Advertisement

Freshwater Contamination: Sources and Hazards to Aquatic Biota

  • Nighat Mushtaq
  • Dig Vijay Singh
  • Rouf Ahmad Bhat
  • Moonisa Aslam Dervash
  • Omar bin Hameed
Chapter

Abstract

Water is an essential compound for supporting the biota on earth. There are various sources of water to support the life in freshwater ecosystems. Freshwater ecosystems play magical role as they provide services to support life process in living creatures. But, growing population, urbanization, industrialization put drastic pressure on the freshwater ecosystems, with the result altered the quality scenario of freshwaters by adding huge quantities of contamination. Water contaminations not only degrade the quality of freshwater, but simultaneously pose harmful risks to the whole environment. The chemical substances in freshwater ecosystem can’t be neutralized easily due to their complex structure and have great potential to remain intact in any kind of environments. These substances nowadays are continuously added into the freshwater ecosystem on daily basis by way of discharging untreated domestic, industrial and agricultural wastewater. Most of these substances get accumulated in the bottom sediments and very minute concentration in the form of organic and inorganic constituents remain either in suspended form or solution in liquid medium of freshwater ecosystem. Presences of these kinds of pollutants in freshwater ecosystem have long-term impacts on aquatic and associated biota. Therefore, need of an hour is to monitor the quality of freshwater ecosystem on regular basis and focus should be given to the treatment of effluents prior to its discharge into the freshwater ecosystem.

Keywords

Aquatic ecosystem Freshwater Eutrophication Toxic substances Health hazard Effluent 

References

  1. Abida, & Harikrishna. (2008). Study on the quality of water in some streams of Cauvery River. Journal of Chemistry Pollution Research, 5(2), 377–384.Google Scholar
  2. Abowei, J. F. N., Davies, O. A., & Eli, A. (2010). Physicochemistry, morphology and abundance of fin fish of Nkoro River, Niger Delta, Nigeria. International Journal of Pharma and Bio Sciences, 6(2), 1–11.Google Scholar
  3. Aboyeji, O. O. (2013). Freshwater pollution in some Nigerian local communities, causes, consequences and probable solutions. Academic Journal of Interdisciplinary Studies, 2(13), 111–117.Google Scholar
  4. Adakole, J. A., & Abolude, D. S. (2012). Pollutional status of Kubanni Lake through metal concentrations in water and sediment columns, Zaria, Nigeria. Research Journal of Environmental and Earth Sciences, 4, 424–427.Google Scholar
  5. Adekunle, A. S. (2009). Effects of industrial effluent on quality of well water within Asa Dam Industrial Estate, Ilorin, Nigeria. Nature and Science, 7, 1545–0740.Google Scholar
  6. Adekunle, A. S., & Eniola, I. T. (2008). Impact of industrial effluents on quality of segment of Asa river within an industrial estate in Ilorin, Nigeria. New York Science Journal, 1, 17–21.Google Scholar
  7. Adesuyi, A. A., Nnodu, V. C., Kelechi Longinus Njoku, K. N., & Anuoluwapo, J. (2015). Nitrate and phosphate pollution in surface water of Nwaja Creek, Port Harcourt, Niger Delta, Nigeria. International Journal of Geology, Agriculture and Environmental Sciences, 3(5), 14–20.Google Scholar
  8. Adler, R., & Rascher, J. (2007). A strategy for the management of acid mine drainage from gold mines in Gauteng. (Report No. CSIR/NRE/PW/ER/2007/0053/C). Pretoria: CSIR.Google Scholar
  9. Ahipathy, M. V., & Puttaiah, E. T. (2006). Ecological characteristics of Vrisha Bhavathy River in Bangalore, India. Environ Goyal Pollution Research, 49, 1217–1222.Google Scholar
  10. Ahmed, M. K., Das, M., Islam, M. M., Akter, M. S., Islam, S., & Abdullah, M. A. (2011). Physico-chemical properties of tannery and textile effluents and surface water of river Buriganga and Karnatoli, Bangladesh. Journal World Applied Science, 12(2), 152–159.Google Scholar
  11. Ahmed, T., Scholz, F., Al-Faraj, W., et al. (2013). Water-related impacts of climate change on agriculture and subsequently on public health: A review for generalists with particular reference to Pakistan. International Journal of Environmental Research and Public Health, 13, 1–16.Google Scholar
  12. Akuffo, S. B. (1998). Pollution control in a developing country: A case study of the situation in Ghana, 2nd Edition, Ghana Universities Press. World Journal of Scientific Research and Reviews, 2(2), 1–19.Google Scholar
  13. American Public Health Association (Ed.). (1996). Standard methods of examination of water and wastewater (19th ed.). Washington, DC: American Public Health Association.Google Scholar
  14. Anonymous. (2002). Guidelines for the allocation and management of water for maintaining the ecological functions of wetlands. Ramsar Resolution VIII.1 on allocation and management of water.Google Scholar
