Advertisement

Aquatic Pollution Stress and Role of Biofilms as Environment Cleanup Technology

  • Shakeel Ahmad Dar
  • Rouf Ahmad Bhat
Chapter

Abstract

The burden of pollutants in water is growing at an alarming rate. The Pollution load is the chief element responsible for ecological stress in aquatic ecosystems. Causative agents for stress in the aquatic ecosystem are usually heavy metals, limiting or excessive nutrient availability, pesticides, pharmaceuticals and changing water properties. Biofilms are collective populations of microbes embodied in the extracellular polymeric substance and are mostly found on different surfaces. These are good indicators of pollution as well as the best candidates for the treatment of pollution load in water bodies. Microbial populations from biofilm have been successfully characterized and used for bioremediation and removal of nutrients from polluted waters due to their unique mechanism of binding with pollutants and high tolerance limit. Biofilm based bioreactors are in use today for cleaning polluted water and have been proved to be more efficient than conventional pollution treatment plants. In this section an effort has been made to evaluate biofilm as the best available option for environmental cleanup of pollution in aquatic ecosystems.

Keywords

Biofilm Aquatic ecosystem Pollution Bioremediation Wastewater Microbes 

References

  1. Abou-Zeid, D. M., Muller, R. J., & Deckwer, W. D. (2004). Biodegradation of aliphatic homopolyesters and aliphatic–aromatic copolyesters by anaerobic microorganisms. Biomacromolecules, 5, 1687–1697.CrossRefGoogle Scholar
  2. Adriano, D. C. (2001). Trace elements in terrestrial environments (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  3. Aggarwal, S., Stewart, P., & Hozalski, R. (2016). Biofilm cohesive strength as a basis for biofilm recalcitrance: Are bacterial biofilms overdesigned. Sage Journals, 8(2), 29–32.Google Scholar
  4. Andersson, S. (2009). Characterization of bacterial biofilms for wastewater treatment. Royal Institute of Technology Stockholm, 1–77.Google Scholar
  5. Anderson-Glenna, M. J., Bakkestuen, V., & Clipson, N. J. W. (2008). Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiology Ecology, 64, 407–418.CrossRefGoogle Scholar
  6. Badireddy, A. R., Chellam, S., Gassman, P. L., Engelhard, M. H., Lea, A. S., & Rosso, K. M. (2010). Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Research, 44, 4505–4516.CrossRefGoogle Scholar
  7. Battin, T. J., Wille, A., Sattler, B., & Psenner, R. (2001). Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Applied and Environmental Microbiology, 67, 799–807.CrossRefGoogle Scholar
  8. Battin, T. J., Sloan, W. T., Kjelleberg, S., Daims, H., Head, I. M., & Curtis, T. P. (2007). Microbial landscapes: New paths to biofilm research. Nature Reviews. Microbiology, 5, 76–81.CrossRefGoogle Scholar
  9. Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., & Packman, A. I. (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1, 95–100.CrossRefGoogle Scholar
  10. Beketov, M. A., & Liess, M. (2005). Acute contamination with esfenvalerate and food limitation: Chronic effects on the mayfly, Cloeon dipterum. Environmental Toxicology and Chemistry, 24, 1281–1286.CrossRefGoogle Scholar
  11. Beketov, M. A., & Liess, M. (2006). The influence of predation on the chronic response of Artemia sp. populations to a toxicant. Journal of Applied Ecology, 43, 1069–1074.CrossRefGoogle Scholar
  12. Besemer, K. (2015). Biodiversity, community structure and function of biofilms in stream ecosystems. Research in Microbiology, 20, 1–8.Google Scholar
