Dietary Antioxidants in Mitigating Oxidative Stress in Cardiovascular Diseases

  • Subhoshree Ghose
  • Swati Varshney
  • Rahul Chakraborty
  • Shantanu SenguptaEmail author


Accumulation of reactive oxygen species (ROS) is known to be detrimental to cardiovascular health and the burden of ROS is partially restored via supplementation of diet containing antioxidants. Increased ROS levels are related to DNA damage and a number of vascular complications majorly inflammation, vasoconstriction, smooth muscle cell proliferation, thrombus formation etc. Antioxidant components of fruits, vegetables, medicinal plants, spices and culinary herbs have been explored for years which regulate metabolic and immunogenic pathways in a concerted manner to alleviate oxidant stress generated under cardiovascular abnormalities. The controversies around the efficacy of antioxidants have further accentuated due to unavailability of accurate biomarkers indicative of antioxidant status. A number of dietary factors have been also explored for their anti-oxidative potential to be used as therapeutics. Antioxidants target apoptosis, nitric oxide signaling, phosphatidylinositol signaling, protein kinase C to maintain redox homeostasis and prevent the risk of cardiovascular diseases. In this chapter, we have provided detailed description of biochemical and biological role of different antioxidants and their crosstalk with various signaling pathways to combat the burden of free radical species within the system.


Oxidative stress ROS Cardiovascular disease Antioxidants 


  1. 1.
    Stewart J, Manmathan G, Wilkinson P (2017) Primary prevention of cardiovascular disease: a review of contemporary guidance and literature. JRSM Cardiovasc Dis 6:2048004016687211PubMedPubMedCentralGoogle Scholar
  2. 2.
    Butler D (2011) UN targets top killers. Nature 477:260–261CrossRefPubMedGoogle Scholar
  3. 3.
    Yusuf S, Reddy S, Ounpuu S et al (2001) Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104:2746–2753CrossRefPubMedGoogle Scholar
  4. 4.
    Liu G, Huang Y, Zhai L (2018) Impact of nutritional and environmental factors on inflammation, oxidative stress, and the microbiome. Biomed Res Int 2018:5606845PubMedPubMedCentralGoogle Scholar
  5. 5.
    Khurana S, Piche M, Hollingsworth A et al (2013) Oxidative stress and cardiovascular health: therapeutic potential of polyphenols. Can J Physiol Pharmacol 91:198–212CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang M, Shah AM (2008) Reactive oxygen species in heart failure. In: Acute heart failure. Springer, London, pp 118–123CrossRefGoogle Scholar
  7. 7.
    Shirley R, Ord EN, Work LM (2014) Oxidative stress and the use of antioxidants in stroke. Antioxidants (Basel) 3:472–501CrossRefGoogle Scholar
  8. 8.
    Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Poljsak B, Suput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013:956792CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sikand G, Kris-Etherton P, Boulos NM (2015) Impact of functional foods on prevention of cardiovascular disease and diabetes. Curr Cardiol Rep 17:39CrossRefGoogle Scholar
  11. 11.
    Upadhyay S, Dixit M (2015) Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cell Longev 2015:504253CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tangney CC, Rasmussen HE (2013) Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 15:324CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137:223S–228SCrossRefGoogle Scholar
  14. 14.
    Kiss AK (2017) Polyphenols and histone acetylation. In: Patel V, Preedy V (eds) Handbook of nutrition, diet, and epigenetics. Springer, Cham, pp 1–21Google Scholar
  15. 15.
    Baraboi VA, Shestakova EN (2004) Selenium: the biological role and antioxidant activity. Ukr Biokhim Zh (1999) 76:23–32Google Scholar
  16. 16.
    Ye Y, Li J, Yuan Z (2013) Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One 8:e56803CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ntaios G (2015) Homocysteine, B vitamins, and cardiovascular risk. In: Foods and dietary supplements in the prevention and treatment of disease in older adults. Elsevier, pp 309–318Google Scholar
  18. 18.
