Advertisement

Role of Biotools in Restoration of Freshwater Ecosystems

  • Irfan-ur-Rauf Tak
Chapter

Abstract

Climate change, rapidly increasing population and depleting water resources have resulted in prolonged floods and droughts that have resulted in drinking water becoming a cut-throat resource. The ability of toxins to accumulate in the aquatic systems is a vital concern for environmental safety. In this connection, the newest approaches in biotechnology have been employed which include biomineralization, biosorption, phytostabilization, hyperaccumulation, biostimulation, mycoremediation, cyanoremediation and genoremediation. The ample renovation of the environment requires incorporation, assimilation and assistance of these advances along with conventional methods so as to ascertain the mystery of nature. Besides, the need of water industry is to ensure economical and constant supply of fresh water in adequate amounts. The present book chapter will provide better understanding of the problems associated with the toxicity of freshwater ecosystems as well as the feasible and eco-friendly technologies required for cleaning up of the water resources. However, the challenges involved in adopting the new initiatives for cleaning the polluted freshwater ecosystems from both greener and natural point of view must not be ignored.

Keywords

Biomarker Bioremediation Biotransformation Freshwater Toxic metals Genoremediation 

References

  1. Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37, 1601–1605.CrossRefGoogle Scholar
  2. Achal, V., Pan, X., & Zhang, D. (2012a). Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere, 89, 764–768.CrossRefGoogle Scholar
  3. Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012b). Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 202, 178–184.CrossRefGoogle Scholar
  4. Adams, J. A., & Reddy, K. R. (2003). Extent of benzene biodegradation in saturated soil column during air sparging. Groundwater Monitoring and Remediation, 23(3), 85–94.CrossRefGoogle Scholar
  5. Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243–2257.CrossRefGoogle Scholar
  6. Anouti, F. A. (2014). Concerns regarding food biotechnology: An ongoing debate. Journal of Biodiversity, Bioprospecting and Development, 1, 106.CrossRefGoogle Scholar
  7. Baldwin, B. R., Peacock, A. D., Park, M., & Ogles, D. M. (2008). Multilevel samplers as microcosms to assess microbial response to biostimulation. Ground Water, 46, 295–304.CrossRefGoogle Scholar
  8. Barbier, E. B., Acreman, M., & Knowler, D. (1997). Economic valuation of wetlands: A guide for policy makers and planners (127 pp). Gland: Ramsar Convention Bureau.Google Scholar
  9. Bhattacharyya, D., Hestekin, J. A., Brushaber, P., Cullen, L., Bachas, L. G., & Sikdar, S. K. (1998). Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. Journal of Membrane Science, 141, 121–135.CrossRefGoogle Scholar
  10. Brim, H., McFarlan, S. C., Fredrickson, J. K., Minton, K. W., & Zhai, M. (2000). Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnology, 18, 85–90.CrossRefGoogle Scholar
  11. Chauhan, A., & Jain, R. K. (2010). Biodegradation: Gaining insight through proteomics. Biodegradation, 21, 861–879.CrossRefGoogle Scholar
  12. Chen, W., Mulchandani, A., & Deshusses, M. A. (2005). Environmental biotechnology: Challenges and opportunities for chemical engineers. AICHE Journal, 51, 690–695.CrossRefGoogle Scholar
  13. Chen, Z., Li, Z., Lin, Y., Yin, M., Ren, J., & Qu, X. (2013). Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials, 34, 1364–1371.CrossRefGoogle Scholar
  14. Cheng, S. S., Hsieh, T. L., Pan, P. T., Gaop, C. H., Chang, L. H., Whang, L. M., & Chang, T. C. (2009). Study on biomonitoring of aged TPHcontaminated soil with bioaugmentation and biostimulation (Conference paper). In 10th international in situ and on-site bioremediation symposium, Baltimore MD, May 5–8.Google Scholar
