Advertisement

Oxidative Stress and Modulation of Cardiac Kv1.5 Channel

  • Rajabrata Bhuyan
  • Sajal Chakraborti
Chapter

Abstract

Oxidative stress is a result of imbalance between cellular oxidants and antioxidants. The oxidants like Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are considered to induce many pathological processes including heart failure. They target the ion channels for any kind of modifications or mutations that alter the channels' usual function. There are evidences showing oxidative stress to modulate the ion channels and transporters that play crucial role in general physiology of heart, leading to many prevalent cardiovascular disorders including atrial fibrillation (AF). Though the fundamental cause of AF is not still understood, but modulation of Kv1.5 channel has been successfully proved to be one of the strategic therapeutic interventions. In this chapter, the current knowledge on the effects of oxidative stress in heart has been summarized along with the roles of ion channels and their modulation.

Keywords

Oxidative stress Heart Kv1.5 channel Atrial fibrillation 

References

  1. 1.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055.  https://doi.org/10.1016/0003-2697(69)90079-7 CrossRefGoogle Scholar
  2. 2.
    Ceconi C, Boraso A, Cargnoni A, Ferrari R (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221CrossRefGoogle Scholar
  3. 3.
    Chandrasekaran A, Idelchik M del PS, Melendez JA (2017) Redox control of senescence and age-related disease. Redox Biol 11:91–102CrossRefGoogle Scholar
  4. 4.
    Kukreja RC, Hess ML (1992) The oxygen free radical system: From equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc Res 26:641–655.  https://doi.org/10.1093/cvr/26.7.641 CrossRefPubMedGoogle Scholar
  5. 5.
    Singal PK, Khaper N, Palace V, Kumar D (1998) The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 40:426–432.  https://doi.org/10.1016/S0008-6363(98)00244-2 CrossRefPubMedGoogle Scholar
  6. 6.
    Kukreja RC, Hess ML (1994) Free Radicals, Cardiovascular Dysfunction and Protective Strategies. R. G. Landes Co., AustinGoogle Scholar
  7. 7.
    Tomaselli GF, Barth AS (2010) Sudden cardio arrest: Oxidative stress irritates the heart. Nat Med 16:648–649CrossRefGoogle Scholar
  8. 8.
    Stuehr DJ, Kwon NS, Nathan CF (1990) FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun 168:558–565.  https://doi.org/10.1016/0006-291X(90)92357-6 CrossRefPubMedGoogle Scholar
  9. 9.
    Marletta MA (1989) Nitric oxide: biosynthesis and biological significance. Trends Biochem Sci 14:488–492CrossRefGoogle Scholar
  10. 10.
    Ferrari R, Guardigli G, Mele D et al (2004) Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 10:1699–1711.  https://doi.org/10.2174/1381612043384718 CrossRefPubMedGoogle Scholar
  11. 11.
    Nishiyama Y, Ikeda H, Haramaki N et al (1998) Oxidative stress is related to exercise intolerance in patients with heart failure. Am Heart J 135:115–120.  https://doi.org/10.1016/S0002-8703(98)70351-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Keith M, Geranmayegan A, Sole MJ et al (1998) Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 31:1352–1356CrossRefGoogle Scholar
  13. 13.
    Mallat Z, Philip I, Lebret M et al (1998) Elevated levels of 8-iso-prostaglandin F(2α) in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97:1536–1539.  https://doi.org/10.1161/01.CIR.97.16.1536 CrossRefGoogle Scholar
  14. 14.
    Tappel AL (1980) Vitamin E and selenium protection from in vivo lipid peroxidation∗. Ann N Y Acad Sci 355:18–31.  https://doi.org/10.1111/j.1749-6632.1980.tb21324.x CrossRefPubMedGoogle Scholar
  15. 15.
    Weitz ZW, Birnbaum AJ, Skosey JL et al (1991) High breath pentane concentrations during acute myocardial infarction. Lancet 337:933–935.  https://doi.org/10.1016/0140-6736(91)91569-G CrossRefPubMedGoogle Scholar
  16. 16.
    Sobotka PA, Brottman MD, Weitz Z et al (1993) Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radic Biol Med 14:643–647.  https://doi.org/10.1016/0891-5849(93)90145-K CrossRefPubMedGoogle Scholar
  17. 17.