    Katsiki N, Manes C (2009) Is there a role for supplemented antioxidants in the prevention of atherosclerosis? Clin Nutr 28:3–9CrossRefGoogle Scholar
  19. 19.
    Goszcz K, Deakin SJ, Duthie GG et al (2015) Antioxidants in cardiovascular therapy: panacea or false hope? Front Cardiovasc Med 2:29CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rushworth GF, Megson IL (2014) Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther 141:150–159CrossRefGoogle Scholar
  21. 21.
    Stull LB, Leppo MK, Szweda L et al (2004) Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 95:1005–1011CrossRefGoogle Scholar
  22. 22.
    Ajith Y, Dimri U, Dixit SK et al (2017) Immunomodulatory basis of antioxidant therapy and its future prospects: an appraisal. In: InflammopharmacologyGoogle Scholar
  23. 23.
    Brieger K, Schiavone S, Miller FJ Jr et al (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659PubMedGoogle Scholar
  24. 24.
    Rochette L, Lorin J, Zeller M et al (2013) Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther 140:239–257CrossRefGoogle Scholar
  25. 25.
    Kabel AM (2014) Free radicals and antioxidants: role of enzymes and nutrition. World J Nutr Health 2:35–38Google Scholar
  26. 26.
    Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312CrossRefGoogle Scholar
  27. 27.
    Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22:111–180CrossRefGoogle Scholar
  28. 28.
    Ahmadinejad F, Geir Moller S, Hashemzadeh-Chaleshtori M et al (2017) Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants (Basel) 6.
  29. 29.
    Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856CrossRefGoogle Scholar
  30. 30.
    Adams AK, Wermuth EO, Mcbride PE (1999) Antioxidant vitamins and the prevention of coronary heart disease. Am Fam Physician 60:895–904PubMedGoogle Scholar
  31. 31.
    Abdullah M, Attia FN (2018) Vitamin C (ascorbic acid). In: StatPearls. StatPearls, Treasure IslandGoogle Scholar
  32. 32.
    Kemnic TR, Coleman M (2018) Vitamin E deficiency. In: StatPearls. StatPearls, Treasure IslandGoogle Scholar
  33. 33.
    Timoneda J, Rodriguez-Fernandez L, Zaragoza R et al (2018) Vitamin A deficiency and the lung. Nutrients 10.
  34. 34.
    Ibrahim W, Tousson E, El-Masry T et al (2012) The effect of folic acid as an antioxidant on the hypothalamic monoamines in experimentally induced hypothyroid rat. Toxicol Ind Health 28:253–261CrossRefGoogle Scholar
  35. 35.
    Qin X, Cui Y, Shen L et al (2013) Folic acid supplementation and cancer risk: a meta-analysis of randomized controlled trials. Int J Cancer 133:1033–1041CrossRefGoogle Scholar
  36. 36.
    Li Y, Huang T, Zheng Y et al (2016) Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. J Am Heart Assoc 5.
  37. 37.
    Song Y, Cook NR, Albert CM et al (2009) Effect of homocysteine-lowering treatment with folic Acid and B vitamins on risk of type 2 diabetes in women: a randomized, controlled trial. Diabetes 58:1921–1928CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reynolds EH (2014) The neurology of folic acid deficiency. Handb Clin Neurol 120:927–943CrossRefGoogle Scholar
  39. 39.
    Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006CrossRefGoogle Scholar
  40. 40.
    Asard H, May J, Smirnoff N (2003) Vitamin C: its functions and biochemistry in animals and plants. Garland Science, New YorkGoogle Scholar
  41. 41.
    May JM, Qu ZC, Neel DR et al (2003) Recycling of vitamin C from its oxidized forms by human endothelial cells. Biochim Biophys Acta 1640:153–161CrossRefPubMedGoogle Scholar
  42. 42.