  15. Ansari, A. A., Singh, I. B., & Tobschall, H. J. (1999). Status of anthropogenically induced metal pollution in the Kanpur-Unnao industrial region of the Ganga Plain, India. Environmental Geology, 38, 25–33.CrossRefGoogle Scholar
  16. Arimoro, F. O. (2009). Impact of rubber effluent discharges on the water quality and macroinvertebrate community assemblages in a forest stream in the Niger Delta. Chemosphere, 77, 440–449.CrossRefGoogle Scholar
  17. Arora, S., & Kakkar, P. (2017). Water pollution in India-causes & policy implications. Two days international conference on recent innovations in engineering, science, humanities and management, pp. 721–728.Google Scholar
  18. Banks, D., Younger, P. L., Arnesen, R. T., Iversen, E. R., & Banks, S. B. (1997). Mine-water chemistry: The good, the bad and the ugly. Environmental Geology, 32(3), 157–174.CrossRefGoogle Scholar
  19. Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33, 3063–3082.CrossRefGoogle Scholar
  20. Baron, J. S., & Poff, N. L. (2004). Sustaining healthy freshwater ecosystems. Water Resources Update, 127, 52–58.Google Scholar
  21. Baron, J. S., Poff, N. L., Angermeier, P. L., Dahm, C. N., Gleick, P. H., Hairston, N. G., Jackson, R. B., Johnston, C. A., Richter, B. D., & Steinman, A. D. (2003). Sustaining healthy freshwater ecosystems. Issues in Ecology, 10, 2–16.Google Scholar
  22. Bartram, J., & Balance, R. (1996). Water quality monitoring. A practical guide to the design and implementation of fresh water quality studies and monitoring programs (Pollution Research 383). UNEP/WHO, Chapman and Hall.Google Scholar
  23. Beeby, A. (1993). Measuring the effect of pollution. In Applying ecology. London/New York: Chapman and Hall.Google Scholar
  24. Bhat, S. A., & Pandit, A. K. (2001). Impact of effluents from Sheri- Kashmir institute of medical sciences (SKIMS), Soura on Anchar Lake. Journal of Research and development Pollution Research, 1, 30–37.Google Scholar
  25. Bhat, R. A., Dar, G. A., Jehangir, A., Bhat, B. A., & Yousuf, A. R. (2012). Municipal solid waste generation and present scenario of waste management during Yatra season in Pahalgam: A tourist health resort of Kashmir valley. International Journal of current Research, 4(10), 004–009.Google Scholar
  26. Bhat, R. A., Nazir, R., Ashraf, S., Ali, M., Bandh, S. A., & Kamili, A. N. (2014). Municipal solid waste generation rates and its management at Yusmarg forest ecosystem, a tourist resort in Kashmir. Waste Management, 32(2), 165–169.CrossRefGoogle Scholar
  27. Bhat, R. A., Shafiq-ur-Rehman, Mehmood, M. A., Dervash, M. A., Mushtaq, N., Bhat, J. I. A., & Dar, G. H. (2017). Current status of nutrient load in Dal Lake of Kashmir Himalaya. Journal of Pharmacognosy and Phytochemistry, 6(6), 165–169.Google Scholar
  28. Bhat, R. A., Dervash, M. A., Mehmood, M. A., & Hakeem, K. R. (2018). Municipal solid waste generation and its management, a growing threat to fragile ecosystem in Kashmir Himalaya. American Journal of Environmental Sciences, 13(6), 388–397.CrossRefGoogle Scholar
  29. Bolawa, O. E., & Gbenle, G. O. (2012). Analysis of industrial impact on physiochemical parameters and heavy metal concentrations in waters of river Majidun, Molatori and Ibeshe around Ikorodu in Lagos, Nigeria. Journal of Environmental Science and Water Resources, 1(2), 34–38.Google Scholar
  30. Bulut, E., & Aksoy, A. (2008). Impact of fertilizer usage on phosphorus loads to Lake Uluabat. Desalination, 226, 289–297.CrossRefGoogle Scholar
  31. Burton, G. A., & Pitt, R. (2001). Strom water effects handbook, toolbox for watershed managers, scientists and engineers. Boca Raton: Lewis.CrossRefGoogle Scholar
  32. Capangpangan, R. Y., Pagapong, N. K., Pineda, C. P., & Sanchez, P. B. (2016). Evaluation of potential ecological risk and contamination assessment of heavy metals in sediment samples using different environmental quality indicesea case study in Agusan river, Caraga Philippines. Journal of Biodiversity and Environmental Sciences, 8, 1–16.Google Scholar
  33. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.CrossRefGoogle Scholar
  34. Centre for Ecological Sciences. (2001). IISc environmental hand book – Documentation on monitoring and evaluating environmental impacts, compendium of environmental standards (Vol. 3). Bangalore: Indian Institute of Science. Available: http://wgbis.ces.iisc.ernet.in/energy/HC270799/HDL/ENV/START.HTM
  35. Chapman, D. (1996). Water quality assessment. A guide to the use of biota, sediments and water in environmental monitoring (2nd ed.). New York: E & FN Spon.Google Scholar
  36. Chapman, D., & Kimstach, V. (1996). Selection of water quality variables. In D. Chapman (Ed.), Water quality assessment: A guide to the use of biota, sediments and water in environmental monitoring (2nd ed.). Cambridge: University Press.CrossRefGoogle Scholar
  37. Cheng, S. (2003). Heavy metal pollution in China: Origin, pattern and control. Environmental Science and Pollution Research International, 10(3), 192–198.CrossRefGoogle Scholar
