chapter

Abstract

Bacterial taxonomy has progressed over the years by virtue of the brisk and competent scientific developments. Ground-breaking molecular techniques have added an edge in the phylogenetic studies, resulting in the quality description of the taxa under studies. New avenues are rapidly developing whose validation has always been embraced and included, which will assist in resolution. It began with the simple application of objective procedures for classification, and now we have arrived at the genome-based taxonomy. This pedantic step has led to the meticulous examination and served to reconcile certain conflicts of the status of the taxa. This field is dynamic and is exploring more options like proteomics and metabolomics in gaining more insights into the lineal heritage. Even though there has been a significant change and addition, there is an ever-growing need for a comprehensive study, which would thread all the attributes together into one functional unit of classification. In this review, we examine the paradigm shift from traditional taxonomy to integrated taxonomy useful in the characterisation of bacteria which in addition aids in the identity of biotechnological targets.

Keywords

Bacterial taxonomy Polyphasic Phylogenomics Integrated taxonomy Average nucleotide sequence index (ANI) 

Notes

Acknowledgements

Anusha, Indu, Gaurav and Suresh thank DST, CSIR, DBT and UGC, Government of India, for the award of INSPIRE and SRF fellowships, respectively. Dhanesh is grateful to UGC for Dr. D.S. Kothari postdoctoral fellowship. C.V.R. thanks DBT, Government of India, for the award of TATA-Innovative Fellowship. Infrastructural facilities created under DST-FIST and UGC-SAP are also acknowledged.