    Aguirre R, May JM (2008) Inflammation in the vascular bed: importance of vitamin C. Pharmacol Ther 119:96–103CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jialal I, Fuller CJ (1995) Effect of vitamin E, vitamin C and beta-carotene on LDL oxidation and atherosclerosis. Can J Cardiol 11(Suppl G):97G–103GPubMedGoogle Scholar
  44. 44.
    Willis GC (1953) An experimental study of intimal ground substance in atherosclerosis. Can Med Assoc J 69:17–22PubMedPubMedCentralGoogle Scholar
  45. 45.
    Fujinami T, Okado K, Senda K et al (1971) Experimental atherosclerosis with ascorbic acid deficiency. Jpn Circ J 35:1559–1565CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Willis GC (1957) The reversibility of atherosclerosis. Can Med Assoc J 77:106–108PubMedPubMedCentralGoogle Scholar
  47. 47.
    Ginter E, Bobek P, Babala J et al (1969) The effect of ascorbic acid on the lipid metabolism of guinea-pigs fed an atherogenic diet. Cor Vasa 11:65–73PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sulkin NM, Sulkin DF (1975) Tissue changes induced by marginal vitamin C deficiency. Ann N Y Acad Sci 258:317–328CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bocan TM, Mueller SB, Brown EQ et al (1992) Antiatherosclerotic effects of antioxidants are lesion-specific when evaluated in hypercholesterolemic New Zealand white rabbits. Exp Mol Pathol 57:70–83CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Freyschuss A, Xiu R-J, Zhang J et al (1997) Vitamin C reduces cholesterol-induced microcirculatory changes in rabbits. Arterioscler Thromb Vasc Biol 17:1178–1184CrossRefPubMedGoogle Scholar
  51. 51.
    Zaitsev VF, Myasnikov LA, Kasatkina LV et al (1964) The effect of ascorbic acid on experimental atherosclerosis. Cor Vasa 6:19–25PubMedGoogle Scholar
  52. 52.
    Nambisan B, Kurup PA (1974) The effect of massive doses of ascorbic acid and methionine on the levels of lipids and glycosaminoglycans in the aorta of weanling rats. Atherosclerosis 19:191–199CrossRefPubMedGoogle Scholar
  53. 53.
    Mcintosh G, Richmond W, Himsworth R (1981) Vitamin C deficiency and hypercholesterolaemia in marmoset monkeys.Google Scholar
  54. 54.
    Gori AM, Sofi F, Corsi AM et al (2006) Predictors of vitamin B6 and folate concentrations in older persons: the InCHIANTI study. Clin Chem 52:1318–1324CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Frei B, Forte TM, Ames BN et al (1991) Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem J 277. ( Pt 1:133–138CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Simon JA (1992) Vitamin C and cardiovascular disease: a review. J Am Coll Nutr 11:107–125PubMedGoogle Scholar
  57. 57.
    Trout DL (1991) Vitamin C and cardiovascular risk factors. Am J Clin Nutr 53:322S–325SCrossRefPubMedGoogle Scholar
  58. 58.
    Bronte-Stewart B, Roberts B, Wells VM (1963) Serum cholesterol in vitamin C deficiency in man. Br J Nutr 17:61–68CrossRefPubMedGoogle Scholar
  59. 59.
    Jacques PF, Hartz SC, Mcgandy RB et al (1987) Ascorbic acid, HDL, and total plasma cholesterol in the elderly. J Am Coll Nutr 6:169–174CrossRefPubMedGoogle Scholar
  60. 60.
    Moser MA, Chun OK (2016) Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci 17:1328CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ginter E (1972) Role of ascorbic acid in cholesterol metabolism (literature review). Vopr Pitan 31:25–32PubMedGoogle Scholar
  62. 62.
    Ginter E, Bobek P, Ovecka M (1968) Model of chronic hypovitaminosis C in guinea-pigs. Int Z Vitaminforsch 38:104–113PubMedGoogle Scholar
  63. 63.