  38. Cheng, L., & Dixon, K. (1998). Analysis of repair and mutagenesis of chromium induced DNA damage in yeast mammalian cells and transgenic mice. Environmental Health Perspectives, 106, 1027–1032.Google Scholar
  39. Chindah, A. C., Braide, S. A., & Sibeudu, O. C. (2004). Distribution of hydrocarbon and heavy metal in sediments and crustacean (shrimps – Paneaus notialia) from Bonny/New Calabar River Estuary Niger Delta, Nigeria. African Journal of Environmental Management, 9, 1–17.Google Scholar
  40. Chowdhury, S., Annabelle, K., & Klaus, F. Z. (2015). Arsenic contamination of drinking water and mental health. Importance of Freshwater Biodiversity, 1, 28.Google Scholar
  41. Cumberlidge, N., Ng, P. K., Yeo, D. C., Magalhães, C., Campos, M. R., Alvarez, F., et al. (2009). Freshwater crabs and the biodiversity crisis: Importance, threats, status, and conservation challenges. Biological Conservation, 142(8), 1665–1673.CrossRefGoogle Scholar
  42. Cunningham, W. P., & Saigo, B. W. (1999). Environmental science: A global concern (5th ed.). Boston: McGraw-Hill Publishers.Google Scholar
  43. Currie, J., Joshua, G. Z., Katherine, M., et al. (2013). Something in the water: Contaminated drinking water and infant health. Canadian Journal of Economics, 46(3), 791–810.CrossRefGoogle Scholar
  44. Dapena-Mora, A., Fernandez, I., Campos, J., Mosquera-Corral, A., Mendez, R., & Jetten, M. (2007). Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40, 859–865.CrossRefGoogle Scholar
  45. Dart, R. K., & Stretton, R. J. (1980). Thermal pollution, in microbiological aspects of pollution control (pp. 185–191). Amsterdam: Elsevier.CrossRefGoogle Scholar
  46. Das, R., & Choudhury, I. (2013). Waste management in mining industry Indian. Journal of Scientific Research, 4(2), 139–142.Google Scholar
  47. Das, M., Ahmed, M. K., Islam, M. M., Akter, M. S., Islam, M. S., & Mansur, M. A. (2010). Heavy metal concentrations in industrial effluents (tannery and textile) and water of adjacent river. Terrestrial and Aquatic Environmental Toxicology, 5(1), 8–13.Google Scholar
  48. Davis, B. R., & Day, J. A. (1998). Vanishing waters. Cape Town: University of Cape Town Press/Juta Press.Google Scholar
  49. De Mora, S., & Harrison, R. M. (2013). Physicochemical speciation of inorganic compounds. In Hazard assessment of chemicals: Current developments (Vol. 3, p. 1).Google Scholar
  50. Desai, N., & Vanitaben. (2014). A study on the water pollution based on the environmental problem. Indian Journal of Research, 3(12), 95–96.Google Scholar
  51. Dhadse, S. K., & Bhagia, L. J. (2008). Fly ash characterization and utilization and government initiatives in India—A review. Journal of Scientific and Industrial Research, 67, 11–18.Google Scholar
  52. Dikio, E. D. (2010). Water quality evaluation of Vaal River, Sharpeville and Bedworth lakes in the Vaal Region of South Africa. Research Journal of Applied Sciences, Engineering and Technology, 2(6), 574–579.Google Scholar
  53. Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189–2212.CrossRefGoogle Scholar
  54. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Leveque, C., et al. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163–182.CrossRefGoogle Scholar
  55. Dulo, S. O. (2008). Determination of some physico-chemical parameters of the Nairobi River, Kenya. Journal of Applied Sciences and Environmental Management, 12(1), 57–56.Google Scholar
  56. Dutta, B. K., Khanra, S., & Mallick, D. (2009). Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines. Fuel, 88, 1314–1323.CrossRefGoogle Scholar
  57. Ebenstein, A. Y. (2008). Water pollution and digestive cancer in China. Institutions and governance programs, pp. 1–45.Google Scholar
  58. EEB. (2000). The environmental performance of the mining industry and the action necessary to strengthen European legislation in the wake of the Tisza-Danube pollution (Document No. 2000/016). European Environmental Bureau.Google Scholar
  59. Ekubo, A. T., & Abowei, J. F. N. (2011). Aspects of aquatic pollution in Nigeria. Research Journal of Environmental and Earth Sciences, 3(6), 673–693.Google Scholar
  60. Elhatip, H., & Gullu, O. (2005). Influence of wastewater discharges on the water quality of Mamasin dam watershed in Aksaray, Central Anatolian part of Turkey. Environmental Geology, 48, 829–834.CrossRefGoogle Scholar
  61. EPA. (2002). Ghana landfills guidelines. Accra.Google Scholar
  62. Eunice, O. E., Frank, O., Voke, U., & Godwin, A. (2017). Assessment of the impacts of refinery effluent on the physico-chemical properties of Ubeji creek, Delta State, Nigeria. Journal of Environmental & Analytical Toxicology, 7, 428.CrossRefGoogle Scholar
  63. Fakayode, S. O. (2005). Impact assessment of industrial effluent on water quality of the receiving Alaro river in Ibadan, Nigeria. Ajeam-Ragee, 10, 1–13.Google Scholar