  15. Choudhary, S., & Sar, P. (2011). Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. Journal of Hazardous Materials, 186, 336–343.CrossRefGoogle Scholar
  16. Dary, M., Chamber-Perez, M. A., Palomares, A. J., & Pajuelo, E. (2010). “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177(1–3), 323–330.CrossRefGoogle Scholar
  17. DeFriend, K. A., Wiesner, M. R., & Barron, A. R. (2003). Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. Journal of Membrane Science, 224, 11–28.CrossRefGoogle Scholar
  18. Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143(1–2), 220–225.CrossRefGoogle Scholar
  19. Dong, G., Wang, Y., Gong, L., Wang, M., Wang, H., He, N., Zheng, Y., & Li, Q. (2013). Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr-6. Biochemical Engineering Journal, 70, 166–172.CrossRefGoogle Scholar
  20. Dubey, S. K., Dubey, J., Mehra, S., Tiwari, P., & Bishwas, A. J. (2011). Potential use of cyanobacterial species in bioremediation of industrial effluents. African Journal of Biotechnology, 10(7), 1125–1132.Google Scholar
  21. Dudhane, M., Borde, M., & Jite, P. K. (2012). Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb inoculated with AM Fungi. International Journal of Phytoremediation, 14(7), 643–655.CrossRefGoogle Scholar
  22. Duong, T. T. T., Verma, S. L., Penfold, C., & Marschner, P. (2013). Nutrient release from composts into the surrounding soil. Geoderma, 195–196, 42–47.CrossRefGoogle Scholar
  23. Eijkel, J. C. T., & van den Berg, A. (2005). Nanofluidics: What is it and what canwe expect from it. Microfluidics and Nanofluidics, 1(3), 249–267.CrossRefGoogle Scholar
  24. Ekmekyapar, F., Aslan, A., Bayhan, Y. K., & Cakici, A. (2012). Biosorption of Pb(II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. International Journal of Environmental Research, 6(2), 417–424.Google Scholar
  25. Ernst, W. H. O. (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80, 251–274.Google Scholar
  26. Fiset, J. F., Blais, J. F., & Riverso, P. A. (2008). Review on the removal of metal ions from effluents using seaweeds, alginate derivatives and other sorbents. Revue des Sciences de l’Eau, 21(3), 283–308.CrossRefGoogle Scholar
  27. Fulekar, M. H., Sharma, J., & Tendulkar, A. (2012). Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environmental Monitoring and Assessment, 184(12), 7299–7307.CrossRefGoogle Scholar
  28. Gautam, P., Madathil, D., & Nair, A. N. B. (2013). Nanotechnology in waste water treatment: A review. International Journal of ChemTech Research, 5, 2303–2308.Google Scholar
  29. Govarthanan, M., Lee, K. J., Cho, M., Kim, J. S., Kamala-Kannan, S., & Oh, B. T. (2013). Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere, 8, 2267–2272.CrossRefGoogle Scholar
  30. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J., & He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599–8605.CrossRefGoogle Scholar
  31. Hazen, T. C. (2010). In situ: Groundwater bioremediation. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 2583–2594). Berlin: Springer.CrossRefGoogle Scholar
  32. Hollman, A. M., & Bhattacharyya, D. (2004). Pore assembled multilayers of charged polypeptides in microporous membranes for ion separation. Langmuir, 20, 5418–5424.CrossRefGoogle Scholar
  33. Hrynkiewicz, K., Dabrowska, G., Baum, C., Niedojadlo, K., & Leinweber, P. (2012). Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by Willows. Water, Air, and Soil Pollution, 223, 957–968.CrossRefGoogle Scholar
  34. Jeffries, T. C., Seymour, J. R., Newton, K., Smith, R. J., Seuront, L., & Mitchell, J. G. (2012). Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient. Biogeosciences, 9(2), 815–825.CrossRefGoogle Scholar