    Rodwell VW, Nordstrom JL, Mitschelen JJ (1976) Regulation of HMG-CoA reductase. Adv Lipid Res 14:1–74CrossRefPubMedGoogle Scholar
  64. 64.
    Bolker HI, Fishman S, Heard RD et al (1956) The incorporation of acetate-1-C14 into cholesterol and fatty acids by surviving tissues of normal and scorbutic guinea pigs. J Exp Med 103:199–205CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Greene YJ, Harwood HJ Jr, Stacpoole PW (1985) Ascorbic acid regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol synthesis in guinea pig liver. Biochim Biophys Acta 834:134–138CrossRefPubMedGoogle Scholar
  66. 66.
    Weight M, Kotzé J, De Klerk W et al (1974) The effect of dietary ascorbic acid on cholesterol biosynthesis in vitro. Int J Biochem 5:287–290CrossRefGoogle Scholar
  67. 67.
    Holloway DE, Peterson FJ, Prigge WF et al (1981) Influence of dietary ascorbic acid upon enzymes of sterol biosynthesis in the guinea pig. Biochem Biophys Res Commun 102:1283–1289CrossRefPubMedGoogle Scholar
  68. 68.
    Ginter E, Cerven J, Nemec R et al (1971) Lowered cholesterol catabolism in guinea pigs with chronic ascorbic acid deficiency. Am J Clin Nutr 24:1238–1245CrossRefPubMedGoogle Scholar
  69. 69.
    Bjorkhem I, Kallner A (1976) Hepatic 7alpha-hydroxylation of cholesterol in ascorbate-deficient and ascorbate-supplemented guinea pigs. J Lipid Res 17:360–365PubMedGoogle Scholar
  70. 70.
    Harris WS, Kottke BA, Subbiah MT (1979) Bile acid metabolism in ascorbic acid-deficient guinea pigs. Am J Clin Nutr 32:1837–1841CrossRefPubMedGoogle Scholar
  71. 71.
    Holloway DE, Rivers JM (1981) Influence of chronic ascorbic acid deficiency and excessive ascorbic acid intake on bile acid metabolism and bile composition in the guinea pig. J Nutr 111:412–424CrossRefPubMedGoogle Scholar
  72. 72.
    Peterson FJ, Holloway DE, Duquette PH et al (1983) Dietary ascorbic acid and hepatic mixed function oxidase activity in the guinea pig. Biochem Pharmacol 32:91–96CrossRefPubMedGoogle Scholar
  73. 73.
    Ginter E, Nemec R, Bobek P (1972) Stimulation of (26- 14 C)cholesterol oxidation by ascorbic acid in scorbutic guinea-pigs. Br J Nutr 28:205–211CrossRefPubMedGoogle Scholar
  74. 74.
    Ginter E, Nemec R, Cerven J et al (1973) Quantification of lowered cholesterol oxidation in guinea pigs with latent vitamin C deficiency. Lipids 8:135–141CrossRefPubMedGoogle Scholar
  75. 75.
    Hornig D, Weiser H (1976) Ascorbic acid and cholesterol: effect of graded oral intakes on cholesterol conversion to bile acids in guinea-pigs. Experientia 32:687–689CrossRefPubMedGoogle Scholar
  76. 76.
    Kritchevsky D, Tepper SA, Story JA (1973) Influence of vitamin C on hydroxylation and side chain oxidation of cholesterol in vitro. Lipids 8:482–484CrossRefPubMedGoogle Scholar
  77. 77.
    Horio F, Ozaki K, Oda H et al (1987) Effect of dietary ascorbic acid, cholesterol and PCB on cholesterol concentrations in serum and liver in a rat mutant unable to synthesize ascorbic acid. J Nutr 117:1036–1044CrossRefPubMedGoogle Scholar
  78. 78.
