Advertisement

Join Query Optimization Using Genetic Ant Colony Optimization Algorithm for Distributed Databases

  • Preeti TiwariEmail author
  • Swati V. Chande
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 985)

Abstract

With the increase in geographical spread of data both in terms of quality and quantity, attention on the storage, retrieval and modification of this distributed data has become a prime area of research. The focus is on efficient, accurate and timely availability of information extracted from various underlying data centers. Processing of queries from these distributed database environments has become a challenging task for the database researchers because as the number of relations increases in the database, the join order complexity also increases. There are N! ways of solving a particular query where N represents the number of Relations in the join query. The success of query processed in the Distributed Database Environment depends largely on the search strategy implemented by the query optimizer whose task is to search an optimal Query Evaluation Plan in minimum time amongst the various query plans that can minimize the consumption of computer resources. Various search strategies beginning from Deterministic Algorithms to the most recent and modern Evolutionary Algorithms have contributed incalculably towards query optimization but they bear their own set of limitations and drawbacks. This research paper focuses on the implementation of a hybrid strategy of Evolutionary Algorithms for the optimization of join queries in DDBMS. The hybrid strategy is an integration of Ant Colony Optimization Algorithm and Genetic Algorithm and has been coined as GACO-D (Genetic Ant Colony Optimization Algorithm for Distributed Database). This paper focuses on the search of an optimal Join Order in minimum response time using GACO-D and also compares its performance with existing strategies.