  35. Jiang, C. Y., Sheng, X. F., Qian, M., & Wang, Q. Y. (2008). Isolation and characterization of heavy metal resistant Burkholderia species from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere, 72, 157–164.CrossRefGoogle Scholar
  36. Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International Journal of Environmental Science and Technology, 9, 183–193.CrossRefGoogle Scholar
  37. Kastenhofer, K. (2007). Converging epistemic cultures? Innovations, 20(4), 359–373.Google Scholar
  38. Kensa, M. V. (2011). Bioremediation: An overview. Journal of Industrial Pollution Control, 27(2), 161–168.Google Scholar
  39. Kumar, C., & Mani, D. (2010). Enrichment and management of heavy metals in sewage irrigated soil. Saarbrucken: LAP LAMBERT Academic Publishing AG & KG.Google Scholar
  40. Kumar, C., & Mani, D. (2012). Advances in bioremediation of heavy metals: A tool for environmental restoration. Saarbrucken: LAP LAMBERT Academic Publishing AG & KG.Google Scholar
  41. Kumar, R., Joshi, S. R., & Acharya, C. (2008). Metal tolerant Bacillus and Pseudomonas from uranium rich soils of Meghalaya. Research Journal of BioTechnology (Special Issue), 345–350.Google Scholar
  42. Kumar, R., Acharya, C., & Joshi, S. R. (2011). Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(VI) bioadsorption. Journal of Microbiology, 49(4), 568–574.CrossRefGoogle Scholar
  43. Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011a). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1(6), 1079–1093.Google Scholar
  44. Lee, Y. C., & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102(9), 5297–5304.CrossRefGoogle Scholar
  45. Lee, C. S., Li, X. D., Shi, W. Z., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.CrossRefGoogle Scholar
  46. Li, L., Cunningham, C. J., Pas, V., Philp, J. C., Barry, D. A., & Anderson, P. (2004). Field trial of a new aeration system for enhancing biodegradation. Waste Management, 24, 127–137.CrossRefGoogle Scholar
  47. Loukidou, M. X., Matis, K. A., Zouboulis, A. I., & Liakopoulou-Kyriakidou, M. (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Research, 37(18), 4544–4552.CrossRefGoogle Scholar
  48. Ma, X., Nonvak, P. J., Ferguson, J., Sadowsky, M., et al. (2007). The impact of H2 addition or dechlorinating microbial communities. Bioremediation Journal, 11, 45–55.CrossRefGoogle Scholar
  49. Machackova, J., Wittlingerova, Z., Vlk, K., & Zima, J. (2012). Major factors affecting in situ biodegradation rates of jet-fuel during largescale biosparging project in sedimentary bedrock. Journal of Environmental Science and Health, Part A, 47(8), 1152–1165.CrossRefGoogle Scholar
  50. Machado, M. D., Soares, E. V., & Soares, H. M. V. M. (2010). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Hazardous Materials, 180(1–3), 347–353.CrossRefGoogle Scholar
  51. Mane, P. C., & Bhosle, A. B. (2012). Bioremoval of some metals by living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. International Journal of Environmental Research, 6(2), 571–576.Google Scholar
  52. Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11, 843–872.CrossRefGoogle Scholar
  53. Mapanda, F., Mangwayana, E. N., Nyanangara, J., & Giller, K. E. (2005). The effect of long-term irrigation using wastewater on the heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agriculture, Ecosystems & Environment, 107, 151–165.CrossRefGoogle Scholar
  54. Masciangioli, T., & Zhang, W. X. (2003). Peer reviewed: Environmental technologies at the nanoscale. Environmental Science & Technology, 37, 102A–108A.CrossRefGoogle Scholar
  55. Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3, 153–162.CrossRefGoogle Scholar