  64. Farenzena, M., Ferreira, L., Trierweiler, J. O., & Aquim, P. M. (2005). Tanneries: From waste to sustainability. Brazilian Archives of Biology and Technology, 48, 281–289.CrossRefGoogle Scholar
  65. Fifield, F. W., & Haines, P. J. (2000). Environmental analytical chemistry. Malden: Wiley-Blackwell.Google Scholar
  66. Garcia, L. S. M., Martínez, C. A. T., & Diaz, A. E. (2014). Analisis of waste water treatment plant processes (WWTP) “sedimentation”. Visión Electrónica: algo más que un estado sólido, 8, 172–185.Google Scholar
  67. Georgieva, S., Gartsiyanova, K., Ivanova, V., & Vladimirova, L. (2018). Assessment of physical-chemical characteristics of surface water from key sites of the Mesta River: State and environmental implications (IOP conference series: Materials science and engineering, 374).Google Scholar
  68. Ghannam, H. E., El Haddad, E. S., & Talab, A. S. (2015). Bioaccumulation of heavy metals in tilapia fish organs. Journal of Biodiversity and Environmental Sciences, 7, 88–99.Google Scholar
  69. Gong, J., Liu, Y., & Sun, X. (2008). O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater. Water Research, 42, 1238–1244.CrossRefGoogle Scholar
  70. Govind, P., & Madhuri, S. (2014). Heavy metals causing toxicity in animals and fishes. Research Journal of Animal, Veterinary and Fishery Sciences, 2, 17–23.Google Scholar
  71. Gray, L. (2004). Changes in water quality and macro invertebrate communities resulting from urban storm flows in the Provo river, Utah, USA. Hydrobiologia, 518, 33–49.CrossRefGoogle Scholar
  72. Gupta, N., Yadav, K. K., Kumar, V., & Singh, D. (2013). Assessment of physicochemical properties of Yamuna river in Agra city. International Journal of ChemTech Research, 5, 528–531.Google Scholar
  73. Halder, J. N., & Islam, M. N. (2015). Water pollution and its impact on the human health. Journal of Environment and Human, 2(1), 36–46.CrossRefGoogle Scholar
  74. Haseena, M., & Malik, M. F. (2017). Water pollution and human health. Environmental Risk Assessment and Remediation, 1(3), 16–19.CrossRefGoogle Scholar
  75. Haseena, M., Malik, M. F., Javed, A., Arshad, S., Asif, N., Zulfiqar, S., & Hanif, J. (2017). Water pollution and human health. Environmental Risk Assessment and Remediation, 1(3), 16–19.CrossRefGoogle Scholar
  76. Hawkes, J. S. (1997). What is a “heavy metal”. Journal of Chemical Education, 74, 1374.CrossRefGoogle Scholar
  77. Helmer, R., & Hespanhol, I. (1997). Water pollution control: A guide to the use of water quality management principles (pp. 1–449). London: E & FN Spon.Google Scholar
  78. Hetrick, J. R., Parker, R., Pisigan JR, & Thurman, N. (2000). Progress report on estimating pesticide concentration in drinking water and assessing water treatment effects on pesticide removal and transformation. Briefing Document for a Presentation to the FIFRA Scientific Advisory Panel (SAP)Google Scholar
  79. Ho, Y. C., Show, K. Y., Guo, X. X., et al. (2012). Industrial discharge and their affects to the environment. In Industrial waste (pp. 1–32). China: InTech.Google Scholar
  80. Hogan, C. (2014). Water pollution. Retrieved from http://www.eoearth.org/view/article/156920 Google Scholar
  81. Jabeen, S. Q., Mehmood, S., Tariq, B., et al. (2011). Health impact caused by poor water and sanitation in district Abbottabad. Journal of Ayub Medical College, Abbottabad, 23(1), 47–50.Google Scholar
  82. Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J., Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecological Applications, 11(4), 1027–1045.CrossRefGoogle Scholar
  83. Jagessar, R. C., & Sooknundun, L. (2011). Determination of Nitrate anion in waste water from nine selected areas of coastal Guyana via a spectrophotometric method. JJRRAS, 7(2), 203–212.Google Scholar
  84. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72.CrossRefGoogle Scholar
  85. Jeswani, H., & Mukherji, S. (2015). Treatment of simulated biomass gasification wastewater of varying strength in a three stage rotating biological contactor. Chemical Engineering Journal, 259, 303–312.CrossRefGoogle Scholar
  86. Jones, P. J., & Burt, T. P. (1993). Nitrate in surface water. In T. P. Burt, A. L. Heathwaite, & S. T. Trudgill (Eds.), Nitrate: Process, patterns and management cedes (pp. 269–310). Chichester: Wiley.Google Scholar
  87. Kahiluoto, H., Kuisma, M., Ketoja, E., Salo, T., & Heikkinen, J. (2015). Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environmental Science & Technology, 49, 2115–2122.CrossRefGoogle Scholar
  88. Kalff, J. (2002). Limnology: Inland water ecosystems (Vol. 592). Upper Saddle River: Prentice Hall.Google Scholar
  89. Kamble, S. M. (2014). Water pollution and public health issues in Kolhapur city in Maharashtra. International Journal of Scientific and Research Publications, 4(1), 1–6.Google Scholar
  90. Kambole, M. S. (2003). Managing the water quality of the Kafue River. Physics and Chemistry of the Earth, Parts A/B/C, 28(20–27), 1105–1109.CrossRefGoogle Scholar