Keywords

Distributed database Join query Query optimization GA ACO 

References

  1. AbWahab, M.N., Nefti-Meziani, S., Atyabi, A.: A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5), e0122827 (2015).  https://doi.org/10.1371/journal.pone.0122827Google Scholar
  2. Alamery, M., Faraahi, A., Javadi, H.H.S., Nourossana, S., Erfani, H.: Multi-join query optimization using the bees algorithm. In: de Leon, F., de Carvalho, A.P., Rodríguez-González, S., De Paz Santana, J.F., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol. 79, pp. 449–457. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-14883-5_58Google Scholar
  3. Aljanaby, A., Abuelrub, E., Odeh, M.: A survey of distributed query optimization. Int. Arab J. Inf. Technol. 2(1), 48–57 (2005)Google Scholar
  4. Apers, P., Hevner, A., Yao, S.: Optimization algorithms for distributed queries, series. IEEE Trans. Softw. Eng. 9(1), 57–68 (1983)Google Scholar
  5. Bai, Q.: Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 3(1), 180–184 (2010)Google Scholar
  6. Ban, W., Lin, J., Tong, J., Li, S.: Query optimization of distributed database based on parallel genetic algorithm and max-min ant system. In: 8th International Symposium IEEE Computational Intelligence and Design (ISCID), vol. 2, pp. 581–585 (2015)Google Scholar
  7. Bernstein, P.A., Goodman, N., Wong, E., Reeve, C., Rothnie, J.B.: Query processing in a system for distributed databases (SDD-1). ACM Trans. Database Syst. 6(4), 602–625 (1981)zbMATHGoogle Scholar
  8. Ceri, S., Negri Pelagatti, M.: Distributed Database Principles and System. McGraw-Hill, New York (1984)Google Scholar
  9. Devooght, R.: Multi-Objective Genetic Algorithm, pp. 1–39 (2010). epb-physique.ulb.ac.be/IMG/pdf/devooght_2011.pdf
  10. Dökeroğlu, T., Coşar, A.: Dynamic programming with ant colony optimization metaheuristic for optimization of distributed database queries. In: Gelenbe, E., Lent, R., Sakellari, G. (eds.) Computer and Information Sciences II, pp. 107–113. Springer, London (2011).  https://doi.org/10.1007/978-1-4471-2155-8_13Google Scholar
  11. Dong, H., Liang, Y.: Genetic algorithms for large join query optimization. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation - GECCO 2007, pp. 1211–1218 (2007)Google Scholar
  12. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization – artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 28–39 (2006)Google Scholar
  13. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999)Google Scholar
  14. Dorigo, M., Stützle, T.: The ant colony optimization meta-heuristic: algorithms, applications, and advances. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics International Series in Operations Research & Management Science, vol. 57, pp. 251–285. Springer, Boston (2002).  https://doi.org/10.1007/0-306-48056-5_9Google Scholar
  15. Doshi, P., Raisinghani, V.: Review of dynamic query optimization strategies in distributed database. In: 3rd International Conference on Electronics Computer Technology (ICECT), vol. 6, pp. 145–149 IEEE (2011)Google Scholar
  16. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Parameter Setting in Evolutionary Algorithms Studies in Computational Intelligence, pp. 19–46 (1999). IEEE Trans. Evol. ComputGoogle Scholar
  17. Fidanova, S.: Simulated annealing: a Monte Carlo method for GPS surveying. In: Alexandrov, Vassil N., van Albada, G.D., Sloot, Peter M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 1009–1012. Springer, Heidelberg (2006).  https://doi.org/10.1007/11758501_160Google Scholar
  18. Galindo-Legaria, C.A., Pellenkoft, A., Kersten, M.L.: Fast, randomized join-order selection: why use (1994)Google Scholar
  19. Ghaemi, R., Fard, A.M., Tabatabaee, H., Sadeghizadeh, M.: Evolutionary query optimization for heterogeneous distributed database systems. World Acad. Sci. 43, 43–49 (2008)Google Scholar
  20. Golshanara, L., Rouhani Rankoohi, S.M., Shah-Hosseini, H.: A multi-colony ant algorithm for optimizing join queries in distributed database systems. Knowl. Inf. Syst. 39(1), 175–206 (2014).  https://doi.org/10.1007/s10115-012-0608-4Google Scholar
  21. Gong, D., Lu, L., Li, M.: Robot path planning in uncertain environments based on particle swarm optimization. In: Evolutionary Computation, CEC 2009, pp. 2127–2134. IEEE Congress (2009)Google Scholar
  22. Hameurlain, A., Morvan, F.: Evolution of query optimization methods. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems I. LNCS, vol. 5740, pp. 211–242. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03722-1_9Google Scholar
  23. Hei, Y., Du, P.: Optimal choice of the parameters of ant colony algorithm. J. Converg. Inf. Technol. 6(9), 96–104 (2011)Google Scholar
  24. Hlaing, Z.C.S.S., Khine, M.A.: An ant colony optimization algorithm for solving traveling salesman problem. In: International Conference on Information Communication and Management, vol. 16, pp. 54–59 (2011)Google Scholar