    Choudhary G, Dudley SC (2002) Heart failure, oxidative stress, and ion channel modulation. Congest Heart Fail 8:148–155.  https://doi.org/10.1111/j.1527-5299.2002.00716.x CrossRefPubMedGoogle Scholar
  18. 18.
    Hille B (2001) Ion channels of excitable membranes. Sinauer Associates. Sunderland, MA 1375Google Scholar
  19. 19.
    Hille B (1992) Ionic channels of excitable membranes, Ed 2. Sinauer Association Inc., Sunderland, MassachusettsGoogle Scholar
  20. 20.
    Purves D, Augustine GJ, Fitzpatrick D et al (2004) Neuroscience, Ed 3. Sinauer Associates. Inc., USAGoogle Scholar
  21. 21.
    Hille B, Catterall WA (2012) Electrical excitability and ion channels. In: Basic neurochemistry, pp 63–80CrossRefGoogle Scholar
  22. 22.
    Roden DM, Balser JR, George AL Jr, Anderson ME (2002) Cardiac ion channels. Annu Rev Physiol 64:431–475.  https://doi.org/10.1161/circep.108.789081 CrossRefPubMedGoogle Scholar
  23. 23.
    Grant AO (2009) Cardiac ion channels. Circ Arrhythm Electrophysiol 2:185–194CrossRefGoogle Scholar
  24. 24.
    Priest BT, McDermott JS (2015) Cardiac ion channels. Channels (Austin) 9:352–359.  https://doi.org/10.1080/19336950.2015.1076597 CrossRefGoogle Scholar
  25. 25.
    Ackerman MJ, Clapham DE (1997) Ion channels–basic science and clinical disease. N Engl J Med 336:1575–1586.  https://doi.org/10.1056/NEJM199705293362207 CrossRefPubMedGoogle Scholar
  26. 26.
    Belardinelli L, Antzelevitch C, Fraser H (2004) Inhibition of late (sustained/persistent) sodium current: a potential drug target to reduce intracellular sodium-dependent calcium overload and its detrimental effects on cardiomyocyte function. Eur Hear J Suppl 6:I3–I7.  https://doi.org/10.1016/S1520-765X(04)80002-6 CrossRefGoogle Scholar
  27. 27.
    Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol 24:387–423.  https://doi.org/10.1146/annurev.pa.24.040184.002131 CrossRefPubMedGoogle Scholar
  28. 28.
    Carmeliet E, Mubagwa K (1998) Antiarrhythmic drugs and cardiac ion channels: mechanisms of action. Prog Biophys Mol Biol 70:1–72.  https://doi.org/10.1016/S0079-6107(98)00002-9. [pii]CrossRefPubMedGoogle Scholar
  29. 29.
    Annunziato L, Pannaccione A, Cataldi M et al (2002) Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging 23:819–834.  https://doi.org/10.1016/S0197-4580(02)00069-6 CrossRefPubMedGoogle Scholar
  30. 30.
    Liu Y, Gutterman DD (2002) Oxidative stress and potassium channel function. Clin Exp Pharmacol Physiol 29:305–311CrossRefGoogle Scholar
  31. 31.
    Takahashi K, Kakimoto Y, Toda K, Naruse K (2013) Mechanobiology in cardiac physiology and diseases. J Cell Mol Med 17:225–232CrossRefGoogle Scholar
  32. 32.
    Fedele F, Mancone M, Chilian WM et al (2013) Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease. Basic Res Cardiol 108:387.  https://doi.org/10.1007/s00395-013-0387-4 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ramírez A, Vázquez-Sánchez AY, Carrión-Robalino N, Camacho J (2016) Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxidative Med Cell Longev 2016:1–17.  https://doi.org/10.1155/2016/3928714 CrossRefGoogle Scholar
  34. 34.
    Rourke BO, D a K, Tomaselli GF et al (1999) Mechanisms of altered excitation-contraction coupling in experimental studies. Heart 84:562–570.  https://doi.org/10.1161/01.RES.84.5.562 CrossRefGoogle Scholar
  35. 35.
    Pogwizd SM, Qi M, Yuan W et al (1999) Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019.  https://doi.org/10.1161/01.RES.85.11.1009 CrossRefPubMedGoogle Scholar
  36. 36.