  13. Besemer, K., Peter, H., Logue, J. B., Langenheder, S., Lindström, E. S., & Tranvik, L. J. (2012). Unraveling assembly of stream biofilm communities. The ISME Journal, 6, 1459–1468.CrossRefGoogle Scholar
  14. Bestawy, E., AL-Hejin, A., Amer, R., & Kashmeri, R. A. (2014). Decontamination of domestic wastewater using suspended individual and mixed bacteria in batch system. Journal of Bioremediation and Biodegradation, 5, 231.CrossRefGoogle Scholar
  15. Biofilm Engineering. (2008). Biofilm basics. http://www.biofilm.montana.edu/biofilm-basics/what_are_biofilms.html
  16. Boivin, M. E. Y., Massieux, B., Breure, A. M., Greve, G. D., Rutgers, M., & Admiraal, W. (2006). Functional recovery of biofilm bacterial communities after copper exposure. Environmental Pollution, 140, 239–246.CrossRefGoogle Scholar
  17. Borga, K., Gabrielsen, G. W., & Skaare, J. U. (2001). Biomagnification of organochlorines along a Barents Sea food chain. Environmental Pollution, 113, 187–198.CrossRefGoogle Scholar
  18. Bouletreau, S., Lyautey, E., Dubois, S., CompinA, D. C., & Touron-Bodilis, A. (2014). Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify. Science of the Total Environment, 466, 856–863.CrossRefGoogle Scholar
  19. Branda, S. S., Vik, F. L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13(1), 20–26.CrossRefGoogle Scholar
  20. Brown, J. N., & Peake, B. M. (2006). Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Science of the Total Environment, 359, 145–155.CrossRefGoogle Scholar
  21. Burgos-Caraballo, S., Cantrell, S. A., & Ramirez, A. (2014). Diversity of benthic biofilms along a land use gradient in tropical headwater streams, Puerto Rico. Microbial Ecology, 68, 47–59.CrossRefGoogle Scholar
  22. Clark, E. G. A., & Susan, J. T. (2012). Microbial biofilms current research and applications. Norfolk: Caister Academic Press.Google Scholar
  23. Coors, A., & DeMeester, L. (2008). Synergistic, antagonistic and additive effects of multiple stressors: Predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology, 45, 1820–1828.CrossRefGoogle Scholar
  24. Cogan, N. G., & Keener, J. P. (2004). The role of the biofilm matrix in structural development. Mathematical Medicine and Biology, 21(2), 147–166.CrossRefGoogle Scholar
  25. Cydzik-Kwiatkowska, A. (2015). Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle. Bioresource Technology, 181, 312–320.CrossRefGoogle Scholar
  26. Daniel, L., Hera, V., & Roberto, K. (2010). Biofilms. Cold Spring Harbor Perspectives in Biology, 2(7), 1943–0264.Google Scholar
  27. Das, M., Royer, T. V., & Leff, L. G. (2004). Diversity of fungi, bacteria and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73, 756–767.CrossRefGoogle Scholar
  28. Dasgupta, D., Ghosh, R., & Sengupta, T. K. (2013). Biofilm-mediated enhanced crude oil degradation by newly isolated pseudomonas species. Hindawi Publishing Corporation ISRN Biotechnology, 250749, 1–13.Google Scholar
  29. DeForest, J. L., Drerup, S. A., & Vis, M. L. (2016). Using fatty acids to fingerprint biofilm communities: A means to quickly and accurately assess stream quality. Environmental Monitoring and Assessment, 188, 277.CrossRefGoogle Scholar
  30. Denkhaus, E., Meisen, S., Telgheder, U., & Wingender, J. (2007). Chemical and physical methods for characterization of biofilms. Microchimica Acta, 158(1), 1–27.Google Scholar
  31. Denoyelles, F., Kettle, W. D., & Sinn, D. E. (1982). The responses of plankton communities in experimental ponds to atrazine, the most heavily used pesticide in the United States. Ecology, 63, 1285–1293.CrossRefGoogle Scholar
  32. Duong, T. T., Morinc, S., Herlory, O., Feurtet-Mazel, A., Coste, M., & Boudou, A. (2008). Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquatic Toxicology, 90, 19–28.CrossRefGoogle Scholar