  25. Ioannidis, Y.E., Kang, Y.: Randomized algorithms for optimizing large join queries. In: Proceedings of ACM SIGMOD International Conference on Management of Data - SIGMOD 90, vol. 19, no. 2, pp. 312–321 (1990).  https://doi.org/10.1145/93597.98740
  26. Ioannidis, Y.E., Wong, E.: Query optimization by simulated annealing. ACM 16(3), 9–22 (1987)Google Scholar
  27. Kadkhodaei, H., Mahmoudi, F.: A combination method for join ordering problem in relational databases using genetic algorithm and ant colony. In: IEEE International Conference on Granular Computing, pp. 312–317 (2011).  https://doi.org/10.1109/grc.2011.6122614
  28. Kossmann, D., Stocker, K.: Iterative dynamic programming: a new class of query optimization algorithms. ACM Trans. Database Syst. (TODS) 25(1), 43–82 (2000)Google Scholar
  29. Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. (CSUR) 32(4), 422–469 (2000). ISSN 0360-0300Google Scholar
  30. Kumar, M.S., Srikanta, P., Dulu, P.: Implementation of query optimization techniques in distributed environment through genetic algorithm. Eur. J. Acad. Essays 1(3), 89–93 (2014)Google Scholar
  31. Kumar, T.V., Singh, R., Kumar, A.: Distributed query plan generation using ant colony optimization. Int. J. Appl. Metaheuristics Comput. 6(1), 1–22 (2015).  https://doi.org/10.4018/ijamc.2015010101Google Scholar
  32. Lakshmi, S.V., Vatsavayi, V.K.: Query optimization using clustering and genetic algorithm for distributed databases. In: Proceedings of International Conference on Computer Communication and Informatics (ICCCI), pp. 1–8. IEEE (2016)Google Scholar
  33. Lanzelotte, R.S., Valduriez, P., Zaït, M.: On the effectiveness of optimization search strategies for parallel execution spaces. In: VLDB, vol. 93, pp. 493–504 (1993)Google Scholar
  34. Li, K., Kang, L., Zhang, W., Li, B.: Comparative analysis of genetic algorithm and ant colony algorithm on solving traveling salesman problem. In: IEEE International Workshop on Semantic Computing and Systems (2008).  https://doi.org/10.1109/wscs.2008.11
  35. Li, P., Zhu, H.: Parameter selection for ant colony algorithm based on Bacterial Foraging Algorithm. Math. Probl. Eng. 2016, 1–12 (2016)Google Scholar
  36. Liu, L.Q., Dai, Y.T., Wang, L.H.: Ant colony algorithm parameters optimization. Comput. Eng. 11(34), 208–210 (2008)Google Scholar
  37. Liu, S., Xu, X.: Distributed database query based on improved genetic algorithm. In: Proceedings of International Conference on Information Science and Control Engineering, pp. 348–351. IEEE Computer Society (2016)Google Scholar
  38. Lohman, G.M., et al.: Query processing in R*. In: Kim, W., Reiner, D.S., Batory, D.S. (eds.) Query Processing in Database Systems. TINF. pp. 31–47, Springer, Heidelberg (1985).  https://doi.org/10.1007/978-3-642-82375-6_2Google Scholar
  39. Martin, T.P., Lam, K.H., Russell, J.I.: An evaluation of site selection algorithms for distributed query processing. Comput. J. 33(1), 61–70 (1990)MathSciNetGoogle Scholar
  40. Masrom, S., Siti, A.Z., Hashimah, P.N., Rahman, A.A.: Towards rapid development of User Defined (2011)Google Scholar
  41. Nasiraghdam, M., Lotfi, S., Rashidy, R.: Query optimization in distributed database using hybrid evolutionary algorithm. In: International Conference on Information Retrieval and Knowledge Management, (CAMP), pp. 125–130. IEEE, March 2010Google Scholar
  42. Nowotniak, R., Kucharski, J.: GPU-based tuning of quantum-inspired genetic algorithm for a combinatorial optimization problem. Bull. Pol. Acad. Sci.: Tech. Sci. 60(2), 323–330 (2012)Google Scholar
  43. Özsu, M.T., Valduriez, P.: Distributed Database Systems, 2nd edn. Prentice Hall (1999). ISBN 0-13-659707-6Google Scholar
  44. Olken, F., Rotem, D.: Simple random sampling from relational databases. In: Proceedings of 12th International VLDB Conference, Kyoto, Japan, pp. 160–169 (1986)Google Scholar
  45. Ono, K., Lohman, G.M.: Measuring the complexity of join enumeration in query optimization. In: Proceedings of the 16th International VLDB Conference, Brisbane, Australia, vol. 97, pp. 314–325 (1990)Google Scholar
  46. Palermo, F.P.: A data base search problem. In: Tou, J.T. (ed.) Information Systems. Springer, Boston (1974).  https://doi.org/10.1007/978-1-4684-2694-6_4Google Scholar
  47. Pramanik, S., Vineyard, D.: Optimizing join queries in distributed databases. IEEE Trans. Softw. Eng. 14(9), 1319–1326 (1988)MathSciNetzbMATHGoogle Scholar
  48. Saremi, A., Elmekkawy, T.Y., Wang, G.G.: Tuning the parameters of a memetic algorithm to solve vehicle routing problem with backhauls using design of experiments. Int. J. Oper. Res. 4(4), 206–219 (2007)zbMATHGoogle Scholar
  49. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a relational database management system. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data – SIGMOD, vol. 79, pp. 23–34 (1979).  https://doi.org/10.1145/582095.582099
  50. Selinger, P.G., Adiba, M.E.: Access path selection in distributed database management systems. In: ICOD, pp. 204–215 (1980)Google Scholar