References

  1. Abed RMM (2008) Nucleic acid-based techniques for studying diversity and activity of bacterial communities in oil-contaminated sediments. In: Handbook of environmental chemistry. Springer, Berlin/Heidelberg, pp 97–160Google Scholar
  2. Al-Dhabaan FAM, Bakhali AH (2017) Analysis of the bacterial strains using biolog plates in the contaminated soil from Riyadh community. Saudi J Biol Sci 24:901–906CrossRefGoogle Scholar
  3. Anderson AW, Nordan HC, Cain RF, Parish G, Duggan D (1956) Studies on radio resistant micrococcus. I. The isolation, morphology, cultural characteristics and resistance to gamma radiation. Food Technol 10:575–577Google Scholar
  4. Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134CrossRefGoogle Scholar
  5. Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of Xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci 7:1805CrossRefGoogle Scholar
  6. Belin BJ, Busset N, Giraud E, Molinaro A, Silipo A, Newman DK (2018) Hopanoid lipids: from membranes to plant–bacteria interactions. Nat Rev Microbiol 16:304–315CrossRefGoogle Scholar
  7. Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E (2018) Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 24:335–341CrossRefGoogle Scholar
  8. Blumenberg M, Thiel V, Riegel W, Kah LC, Reitner J (2012) Biomarkers of black shales formed by microbial mats, late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Res 196:113–127CrossRefGoogle Scholar
  9. Brooks BW, Murray RGE (1981) Nomenclature for Micrococcus radiodurans and other radiation-resistant Cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 31:353–360CrossRefGoogle Scholar
  10. Brosch R, Gordon SV, Eiglmeier K, Garnier T, Cole ST (2000) Comparative genomics of the leprosy and tubercle bacilli. Res Microbiol 151:135–142CrossRefGoogle Scholar
  11. Carlos C, Maretto DA, Poppi RJ, Sato MI, Ottoboni LM (2011) Fourier transform infrared microspectroscopy as a bacterial source tracking tool to discriminate fecal E. coli strains. Microchem J 99:15–19CrossRefGoogle Scholar
  12. Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324CrossRefGoogle Scholar
  13. Coenye T, Vandamme P (2004) Use of the genomic signature in bacterial classification and identification. Syst Appl Microbiol 27:175–185CrossRefGoogle Scholar
  14. Coleman NV, Spain JC (2003) Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl Environ Microbiol 69:6041–6046CrossRefGoogle Scholar
  15. Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus and related Vibrio species. J Bacteriol 104:410–433PubMedPubMedCentralGoogle Scholar
  16. Cvejic JH, Putra SR, El-Beltagy A, Hattori R, Hattori T, Rohmer M (2000) Bacterial triterpenoids of the hopane series as biomarkers for the chemotaxonomy of Burkholderia, Pseudomonas and Ralstonia spp. FEMS Microbiol Lett 183:295–299CrossRefGoogle Scholar
  17. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M, García-Cobos S, Kooistra-Smid AM, Raangs EC, Rosema S, Veloo AC, Zhou K (2017) Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 243:16–24CrossRefGoogle Scholar
  18. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, others (1995) Whole-genome random sequencing and assembly of Haemophilus influenza RD. Science 269:496–512CrossRefGoogle Scholar
  19. Garcia MJ, Gola S (2016) Gene and whole genome analyses reveal that the mycobacterial strain JS623 is not a member of the species Mycobacterium smegmatis. Microbiol Biotechnol 9:269–274CrossRefGoogle Scholar
  20. Garrity GM (2016) A genomics driven taxonomy of Bacteria and Archaea: are we there, yet? J Clin Microbiol 54:1956–1963CrossRefGoogle Scholar
  21. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefGoogle Scholar
  22. Grimont PAD (1981) Use of DNA reassociation in bacterial classification. Can J Microbiol 34:541–546CrossRefGoogle Scholar
  23. Gürtler V, Mayall BC (2001) Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51:3–16CrossRefGoogle Scholar
  24. Heather J, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8CrossRefGoogle Scholar
  25. Jarman KH, Cebula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT, Wahl KL (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:1217–1223CrossRefGoogle Scholar
  26. Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 27:755–762CrossRefGoogle Scholar
  27. Karlin S, Mrázek J, Campbell AM (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179:3899–3913CrossRefGoogle Scholar
  28. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  29. Konstantinidis KT, Rosselló-Móra R (2015) Classifying uncultivated microbial majority: a place for metagenomics data in the Candidatus proposal. Syst Appl Microbiol 38:223–230CrossRefGoogle Scholar
  30. Konstantinidis KT, Tiedje JM (2005a) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264CrossRefGoogle Scholar
  31. Konstantinidis KT, Tiedje JM (2005b) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572CrossRefGoogle Scholar
  32. Kumar A, Aravind R, Francis K, Bhumika V, Ritika C, Priyashanth P (2012) Shivajiella indica gen. nov., sp. nov., a marine bacterium of the family “Cyclobacteriaceae” with nitrate reducing activity. Syst Appl Microbiol 35:320–325CrossRefGoogle Scholar
  33. Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV, van Nieuwenhze M, Maurelli AT (2014) A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507CrossRefGoogle Scholar
  34. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic organisms. Proc Natl Acad Sci U S A 95:3140–3145CrossRefGoogle Scholar
  35. Malhotra S, Vedithi SC, Blundell TL (2017) Decoding the similarities and differences among mycobacterial species. PLoS Negl Trop Dis 11:e0005883CrossRefGoogle Scholar
  36. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214CrossRefGoogle Scholar
  37. Muro EM, Mah N, Moreno-Hagelsieb G, Andrade-Navarro MA (2011) The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons. Nucleic Acids Res 39:1732–1738CrossRefGoogle Scholar
  38. Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82CrossRefGoogle Scholar
  39. Nowicka B, Kruk J (2010) Occurrence, biosynthesis and function of isoprenoidquinones. Biochim Biophys Acta Bioenerg 1797:1587–1605CrossRefGoogle Scholar
  40. Oren A (2015) 70th anniversary collection for the microbiology society: international journal of systematic and evolutionary microbiology. Int J Syst Bacteriol 65:4291–4293CrossRefGoogle Scholar
  41. Parker CT, Tindall BT, Garrity GM (2018) International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol. In PressGoogle Scholar
  42. Pilhofer M, Aistleitner K, Biboy J, Gray J, Kuru E, Hall E, Brun YV, van Nieuwenhze MS, Vollmer W, Horn M, Jensen GJ (2013) Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without Fts Z. Nat Commun 4:2856CrossRefGoogle Scholar