    Kono K, Hayakawa M, Asai K et al (1988) Cholesterol metabolism in inherently scorbutic rats (ODS rats). J Nutr Sci Vitaminol (Tokyo) 34:35–45CrossRefGoogle Scholar
  79. 79.
    Uchida K, Nomura Y, Takase H et al (1990) Effect of vitamin C depletion on serum cholesterol and lipoprotein levels in ODS (od/od) rats unable to synthesize ascorbic acid. J Nutr 120:1140–1147CrossRefPubMedGoogle Scholar
  80. 80.
    Ginter E, Jurčovičcová M (1987) Chronic vitamin C deficiency lowers fractional catabolic rate of low-density lipoproteins in guinea pigs. Ann N Y Acad Sci 498:473–475CrossRefGoogle Scholar
  81. 81.
    Aulinskas TH, Van Der Westhuyzen DR, Coetzee GA (1983) Ascorbate increases the number of low density lipoprotein receptors in cultured arterial smooth muscle cells. Atherosclerosis 47:159–171CrossRefPubMedGoogle Scholar
  82. 82.
    Bobek P, Ginter E (1978) Serum triglycerides and post-heparin lipolytic activity in guinea-pigs with latent vitamin C deficiency. Experientia 34:1554–1555CrossRefPubMedGoogle Scholar
  83. 83.
    Nambisan B, Kurup PA (1975) Ascorbic acid and glycosaminoglycan and lipid metabolism in guinea pigs fed normal and atherogenic diets. Atherosclerosis 22:447–461CrossRefPubMedGoogle Scholar
  84. 84.
    Wang X, Quinn PJ (1999) Vitamin E and its function in membranes. Prog Lipid Res 38:309–336CrossRefPubMedGoogle Scholar
  85. 85.
    Niki E, Kawakami A, Saito M et al (1985) Effect of phytyl side chain of vitamin E on its antioxidant activity. J Biol Chem 260:2191–2196PubMedGoogle Scholar
  86. 86.
    Atkinson J, Epand RF, Epand RM (2008) Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 44:739–764CrossRefGoogle Scholar
  87. 87.
    Engin KN (2009) Alpha-tocopherol: looking beyond an antioxidant. Mol Vis 15:855–860PubMedPubMedCentralGoogle Scholar
  88. 88.
    Zhang Y, Turunen M, Appelkvist EL (1996) Restricted uptake of dietary coenzyme Q is in contrast to the unrestricted uptake of alpha-tocopherol into rat organs and cells. J Nutr 126:2089–2097CrossRefPubMedGoogle Scholar
  89. 89.
    Bowry VW, Ingold KU, Stocker R (1992) Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J 288(Pt 2):341–344CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Devaraj S, Li D, Jialal I (1996) The effects of alpha tocopherol supplementation on monocyte function. Decreased lipid oxidation, interleukin 1 beta secretion, and monocyte adhesion to endothelium. J Clin Invest 98:756–763CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wu D, Koga T, Martin KR et al (1999) Effect of vitamin E on human aortic endothelial cell production of chemokines and adhesion to monocytes. Atherosclerosis 147:297–307CrossRefPubMedGoogle Scholar
  92. 92.
    Mahoney CW, Azzi A (1988) Vitamin E inhibits protein kinase C activity. Biochem Biophys Res Commun 154:694–697CrossRefPubMedGoogle Scholar
  93. 93.
    Zingg JM (2007) Modulation of signal transduction by vitamin E. Mol Aspects Med 28:481–506CrossRefPubMedGoogle Scholar
  94. 94.
    Boscoboinik D, Szewczyk A, Hensey C et al (1991) Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. J Biol Chem 266:6188–6194PubMedGoogle Scholar
  95. 95.
    Tasinato A, Boscoboinik D, Bartoli GM et al (1995) d-alpha-tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition, and is independent of its antioxidant properties. Proc Natl Acad Sci U S A 92:12190–12194CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Boudreau RT, Garduno R, Lin TJ (2002) Protein phosphatase 2A and protein kinase Calpha are physically associated and are involved in Pseudomonas aeruginosa-induced interleukin 6 production by mast cells. J Biol Chem 277:5322–5329CrossRefPubMedGoogle Scholar
  97. 97.