  56. Nasr, M., & Ismail, S. (2015). Performance evaluation of sedimentation followed by constructed wetlands for drainage water treatment. Sustainable Environment Research, 25, 141–150.Google Scholar
  57. Norstrom, A., Larsdotter, K., Gumaelius, L., Jansen, J. L. C., & Dalhammar, G. (2004). A small scale hydroponics wastewater treatment system under Swedish conditions. Water Science and Technology, 48(11–12), 161–167.CrossRefGoogle Scholar
  58. O’Loughlin, E. J., Traina, S. J., & Sims, G. K. (2000). Effects of sorption on the biodegradation of 2-methylpyridine. Environmental Toxicology and Chemistry, 19, 2168–2174.CrossRefGoogle Scholar
  59. Paliwal, V., Puranik, S., & Purohit, H. J. (2012). Integrated perspective of effective bioremediation. Applied Biochemistry and Biotechnology, 166, 903–924.CrossRefGoogle Scholar
  60. Pan, X. L. (2009). Microbially induced carbonate precipitation as a promising way to in situ immobilize heavy metals in groundwater and sediment. Research Journal of Chemistry and Environment, 13, 3–4.Google Scholar
  61. Prasad, M. N. V. (2004). Heavy metal stress in plants: From biomolecules to ecosystems (2nd ed.). Heidelberg: Springer.CrossRefGoogle Scholar
  62. Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47, 3931–3946.CrossRefGoogle Scholar
  63. Ramasamy, R. K., Congeevaram, S., & Thamaraiselvi, K. (2011). Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metals Pb(II) ions and fungal protein molecular characterization-a mycoremediation approach. Asian Journal of Biological Sciences, 2(2), 342–347.Google Scholar
  64. Ramos, J. L., Marques, S., Dillewijn, P. V., Espinosa-Urgel, M., Segura, A., & Duque, E. (2011). Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology, 29(12), 641–647.CrossRefGoogle Scholar
  65. Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23, 917–926.CrossRefGoogle Scholar
  66. Rickerby, D. G., & Morrison, M. (2007). Nanotechnology and the environment: A European perspective. Science and Technology of Advanced Materials, 8, 19–24.CrossRefGoogle Scholar
  67. Ritchie, S. M. C., Bachas, L. G., Olin, T., Sikdar, S. K., & Bhattacharyya, D. (1999). Surface modification of silica- and cellulosebased microfiltration membranes with functional polyamino acids for heavy metal sorption. Langmuir, 15, 6346–6357.CrossRefGoogle Scholar
  68. Ritchie, S. M. C., Kissick, K. E., Bachas, L. G., Sikdar, S. K., Parikh, C., & Bhattacharyya, D. (2001). Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture. Environmental Science and Technology, 35, 3252–3258.CrossRefGoogle Scholar
  69. Riu, J., Maroto, A., & FX, X. R. (2006). Nanosensors in environmental analysis. Talanta, 69, 288–301.CrossRefGoogle Scholar
  70. Robinson, C., Bromssen, M. V., Bhattacharya, P., Haller, S., Biven, A., Hossain, M., Jacks, G., Ahmed, K. M., Hasan, M. A., & Thunvik, R. (2011). Dynamics of arsenic adsorption in the targeted arsenic-safe aquifers in Matlab, south-eastern Bangladesh: Insight from experimental studies. Applied Geochemistry, 26, 624–635.CrossRefGoogle Scholar
  71. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.CrossRefGoogle Scholar
  72. Saunders, R. J., Paul, N. A., Hu, Y., & de Nys, R. (2012). Sustainable sources of biomass for bioremediation of heavy metals in wastewater derived from coal-fired power generation. PLoS One, 7(5), e36470.  https://doi.org/10.1371/journal.pone.0036470.CrossRefGoogle Scholar
  73. Savage, N., & Diallo, M. S. (2005). Nanomaterials and water purification: Opportunities and challenges. Journal of Nanoparticle Research, 7, 331–342.CrossRefGoogle Scholar
  74. Say, R., Yimaz, N., & Denizli, A. (2003). Removal of heavy metal ions using the fungus Penicillium canescens. Adsorption Science and Technology, 21, 643–650.CrossRefGoogle Scholar