  91. Kannan, N., Karthikeyan, G., Vallinayagam, P., & Mil, S. N. (2004). A study on assessment of pollution load of sugar industrial effluent.Indian Journal of Environmental Protection, 24(11), 856–862.Google Scholar
  92. Khan, M. A., & Ghouri, A. M. (2011). Environmental pollution: Its effects on life and its remedies. Journal of Arts, Science and Commerce, 2(2), 276–285.Google Scholar
  93. Khurana, I., & Sen, R. (2008). Drinking water quality in rural India: Issues and approaches-Water Aid. India water Portal.Google Scholar
  94. Kinney, M. L. (2002). Thèse de Doctorat. Université de Limoges, France.Google Scholar
  95. Kozai, N., Suzuki, S., Aoyagi, N., Sakamoto, F., & Ohnuki, T. (2014). Of Presentation Chemical states of 137 Cs in sewage sludge ash and radioactivity concentration reduction method.Google Scholar
  96. Krishnan, S., & Indu, R. (2006). Groundwater contamination in India: Discussing physical processes, health and sociobehavioral dimensions. IWMI-Tata, Water Policy Research Programmes, Anand, IndiaGoogle Scholar
  97. Lester, J. N., & Birkett, J. W. (1999). Microbiology and chemistry for environmental scientists and engineers (Pd edn.). New York: E & FN Spon.Google Scholar
  98. Lettinga, G. (1995). Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek, 67, 3–28.CrossRefGoogle Scholar
  99. Little, A. D. (1971). Inorganic chemical pollution of freshwater. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  100. Lokhande, R. S., Singare, P. U., & Pimple, D. S. (2011). Toxicity study of heavy metals pollutants in waste water effluent samples collected from Taloja industrial estate resources and environment of Mumbai, India. Resources and Environment, 1(1), 13–19.Google Scholar
  101. Lone, J. F., Rasoo, A., & Unnisa, S. A. (2017). Assessment of physico-chemical parameters of water in Kashmir region with reference to Dal Lake. Journal of Environmental & Analytical Toxicology, 7, 435.CrossRefGoogle Scholar
  102. Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L., & Gill, A. C. (2008). So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Annals of the Missouri Botanical Garden, 87(1), 26–62.CrossRefGoogle Scholar
  103. Maekawa, T. (2003). Method and apparatus for treatment of organic matter-containing wastewater. Google Patents.Google Scholar
  104. Mahananda, M. R. (2010). Physico-chemical analysis of surface water and ground water of Bargarh District, Orissa, India. International Journal of Research and Review in Applied Sciences, 2(3), 284–295.Google Scholar
  105. Mali, S. S., Sanyal, S. K., Bhatt, B. P., & Pathak, H. (2015). Water pollution and agriculture. In H. Pathak, B. P. Bhatt, & S. K. Gupta (Eds.), State of Indian agriculture-water (pp. 39–47). New Delhi: National Academy of Agricultural Sciences.Google Scholar
  106. Malik, G. M., Raval, V. H., Zadafiya, S. K., & Patel, A. V. (2012). Idol immersion and physico-chemical properties of South Gujarat Rivers, India. Research Journal of Chemical Sciences, 2(3), 21–25.Google Scholar
  107. Master, L. L., Flack, S. R., & Stein, B. A. (1998). Rivers of life. Nature Conservancy in cooperation with natural heritage programs and Association for Biodiversity Information, pp 1–77.Google Scholar
  108. McConnell, et al. (1993). Health hazard evaluation report in pesticides in the diets of infants and children. Washington, DC: Pesticides in the Diets of Infants and Children National Academy Press.Google Scholar
  109. Mehmood, M. A., Qadri, H., Bhat, R. A., Rashid, A., Ganie, S. A., Dar, G. H., & Shafiq-ur-Rehman. (2019). Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environmental Monitoring and Assessment, 191, 104.  https://doi.org/10.1007/s10661-019-7245-2.CrossRefGoogle Scholar
  110. Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe. Desalination, 213, 159–173.CrossRefGoogle Scholar
  111. Mohan, D., Kunwar, P. S., & Vinod, K. S. (2006). Trivalent chromium removal from waste water using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Journal of Hazardous Materials, 135, 280–295.CrossRefGoogle Scholar
  112. Mohanta, M. K., Salam, M. A., Saha, A. K., & Hasan, A. (2010). Roy A.K. Effect of tannery effluents on survival and histopathological changes in different organs of Channa punctatus. Asian Journal of Experimental Biological Sciences, 1, 294–302.Google Scholar
  113. Moore, J. W., & Ramamoorthy, S. (1984). Heavy metals in natural waters: Applied monitoring and impact assessment (pp. 28–246). New York: Springer.CrossRefGoogle Scholar
  114. Morrison, G., Fatoki, O. S., Persson, L., & Ekberg, A. (2001). Assessment of the impact of point source pollution from the Keiskammahoek Sewage Treatment Plant on the Keiskamma River – pH, electrical conductivity, oxygen-demanding substance (COD) and nutrients. Water SA, 27, 475–480.CrossRefGoogle Scholar
  115. Moss, B. (2008). Water pollution by agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 659–666.CrossRefGoogle Scholar