  51. Selvi, V., Umarani, D.R.: Comparative analysis of ant colony and particle swarm optimization techniques. Int. J. Comput. Appl. (0975–8887) 5(4), 1–6 (2010)Google Scholar
  52. Sevinc, E., Cosar, A.: An evolutionary genetic algorithm for optimization of distributed database queries. In: 24th International Symposium on Computer and Information Sciences (2009).  https://doi.org/10.1109/iscis.2009.5291839
  53. Shekita, E.J., Young, H.C.: Iterative dynamic programming system for query optimization with bounded complexity. U.S. Patent 5, 671,403 (1997)Google Scholar
  54. Shweta, K.M., Singh, A.: An effect and analysis of parameter on ant colony optimization for solving travelling salesman problem. Int. J. Comput. Sci. Mob. Comput. 2(11), 222–229 (2013)Google Scholar
  55. Stamos, J.W., Young, H.C.: A symmetric fragment and replicate algorithm for distributed joins. IEEE Trans. Parallel Distributed Syst. 4(12), 1345–1354 (1993)Google Scholar
  56. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimization for the join ordering problem. VLDB J. Int. J. Very Large Data Bases 6(3), 191–208 (1997)Google Scholar
  57. Stonebraker, M., Held, G., Wong, E., Kreps, P.: Design and implementation of INGRES. ACM Trans. Database Syst. (TODS) 1(3), 189–222 (1976)Google Scholar
  58. Stonebraker, M., Neuhold, E.: A distributed database version of INGRES. In: Proceedings of Second Berkeley Workshop Distributed Data Management and Computer Networks, pp. 19–36 (1977)Google Scholar
  59. Sukheja, D., Singh, U.K.: A novel approach of query optimization for distributed database systems. Int. J. Comput. Sci. 8(1), 307 (2011)Google Scholar
  60. Swami, A.N., Gupta, A.: Optimization of large join queries in distributed database. In: Proceedings of ACM-SIGMOD Conference on Management of Data, pp. 8–17 (1988)Google Scholar
  61. Tiwari, P., Chande, Swati V.: Optimal ant and join cardinality for distributed query optimization using ant colony optimization algorithm. In: Rathore, V.S., Worring, M., Mishra, D.K., Joshi, A., Maheshwari, S. (eds.) Emerging Trends in Expert Applications and Security. AISC, vol. 841, pp. 385–392. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-2285-3_45Google Scholar
  62. Uzel, Ö., Koc, E.: Basics of Genetic Programming. Graduation Project I, pp. 1–25 (2012). http://mcs.cankaya.edu.tr/proje/2012/guz/omer_erdem/Rapor.pdf
  63. Vance, B., Maier, D.: Rapid bushy join-order optimization with Cartesian products. In: ACM SIGMOD Record, vol. 25, no. 2, pp. 35–46 (1996)Google Scholar
  64. Wagh, A., Nemade, V.: Query optimization using modified ant colony algorithm. Int. J. Comput. Appl. 167(2), 29–33 (2017)Google Scholar
  65. Wong, E., Youssefi, K.: Decomposition—a strategy for query processing. ACM Trans. Database Syst. (TODS) 1(3), 223–241 (1976)Google Scholar
  66. Xiao, H.F., Tan, G.Z.: Study improvement of the fusing genetic algorithm and ant colony algorithm in virtual enterprise partner selection problem on fusing genetic algorithm into ant colony algorithm. J. Chin. Comput. Syst. 30(3), 512–517 (2009)Google Scholar
  67. Yao, M.: A distributed database query optimization method based on genetic algorithm and immune theory. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 762–765. IEEE, November 2017Google Scholar
  68. Yao, Z., Liu, L., Wang, Y.: Fusing genetic algorithm and ant colony algorithm to optimize virtual enterprise partner selection problem. IEEE Congr. Evol. Comput. (IEEE World Congr. Comput. Intell.) 3614–3620 (2008).  https://doi.org/10.1109/cec.2008.4631287
  69. Zhang, X.R., Gao, S.: solving traveling salesman problem by ant colony optimization genetic hybrid algorithm. Microelectron. Comput. 4, 024 (2009)Google Scholar
  70. Zhang, W.G., Lu, T.Y.: The research of genetic ant colony algorithm and its application. Proc. Eng. 37, 101–106 (2012)Google Scholar
  71. Zhang, Y., Wu, L.: A novel genetic ant colony algorithm. J. Convergence Inf`. Technol. 7(1), 268–274 (2012)Google Scholar
  72. Zhou, Y., Wan, W., Liu, J.: Multi-joint query optimization of database based on the integration of best-worst ant algorithm and genetic algorithm. In: IET International Communication Conference on Wireless Mobile & Computing (CCWMC 2009), pp. 543–550 (2009)Google Scholar
  73. Zhou, Z.: Using heuristics and genetic algorithms for large-scale database query optimization. J. Inf. Comput. Sci. 2(4), 261–280 (2007)Google Scholar
  74. Zhu, S., Dong, W., Liu, W.: Logistics distribution route optimization based on genetic ant colony algorithm. J. Chem. Pharm. Res. 6(6), 2264–2267 (2014)Google Scholar
  75. Son, L.H., et al.: ARM–AMO: an efficient association rule mining algorithm based on animal migration optimization. Knowl.-Based Syst. 154, 68–80 (2018).  https://doi.org/10.1016/j.knosys.2018.04.038Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.International School of Informatics and ManagementJaipurIndia

Personalised recommendations