  33. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890.CrossRefGoogle Scholar
  34. Duquesne, S., & Liessm, M. (2003). Increased sensitivity of the macroinvertebrate Paramoreawalkeri to heavy metal contamination in the presence of solar UV radiation in Antarctic shoreline waters. Marine Ecology Progress Series, 255, 183–191.CrossRefGoogle Scholar
  35. Fierer, N., Morse, J. L., Berthrong, S. T., Bernhardt, E. S., & Jackson, R. B. (2007). Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology, 88, 2162–2173.CrossRefGoogle Scholar
  36. Findlay, S. E. G., Sinsabaugh, R. L., Sobczak, W. V., & Hoostal, M. (2003). Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography, 248, 1608–1617.CrossRefGoogle Scholar
  37. Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The “house of biofilm cells”. Journal of Bacteriology, 189(22), 7945–7947.CrossRefGoogle Scholar
  38. Freimann, R., Burgmann, H., Findlay, S. E. G., & Robinson, C. T. (2014). Spatio-temporal patterns of major bacterial groups in alpine waters. PLOS One, 9, 3511–3524.CrossRefGoogle Scholar
  39. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418.CrossRefGoogle Scholar
  40. Gold, C., Feurtet-Mazel, A., Coste, M., & Boudou, A. (2002). Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers. Water Research, 36, 3654–3664.CrossRefGoogle Scholar
  41. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95–108.CrossRefGoogle Scholar
  42. Hatfield Consultants. (2007). Regional aquatic monitoring programme. http://www.ramp-alberta.org/river/gallery.aspx?galleryimage=1166
  43. Heino, J., Tolkkinen, M., Pirttilea, A. M., Aisala, H., & Mykrea, H. (2014). Microbial diversity and community-environment relationships in boreal streams. Journal of Biogeography, 41, 2234–2244.CrossRefGoogle Scholar
  44. Hoellein, T. J., Tank, J. L., Kelly, J. J., & Rosi-Marshall, E. J. (2010). Seasonal variation in nutrient limitation of microbial biofilms colonizing organic and inorganic substrata in streams. Hydrobiologia, 649, 331–345.CrossRefGoogle Scholar
  45. Hullar, M. A. J., Kaplan, L. A., & Stahl, D. A. (2006). Recurring seasonal dynamics of microbial communities in stream habitats. Applied and Environmental Microbiology, 72, 713–722.CrossRefGoogle Scholar
  46. Jackson, E. F., & Jackson, C. R. (2008). Viruses in wetland ecosystems. Freshwater Biology, 53, 1214–1227.CrossRefGoogle Scholar
  47. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.CrossRefGoogle Scholar
  48. Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.CrossRefGoogle Scholar
  49. Jiang, X., Ma, M., & Li, J. (2008). Bacterial diversity of active sludge in waste-water treatment plant. Earth Science Frontiers, 15, 163–168.CrossRefGoogle Scholar
  50. Johnson, L. T., Tank, J. L., & Dodds, W. K. (2009). The influence of land use on stream biofilm nutrient limitation across eight North American ecoregions. Canadian Journal of Fisheries and Aquatic Sciences, 66, 1081–1094.CrossRefGoogle Scholar
  51. Joo, J. H., Hassan, S. H. A., & Oh, S. E. (2010). Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. International Biodeterioration and Biodegradation, 64, 734–741.CrossRefGoogle Scholar
  52. Kang, J. H., Katayama, Y., & Kondo, F. (2006). Biodegradation or metabolism of bisphenol A: From microorganisms to mammals. Toxicology, 217, 81–90.CrossRefGoogle Scholar
  53. Kao, W. C., Chiu, Y. P., Chang, C. C., & Chang, J. S. (2006). Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli. Biotechnology Progress, 22, 1256–1264.CrossRefGoogle Scholar
  54. Kjelleberg, S., & Givskov, M. (2007). The biofilm mode of life: Mechanisms and adaptations. Wymondham: Horizon Bioscience. http://www.open-accessbiology.com/biofilms/biofilmsch2.pdf.
