Biogas Cleaning and Pretreatment

  • Sirichai KoonaphapdeelertEmail author
  • Pruk Aggarangsi
  • James Moran
Part of the Green Energy and Technology book series (GREEN)


This chapter deals with the processing of raw biogas, directly from the anaerobic digester. This biogas generally contains undesirable components which are corrosive to metals and toxic to health and the environment. Before the biogas is sent to an upgrading unit, it requires some pretreatment to remove and minimize contaminants which might cause damage. Depending on the anaerobic digester, the contaminants might vary but the two main ones are hydrogen sulfide and moisture. In agricultural digesters, the H2S level can range from 1000 to 4000 ppm. Even in small local digesters, used only for generating on-site power in an old generator, the hydrogen sulfide should be kept below 200 ppm or else it seriously affects the life of the engine. For larger scale upgrading plants, especially membrane and PSA technologies, a more systematic approach should be taken to biogas pretreatment. All possible contaminants are briefly introduced and discussed but only the engineering design for H2S removal and moisture reduction is explained in detail in this chapter. Chapter  3 deals with specific upgrading technologies.


  1. 1.
    Van Haren M, Fleming R (2005) Electricity and heat production using biogas from the anaerobic digestion of livestock manure - literature review. Technical report, ontario ministry of agriculture, food and rural affairs, Ridgetown College, University of Guelph, Ontario, CanadaGoogle Scholar
  2. 2.
    European Committee for Standardization (2015) Gas infrastructure - Quality of gas - Group HGoogle Scholar
  3. 3.
    European Committee for Standardization (2017) Natural gas and biomethane for use in transport and biomethane for injection in the natural gas network - part 2: Automotive fuels specificationGoogle Scholar
  4. 4.
    Authur W, Anna L (2006) Biogas upgrading and utilization. Technical report, IEA BioenergyGoogle Scholar
  5. 5.
    Hoyer K, Hulteberg C, Svensson M, Jernberg J, Norregard O (2016) Biogas upgrading - technical review. Technical report, ENERGIFORSKGoogle Scholar
  6. 6.
    European Committee for Standardization (2016) Natural gas and biomethane for use in transport and biomethane for injection in the natural gas network - part 1: Specifications for biomethane for injection in the natural gas networkGoogle Scholar
  7. 7.
    Technical Committee ISO/TC 118 (2010) Compressed air - Part 1: Contaminants and purity classesGoogle Scholar
  8. 8.
    Electrigaz Technologies (2008) Feasibility study - biogas upgrading and grid injection in the Fraser valley. Technical report, BC Innovation Council, British ColumbiaGoogle Scholar
  9. 9.
    Bruser T, Lens P, Truper H (2000) The biological sulfur cycle. In: Environmental technologies to treat sulfur pollution, pp. 47–76. IWA Publishing, LondonGoogle Scholar
  10. 10.
    Brock T, Madigan M, Martinko J (2006) Biology of microorganisms. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  11. 11.
    Kuenen JG, Robertson LA, Tuovinen OH (1992) The Prokaryotes, chapter The genera Thiobacillus, Thiomicrospira, and Thiosphaera, pp 2636 – 2657. Springer, BerlinGoogle Scholar
  12. 12.
    Chen G, Geng L, Yan R, Gould D, NG L, Liang T (2004) Isolation and characterization of sulphur-oxidizing thiomonas sp. and its potential application in biological deodorization. Appl Microbiol 39:495–503CrossRefGoogle Scholar
  13. 13.
    Kantachote D, Charernjiratrakul W, Noparatnaraporn N, Oda K (2008) Selection of sulfur oxidizing bacterium for sulfide removal in sulfate rich wastewater to enhance biogas production. J Biotechnol 11(2)CrossRefGoogle Scholar
  14. 14.
    Wada A, Shoda M, Kubota H, Kobayashi T, Fujimura K, Kuraishi H (1986) Characteristics of H2S oxidizing bacteria inhibiting a peat biofilter. Ferment Technol 64:161–167CrossRefGoogle Scholar
  15. 15.
    Sorokin YD, Foti M, Pinkart CH, Muyzer G (2006) Sulfur-oxidizing bacteria in soap lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Appied Environ Microbiol 73:451–455CrossRefGoogle Scholar
  16. 16.
    Ghosh W, Mandal S, Roy P (2005) Paracoccus bengalensis sp. nov., a novel sulfur - oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant. Syst Appl Microbiol 29:396–403CrossRefGoogle Scholar
  17. 17.
    Hong J, Park K (2005) Compost biofiltration of ammonia gas from bin composting. Bioresour Technol 96:741–745CrossRefGoogle Scholar
  18. 18.