    Amos GJ, Wettwer E, Metzger F et al (1996) Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol 491:31–50.  https://doi.org/10.1113/jphysiol.1996.sp021194 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fedida D, Wible B, Wang Z et al (1993) Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res 73:210–216.  https://doi.org/10.1161/01.RES.73.1.210 CrossRefPubMedGoogle Scholar
  38. 38.
    Feng J, Wible B, Li G-R et al (1997) Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res 80:572–579.  https://doi.org/10.1161/01.RES.80.4.572 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Z, Fermini B, Nattel S (1993) Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ Res 73:1061–1076.  https://doi.org/10.1161/01.RES.73.6.1061 CrossRefPubMedGoogle Scholar
  40. 40.
    Li GR, Feng J, Yue L et al (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 78:689–696CrossRefGoogle Scholar
  41. 41.
    Alpert JS, Petersen P, Godtfredsen J (1988) Atrial fibrillation: natural history, complications, and management. Annu Rev Med 39:41–52.  https://doi.org/10.1146/annurev.me.39.020188.000353 CrossRefPubMedGoogle Scholar
  42. 42.
    Chugh SS, Blackshear JL, Shen WK et al (2001) Epidemiology and natural history of atrial fibrillation: clinical implications. J Am Coll Cardiol 37:371–378.  https://doi.org/10.1016/S0735-1097(00)01107-4 CrossRefPubMedGoogle Scholar
  43. 43.
    Peters NS, Schilling RJ, Kanagaratnam P, Markides V (2002) Atrial fibrillation: strategies to control, combat, and cure. Lancet 359:593–603CrossRefGoogle Scholar
  44. 44.
    MacDonald PE, Wheeler MB (2003) Voltage-dependent K + channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46:1046–1062.  https://doi.org/10.1007/s00125-003-1159-8 CrossRefPubMedGoogle Scholar
  45. 45.
    Roberds SL, Tamkun MM (1991) Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci 88:1798–1802CrossRefGoogle Scholar
  46. 46.
    Roe MW, Worley JF, Mittal AA et al (1996) Expression and function of pancreatic beta-cell delayed rectifier K+ channels. Role in stimulus-secretion coupling. J Biol Chem 271:32241–32246.  https://doi.org/10.1074/jbc.271.50.32241 CrossRefPubMedGoogle Scholar
  47. 47.
    Su J, Yu H, Lenka N et al (2001) The expression and regulation of depolarization-activated K+ channels in the insulin-secreting cell line INS-1. Pflugers Arch Eur J Physiol 442:49–56.  https://doi.org/10.1007/s004240000508 CrossRefGoogle Scholar
  48. 48.
    Snyders DJ, Tamkun MM, Bennett PB (1993) A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol 101:513–543.  https://doi.org/10.1085/jgp.101.4.513 CrossRefPubMedGoogle Scholar
  49. 49.
    Gerlach U, Brendel J, Lang H-J et al (2001) Synthesis and activity of novel and selective IKs-channel blockers. J Med Chem 44:3831–3837.  https://doi.org/10.1021/JM0109255 CrossRefPubMedGoogle Scholar
  50. 50.
    Svoboda LK, Reddie KG, Zhang L et al (2012) Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5. Circ Res 111:842–853.  https://doi.org/10.1161/CIRCRESAHA.111.263525 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bhuyan R, Seal A (2015) Conformational dynamics of shaker-type Kv1.1 ion channel in open, closed, and two mutated states. J Membr Biol 248:241–255.  https://doi.org/10.1007/s00232-014-9764-7 CrossRefPubMedGoogle Scholar
  52. 52.
    Bhuyan R, Seal A (2015) Molecular dynamics of Kv1.3 ion channel and structural basis of its inhibition by scorpion toxin-OSK1 derivatives. Biophys Chem 203–204:1–11.  https://doi.org/10.1016/j.bpc.2015.04.004 CrossRefPubMedGoogle Scholar
  53. 53.
    Bhuyan R, Seal A (2017) Dynamics and modulation studies of human voltage gated Kv1.5 channel. J Biomol Struct Dyn 35:380–398.  https://doi.org/10.1080/07391102.2016.1144528 CrossRefPubMedGoogle Scholar
  54. 54.