  55. Kolari, M., Nuutinen, J., & Salkinoja-Salonen, M. S. (2001). Mechanisms of biofilm formation in paper machine by Bacillus species: The role of Deinococcus geothermalis. Journal of Industrial Microbiology & Biotechnology, 27, 343–351.CrossRefGoogle Scholar
  56. Kong, Y., Xia, Y., Nielsen, J. L., & Nielsen, P. H. (2007). Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology, 153(12), 4061–4073.CrossRefGoogle Scholar
  57. Kropfl, K., Vlada, P., Szabo, K., Acs, E., Borsodi, A. K., Szikora, S., Caroli, S., & Zaray, G. (2006). Chemical and biological characterization of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 144, 626–631.CrossRefGoogle Scholar
  58. Kwiatkowska, A. C., & Zielinska, M. (2016). Bacterial communities in full-scale wastewater treatment systems. World Journal of Microbiology and Biotechnology, 32, 66.CrossRefGoogle Scholar
  59. Laspidou, C. S., & Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36, 2711–2720.CrossRefGoogle Scholar
  60. Lawrence, J. R., Swerhone, G. D. W., Leppard, G. G., Araki, T., & Zhang, X. (2003). Scanning transmission X-Ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Applied and Environmental Microbiology, 69(9), 5543–5554.CrossRefGoogle Scholar
  61. Lear, G., Boothroyd, I. K. G., Turner, S. J., Roberts, K., & Lewis, G. D. (2009). A comparison of bacteria and benthic invertebrates as indicators of ecological health in streams. Freshwater Biology, 54, 1532–1543.CrossRefGoogle Scholar
  62. Leguay, S., Lavoie, I., Levy, J. I., & Fortin, C. (2016). Using biofilms for monitoring metal contamination in lotic ecosystems: The protective effects of hardness and pH on metal bioaccumulation. Environmental Toxicology and Chemistry, 35(6), 1489–1501.CrossRefGoogle Scholar
  63. Lewandowski, Z., Bozeman, M. T., & Boltz, J. P. (2011). Biofilms in water and wastewater treatment (pp. 529–567). Tampa: CH2M Hill Inc.Google Scholar
  64. Li, D., Sharp, J. O., Saikaly, P. E., Ali, S., Alidina, M., & Alarawi, M. S. (2012). Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems. Applied and Environmental Microbiology, 78, 6819–6828.CrossRefGoogle Scholar
  65. Lim, H. S., Lee, J. S., Chon, H. T., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96, 223–230.CrossRefGoogle Scholar
  66. Liong, M. T. (2011). Bioprocess sciences and technology. Hauppauge: Nova Science Publishers.Google Scholar
  67. Lydy, M. J., & Austin, K. R. (2005). Toxicity assessment of pesticide mixtures typical of the Sacramento-San Joaquin Delta using Chironomu stentans. Archives of Environmental Contamination and Toxicology, 48, 49–55.CrossRefGoogle Scholar
  68. Ma, Q., Qu, Y., Shen, W., Zhang, Z., Wang, J., Liu, Z., Li, D., Li, H., & Zhou, J. (2015). Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology, 179, 436–443.CrossRefGoogle Scholar
  69. Mages, M., Ovari, M., VonTumpling, W., & Kropfl, K. (2004). Biofilms as bio-indicator for polluted waters: Total reflection X-ray fluorescence analysis of biofilms of the Tisza river (Hungary). Analytical and Bioanalytical Chemistry, 378, 1095–1101.CrossRefGoogle Scholar
  70. Mangwani, N., Shukla, S. K., Rao, T. S., & Das, S. (2013). Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids and Surfaces, B: Biointerfaces, 114, 301–309.CrossRefGoogle Scholar
  71. Mann, R. M., Hyne, R. V., Choung, C. B., & Wilson, S. P. (2009). Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environmental Pollution, 157, 2903–2927.CrossRefGoogle Scholar
  72. Mathew, B. B., Tiwari, A., & Jatawa, S. K. (2011). Free radicals and antioxidants: A review. Journal of Pharma Research, 4(12), 4340–4343.Google Scholar
  73. Monteiro, D. A., Alves de Almeida, J., Rantin, F. T., & Al, K. (2006). Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed toorganophosphorus insecticide Folisuper 600 (methyl parathion). Comparative Biochemistry and Physiology, 143, 141–149.CrossRefGoogle Scholar