  116. Musingafi, M. C. C., & Tom, T. (2014). Fresh water sources pollution: A human related threat to fresh water security in south. Africa Journal of Public policy and Governance, 1(2), 72–81.Google Scholar
  117. Nair, K. V. K. (1985). Impact of a nuclear power station on the hydrobiological characteristics of Katpakkam waters. In Proc. Sea Water Qual. Demands Natl. Chem. Methodological Laboratory, Bombay.Google Scholar
  118. Nartey, V. K., Hayford, E. K., & Ametsi, S. K. (2012). Assessment of the Impact of Solid Waste Dumpsites on some surface water systems in the Accra Metropolitan Area, Ghana. Journal of Water Resource and Protection, 4, 605–661.CrossRefGoogle Scholar
  119. National Academy of Sciences. (1993). (Ref. #8). Pages 261: 360–361.Google Scholar
  120. Nel, L. H., & Markotter, W. (2009). New and emerging waterborne infectious diseases. Encyclopedia of Life Support System, 1, 1–10.Google Scholar
  121. NRCC. (1977). The effects of Alkali Halides in the Canadian environment (NRCC No. 15019). Ottawa: Associate Committee on Scientific Criteria for Environmental Quality.Google Scholar
  122. Ogbonna, D. N. (2014). The impact of untreated sewage wastes discharge on the physico-chemical properties of rivers in Port Harcourt metropolis. World Journal of Scientific Research and Reviews, 2(2), 1–19.Google Scholar
  123. Ogbonna, J. O., Lawal, F. A., Owoeye, L. D., & Udeh, M. U. (2008). Chemical characteristics and fertilizing value of primary sludge from tannery effluent treatment plant. In 6th Ann. Natl. Conf. Nigerian Inst. Sci. Technol. Univ. Ibadan, 24–27th.Google Scholar
  124. Onwugbuta-Enyi, J., Zabbey, N., & Erondu, E. S. (2008). Water quality of Bodo Creek in the lower Niger Delta basin. Advances in Environmental Biology, 2(3), 132–136.Google Scholar
  125. Otukunefor, T. V., & Obiukwu, C. O. (2005). Impact of refinery influent on physicochemical properties of a water body on the Niger Delta. Applied Ecology and Environmental Research, 3, 61–72.CrossRefGoogle Scholar
  126. Owa, F. D. (2013). Water pollution: Sources, effects, control and management. Mediterranean Journal of Social Sciences, 4(8), 65–68.Google Scholar
  127. Paar, A. (1998). ‘Microwave sample preparation system’ –instruction handbook (p. 128). Graz: Anton Paar GmbH.Google Scholar
  128. Parveen, S., Bharose, R., & Singh, D. (2017). Assessment of physico-chemical properties of tannery waste water and its impact on fresh water quality. International Journal of Current Microbiology and Applied Sciences, 6(4), 1879–1887.CrossRefGoogle Scholar
  129. Paul, D. (2017). Research on heavy metal pollution of river ganga: A review. Annals of Agrarian Science, 15, 278–286.CrossRefGoogle Scholar
  130. Paul, D., & Sinha, S. N. (2015). Isolation and characterization of a phosphate solubilizing heavy metal tolerant bacterium from river Ganga, West Bengal, India. Songklanakarin Journal of Science and Technology, 37, 651–657.Google Scholar
  131. Pawar, S., & Vaidya, R. (2012). Studies on physico chemical characteristics and level of sewage pollution in Krishna River at Wai, Dist: Satara. In Proceeding of international conference SWRDM, pp. 129–131.Google Scholar
  132. Pawari, M. J., & Gawande, S. (2015). Ground water pollution & its consequence. International Journal of Engineering Research and General Science, 3(4), 773–776.Google Scholar
  133. Pei, Y., Li, L., Li, Z., Wu, C., & Wang, J. (2012). Partitioning behavior of wastewater proteins in some ionic liquids-based aqueous two-phase systems. Separation Science and Technology, 47, 277–283.CrossRefGoogle Scholar
  134. Pierce, J. J., Weiner, R. F., & Vesihind, A. P. (1998). Environ- mental pollution and control (4th ed.). Boston: Butterworth- Heinemann Press.Google Scholar
  135. Pitchammal, V., Subramanian, G., Ramadevi, P., & Ramanathan, R. (2009). The study of water quality at Madurai, Tamilnadu, India. Nature Environment and Pollution Technology, 8(2), 355–358.Google Scholar
  136. Postel, S., & Richter, B. (2012). Rivers for life: Managing water for people and nature (pp. 1–41). Washington, DC: Island Press.Google Scholar
  137. Prabha, S., & Selvapathy, P. (1997). Toxic metal pollution in Indian Rivers. Indian Journal of Environmental Protection, 17, 641–649.Google Scholar
  138. Praveena, S. M., Aris, A. Z., & Radojevic, M. (2010). Heavy metals dynamics and source in intertidal mangrove sediment of Sabah, Borneo Island. Environment Asia, 3, 79–83.Google Scholar
  139. Pretty, J. (2002). Agri-culture. London: Earthscan.Google Scholar
  140. Pulles, W., Banister, S., & Van Biljon, M. (2005). The development of appropriate procedures towards and after closure of underground gold mines from a water management perspective (Report No. 1215/1/05). Pretoria: Water Research Commission.Google Scholar
  141. Rajbanshi, A. (2009). Study on heavy metal resistant bacteria in Guheswori sewage treatment plant. Our Nature, 6, 52–57.CrossRefGoogle Scholar