  75. Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., & Johnson, C. A. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077.CrossRefGoogle Scholar
  76. Segura, P. A., Francois, M., Gagnon, C., & Sauve, S. (2009). Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environmental Health Perspectives, 117, 675–684.CrossRefGoogle Scholar
  77. Shirdam, R., Khanafari, A., & Tabatabaee, A. (2006). Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iranian Journal of Biotechnology, 4(3), 180–187.Google Scholar
  78. Siegrist, H., Ternes, T. A., & Joss, A. (2004). Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Journal of Environmental Science and Technology, 38, 392A–399A.CrossRefGoogle Scholar
  79. Singh, J. S., Abhilash, P. C., Singh, H. B., Singh, R. P., & Singh, D. P. (2011). Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene, 480, 1–9.CrossRefGoogle Scholar
  80. Singhal, R. K., Joshi, S., Tirumalesh, K., & Gurg, R. P. (2004). Reduction of uranium concentration in well water by Chlorella (Chlorella pyrenoidosa) a fresh water algae immobilized in calcium alginate. The Journal of Radioanalytical and Nuclear Chemistry, 261, 73–78.CrossRefGoogle Scholar
  81. Stamets, P. (2005). Mycelium running: How mushroom can help save the world. New York: Ten Speed Press, Crown Publishing Group.Google Scholar
  82. Tang, C. Y., Criddle, Q. S., Fu, C. S., & Leckie, J. O. (2007). Effect of flux (Transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science & Technology, 41, 2008–2014.CrossRefGoogle Scholar
  83. Tastan, B. E., Ertugrul, S., & Donmez, G. (2010). Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresource Technology, 101(3), 870–876.CrossRefGoogle Scholar
  84. Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34, 43–69.CrossRefGoogle Scholar
  85. Tong, A., Peake, B., & Braund, R. (2011). Disposal practices for unused medications around the world. Environment International, 37, 292–298.CrossRefGoogle Scholar
  86. Tripathi, R. D., Dwivedi, S., Shukla, M. K., Mishra, S., Srivastava, S., Singh, R., Rai, U. N., & Gupta, D. K. (2008). Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere, 70, 1919–1929.CrossRefGoogle Scholar
  87. Tyagi, M., Fonseca, M. M. R. D., & Carvalho, C. C. C. R. D. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231–241.CrossRefGoogle Scholar
  88. UNEP. (2012). Global environment outlook 5—Environment for the future we want. Nairobi: United Nations Environment Programme.Google Scholar
  89. USEPA. (2004). Cleaning up the nation’s waste sites: Markets and technology trends. Washington: US Environmental Protection Agency.Google Scholar
  90. Vaseashta, A., Vaclavikova, M., Vaseashta, S., Gallios, G., Roy, P., & Pummakarnchana, O. (2007). Nanostructures in environmental pollution detection, monitoring, and remediation. Science and Technology of Advanced Materials, 8, 47–59.CrossRefGoogle Scholar
  91. Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172.CrossRefGoogle Scholar
  92. Vullo, D. L., Ceretti, H. M., Hughes, E. A., Ramyrez, S., & Zalts, A. (2008). Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresource Technology, 99, 5574–5581.CrossRefGoogle Scholar
  93. Weber, W. J. (2002). Distributed optimal technology networks: A concept and strategy for potable water sustainability. Water Science and Technology, 46, 241–246.CrossRefGoogle Scholar
  94. Yin, X. X., Wang, L. H., Bai, R., Huang, H., & Sun, G. X. (2012). Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water, Air, and Soil Pollution, 223(3), 1183–1190.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Irfan-ur-Rauf Tak
    • 1
  1. 1.Department of Zoology, SP CollegeCluster University SrinagarSrinagarIndia

Personalised recommendations