  43. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A, Kumari H, Jit S, Gupta SK, Khanna M, Lal R (2007) Polyphasic approach of bacterial classification-an overview of recent advances. Ind J Microbiol 47:98–108CrossRefGoogle Scholar
  44. Prasanna AN, Mehra S (2013) Comparative phylogenomics of pathogenic and non-pathogenic Mycobacterium. PLoS One 8:e71248CrossRefGoogle Scholar
  45. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215CrossRefGoogle Scholar
  46. Rademaker JL, Hoste B, Louws FJ, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn FJ (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50:665–677CrossRefGoogle Scholar
  47. Ramana VV, Raj PS, Tushar L, Sasikala C, Ramana CV (2013) Rhodomicrobium udaipurense sp. nov., a psychrotolerant, phototrophic alphaproteobacterium isolated from a freshwater stream. Int J Syst Evol Microbiol 63:2684–2689CrossRefGoogle Scholar
  48. Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier PE (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391CrossRefGoogle Scholar
  49. Rohwer F, Edwards R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535CrossRefGoogle Scholar
  50. Rossellό-Mόra R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67CrossRefGoogle Scholar
  51. Rossellό-Mόra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefGoogle Scholar
  52. Rottem S, Naot Y (1998) Subversion and exploitation of host cells by mycoplasmas. Trends Microbiol 6:436–440CrossRefGoogle Scholar
  53. Santos T, Capelo JL, Santos HM, Oliveira I, Marinho C, Gonçalves A, Araújo JE, Poeta P, Igrejas G (2015) Use of MALDI-TOF mass spectrometry fingerprinting to characterize Enterococcus spp. and Escherichia coli isolates. J Proteome 127:321–331CrossRefGoogle Scholar
  54. Sharmili AS, Ramasamy P (2016) Fatty Acid Methyl Ester (FAME) analysis of moderately thermophilic bacteria isolated from the coramandal coast, Chennai, Tamilnadu. Eur J Exp Biol 6:1–7Google Scholar
  55. Shivali K, Sasikala C, Ramana CV (2012) MLSA barcoding of Marichromatium spp. and reclassification of Marichromatium fluminis (Sucharita et al., 2010) as Phaeochromatium fluminis gen. nov.comb. nov. Syst Appl Microbiol 35:221–225CrossRefGoogle Scholar
  56. Silipo A, Vitiello G, Gully D, Sturiale L, Chaintreuil C, Fardoux J, Gargani D, Lee HI, Kulkarni G, Busset N, Marchetti R (2014) Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nat Commun 5:5106CrossRefGoogle Scholar
  57. Singh P, Cole ST (2011) Mycobacterium leprae: genes, pseudogenes and genetic diversity. Future Microbiol 6:57–71CrossRefGoogle Scholar
  58. Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791CrossRefGoogle Scholar
  59. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  60. Sravanthi T, Tushar L, Sasikala C, Ramana CV (2016) Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as a new combinations within Alkalispirochaeta gen. nov. Int J Syst Evol Microbiol 66:1612–1619CrossRefGoogle Scholar
  61. Srinivas A, Divyasree B, Sasikala C, Tushar L, Dave B, Ramana CV (2016) Description of Jeotagalibacillus alkaliphilus sp. nov., isolated from a solar salt pan, and Jeotagalibacillus terrae sp. nov., a name to replace ‘Jeotgalibacillus soli’ Chen et al. 2010. Int J Syst Evol Microbiol 66:1–6CrossRefGoogle Scholar
  62. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  63. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC, Nesme X, Rosselló-Mόra R, Swings J, Trüper HG, Vauterin L (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Sys Evol Microbiol 52:1043–1047Google Scholar
  64. Sutcliffe IC (2015) Challenging the anthropocentric emphasis on phenotypic testing in prokaryotic species descriptions: rip it up and start again. Front Genet 6:218CrossRefGoogle Scholar
  65. Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431CrossRefGoogle Scholar
  66. Thompson CC, Thompson FL, Vicente ACP (2008) Identification of vibrio cholerae and Vibrio mimicus by multilocus sequence analysis (MLSA). Int J Syst Evol Microbiol 58:617–621CrossRefGoogle Scholar
  67. Thompson CC, Vicente ACP, Souza RC, Vasconcelos ATR, Vesth T, Alves N Jr, Ussery DW, Iida T, Thompson FL (2009) Genomic taxonomy of vibrios. BMC Evol Biol 9:258CrossRefGoogle Scholar
  68. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genomics 14(1):913CrossRefGoogle Scholar
  69. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266CrossRefGoogle Scholar
  70. Tushar DL, Srinivas A, Sasikala C, Ramana CV (2015) Hopanoid inventory of Rhodoplanes spp. Arch Microbiol 197:861–867CrossRefGoogle Scholar
  71. Valera RF, Garcia-Martinez J (2000) Spacers online. ASM News 66:712–713Google Scholar
  72. Van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M (2001) Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Rev Microbiol 14:547–560CrossRefGoogle Scholar
  73. Vehkala M, Shubin M, Connor TR, Thomson NR, Corander J (2015) Novel R pipeline for analyzing biolog phenotypic microarray data. PLoS One 10(3):e0118392CrossRefGoogle Scholar
  74. Venkata Ramana V, Shalem Raj P, Tushar L, Sasikala C, Ramana CV (2013) Rhodomicrobium udaipurense sp. nov. a psychrotolerant, phototrophic alphaproteobacterium isolated from a freshwater stream. Int J Syst Evol Microbiol 63:2684–2689CrossRefGoogle Scholar
  75. Wassenaar T, Bohlin J, Binnewies T, Ussery D (2009) Genome comparison of bacterial pathogens. Microb Pathog 6:1–20CrossRefGoogle Scholar
  76. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  77. Whitman WB (2015) Genome sequences as the type material for taxonomic descriptions. Syst Appl Microbiol 38:217–222CrossRefGoogle Scholar
  78. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060CrossRefGoogle Scholar
  79. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rosselló-Móra R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250CrossRefGoogle Scholar
  80. Zakham F, Aouane O, Ussery D, Benjouad A, Ennaji MM (2012) Computational genomics-proteomics and phylogeny analysis of twenty one mycobacterial genomes (tuberculosis & non-tuberculosis strains). Microb Inf Exp 2:7CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anusha Rai
    • 1
  • Indu
    • 1
  • N. Smita
    • 1
  • G. Deepshikha
    • 1
  • K. Gaurav
    • 1
  • K. Dhanesh
    • 1
  • G. Suresh
    • 1
  • Ch. Sasikala
    • 2
  • Ch. V. Ramana
    • 1
  1. 1.Department of Plant Sciences, School of Life SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Centre for Environment, Institute of Science & TechnologyJNT University HyderabadHyderabadIndia

Personalised recommendations