    Ashcroft FM (2000) Ion channels and disease. Academic, LondonGoogle Scholar
  55. 55.
    Durell SR, Hao Y, Guy HR (1998) Structural models of the transmembrane region of voltage-gated and other K+channels in open, closed, and inactivated conformations. J Struct Biol 121:263–284.  https://doi.org/10.1006/jsbi.1998.3962 CrossRefPubMedGoogle Scholar
  56. 56.
    Bezanilla F, Perozo E, Stefani E (1994) Gating of shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J 66:1011–1021.  https://doi.org/10.1016/S0006-3495(94)80882-3 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zagotta WN, Hoshi T, Aldrich RW (1994) Shaker potassium channel gating. III: evaluation of kinetic models for activation. J Gen Physiol 103:321–362.  https://doi.org/10.1085/jgp.103.2.321 CrossRefPubMedGoogle Scholar
  58. 58.
    Smith-Maxwell CJ, Ledwell JL, Aldrich RW (1998) Role of the S4 in cooperativity of voltage-dependent potassium channel activation. J Gen Physiol 111:399–420.  https://doi.org/10.1085/jgp.111.3.399 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jensen MO, Borhani DW, Lindorff-Larsen K et al (2010) Principles of conduction and hydrophobic gating in K+ channels. Proc Natl Acad Sci 107:5833–5838.  https://doi.org/10.1073/pnas.0911691107 CrossRefPubMedGoogle Scholar
  60. 60.
    Jensen M, Jogini V, Borhani DW et al (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233.  https://doi.org/10.1126/science.1216533 CrossRefPubMedGoogle Scholar
  61. 61.
    Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+channel in a lipid membrane-like environment. Nature 450:376–382.  https://doi.org/10.1038/nature06265 CrossRefPubMedGoogle Scholar
  62. 62.
    Olson TM, Alekseev AE, Liu XK et al (2006) Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 15:2185–2191.  https://doi.org/10.1093/hmg/ddl143 CrossRefPubMedGoogle Scholar
  63. 63.
    Nielsen NH, Winkel BG, Kanters JK et al (2007) Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients. Biochem Biophys Res Commun 354:776–782.  https://doi.org/10.1016/j.bbrc.2007.01.048 CrossRefPubMedGoogle Scholar
  64. 64.
    Christophersen IE, Olesen MS, Liang B et al (2013) Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. Eur Heart J 34:1517–1525.  https://doi.org/10.1093/eurheartj/ehs442 CrossRefPubMedGoogle Scholar
  65. 65.
    Yang Y, Li J, Lin X et al (2009) Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation. J Hum Genet 54:277–283.  https://doi.org/10.1038/jhg.2009.26 CrossRefPubMedGoogle Scholar
  66. 66.
    Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76:7.20.1–7.20.41.  https://doi.org/10.1002/0471142905.hg0720s76 CrossRefGoogle Scholar
  67. 67.
    Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747.  https://doi.org/10.1093/bioinformatics/btv195 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pires DEV, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42:W314–W319.  https://doi.org/10.1093/nar/gku411 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30:335–342.  https://doi.org/10.1093/bioinformatics/btt691 CrossRefPubMedGoogle Scholar
  70. 70.
    Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL (2017) SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res 45:W229–W235.  https://doi.org/10.1093/nar/gkx439 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Feng J, Xu D, Wang Z, Nattel S (1998) Ultrarapid delayed rectifier current inactivation in human atrial myocytes: properties and consequences. Am J Phys 275:H1717–H1725Google Scholar
  72. 72.
    Nattel S, Yue L, Wang Z (1999) Cardiac ultrarapid delayed rectifiers: a novel potassium current family of functional similarity and molecular diversity. Cell Physiol Biochem 9:217–226.  https://doi.org/10.1159/000016318 CrossRefPubMedGoogle Scholar
  73. 73.
    Schaffer P, Pelzmann B, Bernhart E et al (1998) Estimation of outward currents in isolated human atrial myocytes using inactivation time course analysis. Pflugers Arch Eur J Physiol 436:457–468.  https://doi.org/10.1007/s004240050657 CrossRefGoogle Scholar
  74. 74.