  74. Morais, S., Costa, F. G., & Pereira, M. L. (2012). Heavy metals and human health. In J. Oosthuizen (Ed.), Environmental health – Emerging issues and practice (pp. 227–246). Rijeka: InTech.Google Scholar
  75. Morgenroth, E. (2008). Modelling biofilm systems. In M. Henze, M. C. M. van Loosdrecht, G. Ekama, & D. Brdjanovic (Eds.), Biological wastewater treatment – Principles, modelling, and design (pp. 457–492). London: IWA Publishing.Google Scholar
  76. Nguyen, H. T., Le, V. Q., Hansen, A. A., Nielsen, J. L., & Nielsen, P. H. (2011). High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera related bacteria in activated sludge systems. FEMS Microbiology Ecology, 76(2), 256–267.CrossRefGoogle Scholar
  77. Nielsen, P. H., Mielczarek, A. T., Kragelund, C., Nielsen, J. L., Saunders, A. M., Kong, Y., Hansen, A. A., & Vollertsen, J. (2010). A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Research, 44(17), 5070–5088.CrossRefGoogle Scholar
  78. Nocker, A., Lepo, J. E., Martin, L. L., & Snyder, R. A. (2007). Response of estuarine biofilm microbial community development to changes in dissolved oxygen and nutrient concentrations. Microbial Ecology, 54(3), 532–542.CrossRefGoogle Scholar
  79. O’Brien, P. J., & Wehr, J. D. (2010). Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. Hydrobiologia, 657, 89–105.CrossRefGoogle Scholar
  80. Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L. L., & Reis, M. A. (2007). Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research, 41(11), 2271–2300.CrossRefGoogle Scholar
  81. Olapade, O. A., & Leff, L. G. (2005). Seasonal response of stream biofilm communities to dissolved organic matter and nutrient enrichments. Applied and Environmental Microbiology, 71, 2278–2287.CrossRefGoogle Scholar
  82. Park, H., Murthy, S., & Bott, C. (2014). Nationwidemetagenome survey of anammox processes via high-throughput next generation sequencing (NGS): 2012–2013. Proceedings of the Water Environment Federation, 2014, 2366–2371.CrossRefGoogle Scholar
  83. Piggott, J. J., Salis, R. K., Lear, G., Townsend, C. R., & Matthaei, C. D. (2015). Climate warming and agricultural stressors interact to determine stream periphyton community composition. Global Change Biology, 21, 206–222.CrossRefGoogle Scholar
  84. Pinto, E., Morse, D., & Calepicolo, P. (2003). Heavy metal induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018.CrossRefGoogle Scholar
  85. Porsbring, T., Arrhenius, S., Backhaus, T., Kuylenstierna, M., Scholze, M., & Blanck, H. (2007). The SWIFT periphyton test for high-capacity assessments of toxicant effects on microalgal community development. Journal of Experimental Marine Biology and Ecology, 349(2), 299–312.CrossRefGoogle Scholar
  86. Qu, X., Ren, Z., Zhang, H., Zhang, M., Zhang, Y., Liu, X., & Peng, W. (2017). Influences of anthropogenic land use on microbial community structure and functional potentials of stream benthic biofilms. Scientific Reports, 7, 15117.CrossRefGoogle Scholar
  87. Rakaiby, M. E., Essam, T., & Hashem, A. (2012). Isolation and characterization of relevant algal and bacterial strains from Egyptian environment for potential use in photosynthetically aerated wastewater treatment. Journal of Bioremediation & Biodegradation, S8(001), 1–5.Google Scholar
  88. Rehman, H., Aziz, A. T., Saggu, S., Khurshid, Z. A., Mohan, A., & Ansari, A. A. (2014). Systematic review on pyrethroid toxicity with special reference to deltamethrin. Indian Journal of Entomology and Zoology Studies, 2(5), 01–06.Google Scholar
  89. Reisinger, A. J., Tank, J. L., & Dee, M. M. (2016). Regional and seasonal variation in nutrient limitation of river biofilms. Freshwater Science, 35(2), 474–489.CrossRefGoogle Scholar