  142. Ram, C. L., Srivastava, K. N., Tripathi, C. R., Thakur, K. S., Sinha, K. A., Jha, K. A., Masto, E. R., & Mitra, S. (2007). Environmental Geology, 51, 1119.CrossRefGoogle Scholar
  143. Rao, Y. H., & Ravindhranath, K. (2013). Thermal and heavy metal ions pollution assessment in near by water bodies of Vijayawada thermal power station. Asian Journal of Chemistry, 25(3), 1547–1554.Google Scholar
  144. Rashid, A., Bhat, R. A., Qadri, H., & Mehmood, M. A. (2019). Environmental and socioeconomic factors induced blood lead in children: An investigation from Kashmir, India. Environmental Monitoring and Assessment, 191(2), 76.  https://doi.org/10.1007/s10661-019-7220-y.CrossRefGoogle Scholar
  145. Rast, W. (2009). Lakes: Freshwater storehouses and mirrors of human activities, briefing note. Assessment Programme Office for Global Water Assessment, Division of Water Sciences, pp 1–4.Google Scholar
  146. Renberg, I., Persson, M. W., & Emteryd, O. (1994). Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature, 368, 323–326.CrossRefGoogle Scholar
  147. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & Demarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research/Reviews in Mutation Research, 636(1), 178–242.CrossRefGoogle Scholar
  148. Rijsberman, F. (2004). The challenge of sanitation and water. Copenhagen Consensus, pp. 1–39.Google Scholar
  149. Rijsberman, F. R., & Molden, D. (2001). Balancing water uses: Water for food and water for nature. In International conference on freshwater 3(7), 1–20.Google Scholar
  150. Salem, H. M., Eweida, E. A., & Farag, A. (2000). Heavy metals in drinking water and their environmental impact on human health. ICEHM, 2000, 542–556.Google Scholar
  151. Sankhla, M. S., Kumari, M., Sharma, K., Kushwah, R. S., & Kumar, R. (2018). Water contamination through pesticide & their toxic effect on human health. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 6(1), 967–970.CrossRefGoogle Scholar
  152. Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. Journal of Cleaner Production, 15, 1559–1567.CrossRefGoogle Scholar
  153. Sartor, J. D., Boyd, G. B., & Agardy, F. J. (1974). Water pollution aspects of street surface contaminants. Journal (Water Pollution Control Federation), 46(3), 458–467.Google Scholar
  154. Sawhney, N. (2008). PhD thesis, University of Jammu, Jammu.Google Scholar
  155. Scannell, W. P. K., & Duffy, I. K. (2007). Effects of total dissolved solids on aquatic organisms: A review of literature and recommendation for salmonid species. American Journal of Environmental Sciences, 3(1), 1–6.CrossRefGoogle Scholar
  156. Selvaraj, K., Partiban, G., Chen-Tung, A. C., & Jiann-Yuh, L. J. (2010). Anthropogenic effects on sediment quality offshore South-Western Taiwan: Assessing the sediment core geochemical record. Continental Shelf Research, 30(10–11), 1200–1210.CrossRefGoogle Scholar
  157. Shah, B. A., Mistry, C. B., & Shah, A. V. (2013). Sequestration of Cu (II) and Ni (II) from wastewater by synthesized zeolitic materials: Equilibrium, kinetics and column dynamics. Chemical Engineering Journal, 220, 172–184.CrossRefGoogle Scholar
  158. Sharma, G., & John, R. V. (2009). Study of physico-chemical parameters of waste water from dyeing units in Agra city. Pollution Research, 28, 439–442.Google Scholar
  159. Sharma, M., Tobschall, H., & Singh, I. (2003). Environmental impact assessment in the Moradabad industrial area (rivers Ramganga-Ganga interfluve), Ganga Plain, India. Environmental Geology, 43, 957–967.CrossRefGoogle Scholar
  160. Sharma, B., Singh, S., & Siddiqi, N. J. (2014). Biomedical implications of heavy metals induced imbalances in redox systems. BioMed Research International, 2014, 640754.Google Scholar
  161. Sheykhi, V., & Moore, F. (2016). Environmental risk assessment of heavy metals pollution in aquatic ecosystem-a case study: Sediment of Kor river, Iran. Human and Ecological Risk Assessment, 22, 899–910.CrossRefGoogle Scholar
  162. Shivayogimath, C. B., Kalburgi, P. B., Deshannavar, U. B., & Virupakshaiah, D. B. M. (2012). Water quality evaluation of river Ghataprabha, India. International Journal of Environmental Science, 1(1), 12–18.Google Scholar
  163. Sindern, S., Trem€ohlen, M., Dsikowitzky, L., Gronen, L., Schwarzbauer, J., Siregar, T. H., Ariyani, F., & Irianto, H. E. (2016). Heavy metals in river and coast sediments of the Jakarta Bay region (Indonesia)-geogenic versus anthropogenic sources. Marine Pollution Bulletin, 110, 624–633.CrossRefGoogle Scholar
  164. Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 3, 246–253.CrossRefGoogle Scholar
  165. Singh, D. V., Bhat, J. I. A., Bhat, R. A., Dervash, M. A., & Ganei, S. A. (2018). Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environmental Monitoring and Assessment, 190, 353.  https://doi.org/10.1007/s10661-018-6731-2.CrossRefGoogle Scholar