    Nygren A, Leon LJ, Giles WR (2001) Simulations of the human atrial action potential. Philos Trans R Soc A Math Phys Eng Sci 359:1111–1125CrossRefGoogle Scholar
  75. 75.
    Nygren A, Fiset C, Firek L et al (1998) Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ Res 82:63–81.  https://doi.org/10.1161/01.RES.82.1.63 CrossRefPubMedGoogle Scholar
  76. 76.
    Courtemanche M, Ramirez RJ, Nattel S (1999) Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc Res 42:477–489.  https://doi.org/10.1016/S0008-6363(99)00034-6 CrossRefPubMedGoogle Scholar
  77. 77.
    Delpón E, Caballero R, Valenzuela C et al (1999) Benzocaine enhances and inhibits the K+current through a human cardiac cloned channel (Kv1.5). Cardiovasc Res 42:510–520.  https://doi.org/10.1016/S0008-6363(99)00043-7 CrossRefPubMedGoogle Scholar
  78. 78.
    Franqueza L, Longobardo M, Vicente J et al (1997) Molecular determinants of stereoselective bupivacaine block of hKv1.5 channels. Circ Res 81:1053–1064.  https://doi.org/10.1161/01.RES.81.6.1053 CrossRefPubMedGoogle Scholar
  79. 79.
    Caballero R, Delpón E, Valenzuela C et al (2001) Direct effects of candesartan and eprosartan on human cloned potassium channels involved in cardiac repolarization. Mol Pharmacol 59:825–836.  https://doi.org/10.1124/mol.59.4.825 CrossRefPubMedGoogle Scholar
  80. 80.
    Moreno I, Caballero R, González T et al (2003) Effects of irbesartan on cloned potassium channels involved in human cardiac repolarization. J Pharmacol Exp Ther 304:862–873.  https://doi.org/10.1124/jpet.102.042325 CrossRefPubMedGoogle Scholar
  81. 81.
    Caballero R, Delpón E, Valenzuela C et al (2000) Losartan and its metabolite E3174 modify cardiac delayed rectifier K+currents. Circulation 101:1199–1205.  https://doi.org/10.1161/01.CIR.101.10.1199 CrossRefPubMedGoogle Scholar
  82. 82.
    Iftinca M, Waldron GJ, Triggle CR, Cole WC (2001) State-dependent block of rabbit vascular smooth muscle delayed rectifier and Kv1.5 channels by inhibitors of cytochrome P450-dependent enzymes. J Pharmacol Exp Ther 298:718–728PubMedGoogle Scholar
  83. 83.
    Lacerda AE, Roy ML, Lewis EW, Rampe D (1997) Interactions of the nonsedating antihistamine loratadine with a Kv1.5-type potassium channel cloned from human heart. Mol Pharmacol 52:314–322CrossRefGoogle Scholar
  84. 84.
    Caballero R, Valenzuela C, Longobardo M et al (1999) Effects of rupatadine, a new dual antagonist of histamine and platelet-activating factor receptors, on human cardiac Kv1.5 channels. Br J Pharmacol 128:1071–1081.  https://doi.org/10.1038/sj.bjp.0702890 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Delpón E, Valenzuela C, Tamargo J (1999) Blockade of cardiac potassium and other channels by antihistamines. Drug Saf 21(Suppl 1):11–8–7CrossRefGoogle Scholar
  86. 86.
    Choe H, Lee Y-K, Lee Y-T et al (2003) Papaverine blocks hKv1.5 channel current and human atrial ultrarapid delayed rectifier K+ currents. J Pharmacol Exp Ther 304:706–712.  https://doi.org/10.1124/jpet.102.042770 CrossRefPubMedGoogle Scholar
  87. 87.
    Rampe D, Murawsky MK (1997) Blockade of the human cardiac K+ channel Kv1.5 by the antibiotic erythromycin. Naunyn Schmiedeberg’s Arch Pharmacol 355:743–750.  https://doi.org/10.1007/PL00005008 CrossRefGoogle Scholar
  88. 88.
    Camm AJ, Savelieva I (2004) Advances in antiarrhythmic drug treatment of atrial fibrillation: where do we stand now? Heart Rhythm 1:244–246CrossRefGoogle Scholar
  89. 89.