  90. Ren, Z., Jiang, Z. Y., & Cai, Q. H. (2013). Longitudinal patterns of periphyton biomass in Qinghai–Tibetan Plateau streams: An indicator of pasture degradation. Quaternary International, 313, 92–99.CrossRefGoogle Scholar
  91. Romaní, A. M., Guasch, H., Munoz, I., Ruana, J., Vilalta, E., & Schwartz, T. (2004). Biofilm structure and function and possible implications for riverine DOC dynamics. Microbial Ecology, 47, 316–328.CrossRefGoogle Scholar
  92. Romaní, A. M., Borrego, C. M., Díaz-Villanueva, V., Freixa, A., Gich, F., & Ylla, I. (2014). Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming. Environmental Microbiology, 16, 2550–2567.CrossRefGoogle Scholar
  93. Rozitis, D. Z., & Strade, E. (2014). COD reduction ability of microorganisms isolated from highly loaded pharmaceutical wastewater pre-treatment process. Journal of Mater Environmental Sciences, 6(2), 507–512.Google Scholar
  94. Rubin, M. A., & Leff, L. G. (2007). Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA). Microbial Ecology, 54, 374–383.CrossRefGoogle Scholar
  95. Ryder, D. S., & Miller, W. (2005). Setting goals and measuring success: Linking patterns and processes in stream restoration. Hydrobiology, 552, 147–158.CrossRefGoogle Scholar
  96. Sabater, S., Guasch, H., Ricart, M., Romani, A., Vidal, G., Klunder, C., & Schmitt-Jansen, M. (2007). Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and Bioanalytical Chemistry, 387(4), 1425–1434.CrossRefGoogle Scholar
  97. Santos, V. L., & Linardi, V. R. (2004). Biodegradation of phenol by a filamentous fungi isolated from industrial effluents-identification and degradation potential. Process Biochemistry, 39, 1001–1006.CrossRefGoogle Scholar
  98. Scandalios, J. G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995–1014.CrossRefGoogle Scholar
  99. Schafer, R. B., Van Den Brink, P. J., & Liess, M. (2011). Impacts of pesticides on freshwater ecosystems. Ecological Impacts of Toxic Chemicals, 2011, 111–137.Google Scholar
  100. Sekar, R., Nair, K. V. K., Rao, V. N. R., & Venugopalan, V. P. (2002). Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshwater Biology, 47, 1893–1907.CrossRefGoogle Scholar
  101. Sgountzos, I. N., Pavlou, S., Paraskeva, C. A., & Payatake, A. C. (2006). Growth kinetics of Pseudomonas flourescens in sand beds during biodegradation of phenol. Biochemical Engineering Journal, 30(2), 164–173.CrossRefGoogle Scholar
  102. Sheng, G. P., Yu, H. Q., & Li, X. Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28, 882–894.CrossRefGoogle Scholar
  103. Singh, P., & Cameotra, S. S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications, 319, 291–297.CrossRefGoogle Scholar
  104. Sivasamy, A., & Sundarabal, N. (2011). Biosorption of an azo-dye by Aspergillusniger and Trichoderma sp. fungal biomasses. Current Microbiology, 62, 351–357.CrossRefGoogle Scholar
  105. Smucker, N. J., Detenbeck, N. E., & Morrison, A. C. (2013). Diatom responses to watershed development and potential moderating effects of near-stream forest and wetland cover. Freshwater Science, 32, 230–249.CrossRefGoogle Scholar
  106. SriuNaik, S., & PydiSetty, Y. (2011). Biological Denitrification of wastewater in aFBBRd by immobilization of Pseudomonas stutzeri using poly propylene granules. International Journal of Biotechnology Applications, 3, 106–109.CrossRefGoogle Scholar
  107. Srivastava, J. K., Chandra, H., Kalra, S. J. S., Mishra, P., Khan, H., & Yadav, P. (2017). Plant–microbe interaction in aquatic system and their role in the management of water quality: A review. Applied Water Science, 7, 1079–1090.CrossRefGoogle Scholar
  108. Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56, 187–209.CrossRefGoogle Scholar
  109. Subtil, E. L., Mierzwa, J. C., & Hespanhol, I. (2014). Comparison between a conventional membrane bioreactor (C-MBR) and a biofilm membrane bioreactor (BF-MBR) for domestic wastewater treatment. Brazilian Journal of Chemical Engineering, 31(3), 683–691.CrossRefGoogle Scholar