  166. Smitha, Ajay, D., & Shivashankar, P. (2013). Physico chemical analysis of the freshwater at river Kapila, Nanjangudu industrial area, Mysore. International Research Journal of Environment Sciences, 2(8), 59–65.Google Scholar
  167. Solenkova, N. V., Newman, J. D., Berger, J. S., Thurston, G., Hochman, J. S., & Lamas, G. A. (2014). Metal pollutants and cardiovascular disease: Mechanisms and consequences of exposure. American Heart Journal, 168, 812–822.CrossRefGoogle Scholar
  168. Sulaiman, A., Alrumman, Attalla, F., El-kott, Sherif, M. A. S., & Keshk. (2016). Water pollution: Source & treatment (2016). American Journal of Environmental Engineering, 6(3), 88–98.Google Scholar
  169. Sun, Y., Jin, B., Wu, W., Zuo, W., Zhang, Y., Zhang, Y., & Huang, Y. (2015). Effects of temperature and composite alumina on pyrolysis of sewage sludge. Journal of Environmental Sciences, 30, 1–8.CrossRefGoogle Scholar
  170. Suthar, S., Nema, A. K., Chabukdhara, M., & Gupta, S. K. (2009). Assessment of metals in water and sediments of Hindon river, India: Impact of industrial and urban discharges. Journal of Hazardous Materials, 171, 1088–1095.CrossRefGoogle Scholar
  171. Thilaga, A., Subhashini, Sobhana, S., & Kumar, K. L. (2005). Studies on nutrient content of the Ooty Lake with reference to pollution. Nature Environment and Pollution Technology, 2, 299–302.Google Scholar
  172. Togue, F. K., Kuate, G. L. O., & Oben, L. M. (2017). Physico-chemical characterization of the surface water of Nkam River using the Principal Component Analysis. JMES, 8(6), 1910–1920.Google Scholar
  173. Ullah, S., Javed, M. W., Shafique, M., et al. (2014). An integrated approach for quality assessment of drinking water using GIS: A case study of Lower Dir. Journal of Himalayan Earth Sciences, 47(2), 163–174.Google Scholar
  174. Uqab, B., Singh, A., & Mudasir, S. (2017). Impact of sewage on physico-chemical water quality of Tawi River in Jammu city. Environmental Risk Assessment and Remediation, 1(2), 56–61.Google Scholar
  175. Varunprasath, K., & Daniel, A. N. (2010). Comparison studies of three freshwater Rivers (Cauvery, Bhavani and Noyyal) in Tamil Nadu, India, Iran. Journal of Energy and Environmental, 1(4), 315–320.Google Scholar
  176. Vikranthpridhvi, Y., & Musalaiah, M. (2015). A review on water and sewage water treatment process. Journal of Pharmaceutical Chemical and Biological Sciences, 5(1), 225–231.Google Scholar
  177. Vorosmarty, C. J. E., Douglas, P., & Green Revenga, C. (2005). Geospatial indicators of emerging water stress: An application to Africa. Ambio, 34(3), 230–236.CrossRefGoogle Scholar
  178. Wang, J. R., Broderick, A. J., & Barchowsky, A. (1999). Chromium Cr (VI) inhibits the transcriptional activity of nuclear factor-B by decreasing the interaction of p 65 with cAMP-responsive element binding protein. The Journal of Biological Chemistry, 274(51), 36207–36212.CrossRefGoogle Scholar
  179. Wang, Y., Yang, Z., Shen, Z., Tang, Z., Niu, J., & Gao, F. (2011). Assessment of heavy metals in sediments from a typical catchment of the Yangtze river, China. Environmental Monitoring and Assessment, 172, 407–417.CrossRefGoogle Scholar
  180. WHO. (2004). Environmental chemistry (2nd ed.). New York: WH Freeman and Co.Google Scholar
  181. WHO (2007) Nitrate and nitrite in drinking-water. Background document for development of WHO guidelines for drinking-water quality.Google Scholar
  182. Wosnie, A., & Wondie, A. (2014). Bahir Dar tannery effluent characterization and its impact on the head of Blue Nile River. African Journal of Environmental Science and Technology, 8(6), 312–318.CrossRefGoogle Scholar
  183. Wright, D. A., & Welbourn, P. (2002). Environmental toxicology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  184. Yahya, A. N., Mohamed, S. K., & Mohamed, A. G. (2018). Environmental pollution by heavy metals in the aquatic ecosystems of Egypt. Open Access Journal of Toxicology, 3(1), 555603.  https://doi.org/10.19080/OAJT.2018.03.555603.CrossRefGoogle Scholar
  185. Yonglong, L. U., Song, S., Wang, R., et al. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–15.CrossRefGoogle Scholar
  186. Yuan, C., Xu, Z., Fan, M., Liu, H., Xie, Y., & Zhu, T. (2014). Study on characteristics and harm of surfactants. Journal of Chemical & Pharmaceutical Research, 6, 2233–2237.Google Scholar
  187. Yusuff, R. O., & Sonibare, J. A. (2004). Characterization of textile industries effluents in Kaduna, Nigeria and pollution implications. Global NEST International Journal, 6(3), 212–221.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nighat Mushtaq
    • 1
  • Dig Vijay Singh
    • 2
  • Rouf Ahmad Bhat
    • 2
  • Moonisa Aslam Dervash
    • 2
  • Omar bin Hameed
    • 3
  1. 1.Division of Vegetable ScienceSher-e-Kashmir University of Agricultural Sciences and TechnologyJammuIndia
  2. 2.Division of Environmental ScienceSher-e-Kashmir University of Agricultural Sciences and TechnologyJammuIndia
  3. 3.College of Natural SciencesArba Minch UniversityArba MinchEthiopia

Personalised recommendations