    Choudhury A, Lip GY (2004) Antiarrhythmic drugs in atrial fibrillation: an overview of new agents, their mechanisms of action and potential clinical utility. Expert Opin Investig Drugs 13:841–855.  https://doi.org/10.1517/13543784.13.7.841 CrossRefPubMedGoogle Scholar
  90. 90.
    Decher N, Pirard B, Bundis F et al (2004) Molecular basis for Kv1.5 channel block. Conservation of drug binding sites among voltage-gated K+channels. J Biol Chem 279:394–400.  https://doi.org/10.1074/jbc.M307411200 CrossRefPubMedGoogle Scholar
  91. 91.
    Peukert S, Brendel J, Pirard B et al (2004) Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg Med Chem Lett 14:2823–2827.  https://doi.org/10.1016/j.bmcl.2004.03.057 CrossRefPubMedGoogle Scholar
  92. 92.
    Bachmann A, Gutcher I, Kopp K et al (2001) Characterization of a novel Kv1.5 channel blocker in Xenopus oocytes, CHO cells, human and rat cardiomyocytes. Naunyn Schmiedeberg’s Arch Pharmacol 364:472–478.  https://doi.org/10.1007/s002100100474 CrossRefGoogle Scholar
  93. 93.
    Decher N, Kumar P, Gonzalez T et al (2006) Binding site of a novel Kv1.5 blocker: a “foot in the door” against atrial fibrillation. Mol Pharmacol 70:1204–1211.  https://doi.org/10.1124/mol.106.026203 CrossRefPubMedGoogle Scholar
  94. 94.
    Peukert S, Brendel J, Pirard B et al (2003) Identification, synthesis, and activity of novel blockers of the voltage-gated potassium channel Kv1.5. J Med Chem 46:486–498.  https://doi.org/10.1021/jm0210461 CrossRefPubMedGoogle Scholar
  95. 95.
    Brendel J, Peukert S (2003) Blockers of the Kv1.5 channel for the treatment of atrial arrhythmias. Curr Med Chem Cardiovasc Hematol Agents 1:273–287.  https://doi.org/10.2174/1568016033477441 CrossRefPubMedGoogle Scholar
  96. 96.
    Wu S, Fluxe A, Janusz JM et al (2006) Discovery and synthesis of tetrahydroindolone derived semicarbazones as selective Kv1.5 blockers. Bioorg Med Chem Lett 16:5859–5863.  https://doi.org/10.1016/j.bmcl.2006.08.057 CrossRefPubMedGoogle Scholar
  97. 97.
    Li Y, Starrett JE, Meanwell NA et al (1997) The discovery of novel openers of Ca2+-dependent large-conductance potassium channels: pharmacophore search and physiological evaluation of flavonoids. Bioorg Med Chem Lett 7:759–762.  https://doi.org/10.1016/S0960-894X(97)00076-0 CrossRefGoogle Scholar
  98. 98.
    Caballero R, Moreno I, González T et al (2002) Putative binding sites for benzocaine on a human cardiac cloned channel (Kv1.5). Cardiovasc Res 56:104–117.  https://doi.org/10.1016/S0008-6363(02)00509-6 CrossRefPubMedGoogle Scholar
  99. 99.
    Snyders J, Knoth KM, Roberds SL, Tamkun MM (1992) Time-, voltage-, and state-dependent block by quinidine of a cloned human cardiac potassium channel. Mol Pharmacol 41:322–330PubMedGoogle Scholar
  100. 100.
    Snyders DJ, Ycola SW (1995) Determinants of antiarrhythmic drug action: electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res 77:575–583.  https://doi.org/10.1161/01.RES.77.3.575 CrossRefPubMedGoogle Scholar
  101. 101.
    Yeola SW, Rich TC, Uebele VN et al (1996) Molecular analysis of a binding site for quinidine in a human cardiac delayed rectifier K+ channel. Circ Res 78:1105–1114CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rajabrata Bhuyan
    • 1
  • Sajal Chakraborti
    • 2
  1. 1.BIF Centre, Department of Biochemistry and BiophysicsUniversity of KalyaniKalyaniIndia
  2. 2.Department of Biochemistry and BiophysicsUniversity of KalyaniKalyaniIndia

Personalised recommendations