    Elias A, Barona A, Rios FJ, Arreguy A, Munguira M, Penas J, Sanz JL (2000) Application of biofiltration to the degradation of hydrogen sulfide in gas effluents. Biodegradation 11(6):423–427CrossRefGoogle Scholar
  19. 19.
    Hirai M, Kamamoto M, Yani M, Shoda M (2001) Comparison of the biological H2S removal characteristics among four inorganic packing materials. J Biosci Bioeng 91:396–402CrossRefGoogle Scholar
  20. 20.
    Duan H, Koe L, Yan R, Chen X (2006) Biological treatment of H2S using pellet activated carbon as a carrier of microorganisms in a biofilter. Water Res 40(14):2629–2636CrossRefGoogle Scholar
  21. 21.
    Lee E, Cho K, Ryu H (2003) Degradation characterization of sulfur containing malodorous gases by acidithiobacillus thiooxidans az11. Korean J. Odor Res. Eng. 2:46–53Google Scholar
  22. 22.
    Ma Y, Yang B, Zhao J (2006) Removal of H2S by thiobacillus denitrificans immobilized on different matrices. Bioresour Technol 97(16):2041–2046CrossRefGoogle Scholar
  23. 23.
    Aroca G, Urrutia H, Nunez D, Oyarzun P, Arancibia A, Guerrero K (2007) Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with thiobacillus thioparus and acidithiobaccillus thiooxidans. Electron J Biotechnol 10(4):514–520CrossRefGoogle Scholar
  24. 24.
    Kim JH, Rene ER, Park HS (2008) Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter. Bioresour Technol 99(3):583–588CrossRefGoogle Scholar
  25. 25.
    Rattanapan C, Boonsawang P, Kantachote D (2009) Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater. Bioresour Technol 100(1):125–130CrossRefGoogle Scholar
  26. 26.
    Chien Chung Y, Huang C, Ping Tseng C (1996) Operation optimization of thiobacillus thioparus ch11 biofilter for hydrogen sulfide removal. J Biotechnol 52:31–38CrossRefGoogle Scholar
  27. 27.
    Oyarzun P, Arancibia F, Canales C, Aroca E (2003) Biofiltration of high concentration of hydrogen sulphide using thiobacillus thioparus. Process Biochem 30:165–170CrossRefGoogle Scholar
  28. 28.
    Shinabe K, Oketani S, Ochi T, Kanchanatawee S, Matsumura M (2000) Characteristics of hydrogen sulfide removal in a carrier-packed biological deodorization system. Biochem Eng J 5(3):209–217CrossRefGoogle Scholar
  29. 29.
    Cho KS, Ryu HW, Lee NY (2000) Biological deodorization of hydrogen sulfide using porous lava as a carrier of thiobacillus thiooxidans. J Biosci Bioeng 90(1):25–31CrossRefGoogle Scholar
  30. 30.
    Vlasceanu L, Popa R, Kinkle B (1997) Characterization of thiobacillus thioparus lv43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appied Environ Microbiol 63(8):3123–3127Google Scholar
  31. 31.
    Jun La H, Taek Im W, Ten L, Suk Kang M, Yun Shin D, Taik Lee S (2005) Paracoccus koreensis sp. nov. isolated from anaerobic granules in an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 55(4):1657–1660CrossRefGoogle Scholar
  32. 32.
    ERDI (2009) Biogas purification project (in Thai). Technical report, Energy Research and Development Institute, ThailandGoogle Scholar
  33. 33.
    Chung YC, Huang C, Tseng CP (2001) Biological elimination of H2S and NH3 from waste gases by biofilter packed with immobilized heterotrophic bacteria. Chemosphere 43:1043–1050CrossRefGoogle Scholar
  34. 34.
    Park D, Cha J, Ryu H, Lee G, Yu E, Rhee J, Park K (2002) Hydrogen sulfide removal utilizing immobilized thiobacillus sp. iw with ca-alginate bead. Biochem Eng J 11:167–173CrossRefGoogle Scholar
  35. 35.
    Barona A, Elias A, Arias R, Cano I, Gonzalez R (2004) Biofilter response to gradual and sudden variations in operating conditions. Biochem Eng J 22(1):25–31CrossRefGoogle Scholar
  36. 36.
    Sinnott R, Coulson, Richardson (2005) Chemical engineering design, vol 6, 4th edn. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  37. 37.
    National Refrigerant Reference Guide. National Refrigerant Inc., 6 edn (2016)Google Scholar
  38. 38.
    American Society of Mechanical Engineers (2016) Refrigeration piping and heat transfer componentsGoogle Scholar
  39. 39.
    Bahadori A, Vuthaluru HB (2009) Simple methodology for sizing of absorbers for teg (triethylene glycol) gas dehydration systems. Energy 34:1910–1916CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sirichai Koonaphapdeelert
    • 1
    Email author
  • Pruk Aggarangsi
    • 2
  • James Moran
    • 3
  1. 1.Department of Environmental EngineeringChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Mechanical EngineeringChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Mechanical EngineeringChiang Mai UniversityChiang MaiThailand

Personalised recommendations