  110. Tatarko, M., & Bumpus, J. A. (1998). Biodegradation of Congo Red by Phanerochaetechrysosporium. Water Research, 32, 1713–1717.CrossRefGoogle Scholar
  111. Teittinen, A., Taka, M., Ruth, O., & Soininen, J. (2015). Variation in stream diatom communities in relation to water quality and catchment variables in a boreal, urbanized region. Science of the Total Environment, 530, 279–289.CrossRefGoogle Scholar
  112. Tsuruta, T. (2004). Biosorption and recycling of gold using various microorganisms. The Journal of General and Applied Microbiology, 50, 221–228.CrossRefGoogle Scholar
  113. Villaverde, S. (2004). Recent development on biological nutrient removal processes for wastewater treatment. Reviews in Environmental Science and Biotechnology, 3, 171–183.CrossRefGoogle Scholar
  114. Wang, J., Quan, X., Han, L., Qian, Y., & Werner, H. (2002). Microbial degradation of quinoline by immobilized cells of Burkholderiapickettii. Water Research, 36, 2288–2296.CrossRefGoogle Scholar
  115. Wang, Y., Tian, Y., Han, B., Zhao, H. B., Bi, J. N., & Bl, C. (2007). Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. Journal of Environmental Sciences, 19, 222–225.CrossRefGoogle Scholar
  116. Wang, J., Soininen, J., He, J., & Shen, J. (2012). Phylogenetic clustering increases with elevation for microbes. Environmental Microbiology Reports, 4, 217–226.CrossRefGoogle Scholar
  117. Wang, Z., Zhang, X. X., Lu, X., Liu, B., Li, Y., Long, C., & Li, A. (2014). Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS One, 9(11), 113–603.Google Scholar
  118. Watnick, P., & Kolter, R. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182(10), 2675–2679.CrossRefGoogle Scholar
  119. Webb, J. S. (2007). Differentiation and dispersal in biofilms. Journal of Microbiological Methods, 9(3), 165–174.Google Scholar
  120. Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J., & Besemer, K. (2013). Microbial biodiversity in glacier-fed streams. The ISME Journal, 7, 1651–1660.CrossRefGoogle Scholar
  121. Wilhelm, L., Besemer, K., Fasching, C., Urich, T., Singer, G. A., & Quince, C. (2014). Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environmental Microbiology, 16, 2514–2524.CrossRefGoogle Scholar
  122. Wu, Y., He, J., & Yang, L. (2010). Evaluating adsorption and biodegradation mechanisms during the removal of microcystin-RR by periphyton. Environmental Science & Technology, 44, 6319–6324.CrossRefGoogle Scholar
  123. Wu, Y., Li, T., & Yang, L. (2012). Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: A review. Bioresource Technology, 107, 10–18.CrossRefGoogle Scholar
  124. Xia, N., Xia, X., Liu, T., Hu, L., Zhu, B., Zhang, X., et al. (2014). Characteristics of bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world. Journal of Soils and Sediments, 14, 1894–1904.CrossRefGoogle Scholar
  125. Xuemei, W., Jingling, L., Muyuan, M., & Zhifeng, Y. (2010). Response of freshwater biofilm to pollution and ecosystem in Baiyangdian Lake of China. Procedia Environmental Sciences, 2, 1759–1769.CrossRefGoogle Scholar
  126. Yariv, C. (2001). Biofiltration-the treatment of fluids by microorganisms immobilized into the filter bedding material: A review. Bioresource Technology, 77, 257–274.CrossRefGoogle Scholar
  127. Zacharia, J. T. (2011). Ecological effects of pesticides. In D. M. Stoytcheva (Ed.),. ISBN: 978-953-307-458-0 Pesticides in the modern world – Risks and benefits. Rijeka: InTech.Google Scholar
  128. Zhang, L., Keller, J., & Yuan, Z. (2009). Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Research, 43, 4123–4132.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shakeel Ahmad Dar
    • 1
  • Rouf Ahmad Bhat
    • 1
  1. 1.Division of Environmental SciencesSher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia

Personalised recommendations