    De Nigris F, Franconi F, Maida I et al (2000) Modulation by alpha- and gamma-tocopherol and oxidized low-density lipoprotein of apoptotic signaling in human coronary smooth muscle cells. Biochem Pharmacol 59:1477–1487CrossRefPubMedGoogle Scholar
  98. 98.
    Wu D, Liu L, Meydani M et al (2004) Effect of vitamin E on prostacyclin (PGI2) and prostaglandin (PG) E2 production by human aorta endothelial cells: mechanism of action. Ann N Y Acad Sci 1031:425–427CrossRefPubMedGoogle Scholar
  99. 99.
    Heller R, Hecker M, Stahmann N et al (2004) Alpha-tocopherol amplifies phosphorylation of endothelial nitric oxide synthase at serine 1177 and its short-chain derivative trolox stabilizes tetrahydrobiopterin. Free Radic Biol Med 37:620–631CrossRefPubMedGoogle Scholar
  100. 100.
    Desideri G, Marinucci MC, Tomassoni G et al (2002) Vitamin E supplementation reduces plasma vascular cell adhesion molecule-1 and von Willebrand factor levels and increases nitric oxide concentrations in hypercholesterolemic patients. J Clin Endocrinol Metab 87:2940–2945CrossRefGoogle Scholar
  101. 101.
    Yoshikawa T, Yoshida N, Manabe H et al (1998) alpha-Tocopherol protects against expression of adhesion molecules on neutrophils and endothelial cells. Biofactors 7:15–19CrossRefGoogle Scholar
  102. 102.
    Faruqi R, De La Motte C, Dicorleto PE (1994) Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J Clin Invest 94:592–600CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Yoshida N, Yoshikawa T, Manabe H et al (1999) Vitamin E protects against polymorphonuclear leukocyte-dependent adhesion to endothelial cells. J Leukoc Biol 65:757–763CrossRefGoogle Scholar
  104. 104.
    Noguchi N, Hanyu R, Nonaka A et al (2003) Inhibition of THP-1 cell adhesion to endothelial cells by alpha-tocopherol and alpha-tocotrienol is dependent on intracellular concentration of the antioxidants. Free Radic Biol Med 34:1614–1620CrossRefGoogle Scholar
  105. 105.
    Van Dam B, Van Hinsbergh VW, Stehouwer CD et al (2003) Vitamin E inhibits lipid peroxidation-induced adhesion molecule expression in endothelial cells and decreases soluble cell adhesion molecules in healthy subjects. Cardiovasc Res 57:563–571CrossRefGoogle Scholar
  106. 106.
    Devaraj S, Jialal I (1999) Alpha-tocopherol decreases interleukin-1 beta release from activated human monocytes by inhibition of 5-lipoxygenase. Arterioscler Thromb Vasc Biol 19:1125–1133CrossRefGoogle Scholar
  107. 107.
    Desideri G, Croce G, Marinucci MC et al (2002) Prolonged, low dose alpha-tocopherol therapy counteracts intercellular cell adhesion molecule-1 activation. Clin Chim Acta 320:5–9CrossRefGoogle Scholar
  108. 108.
    Devaraj S, Jialal I (2005) Alpha-tocopherol decreases tumor necrosis factor-alpha mRNA and protein from activated human monocytes by inhibition of 5-lipoxygenase. Free Radic Biol Med 38:1212–1220CrossRefGoogle Scholar
  109. 109.
    Munteanu A, Zingg JM, Azzi A (2004) Anti-atherosclerotic effects of vitamin E--myth or reality? J Cell Mol Med 8:59–76CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Munteanu A, Taddei M, Tamburini I et al (2006) Antagonistic effects of oxidized low density lipoprotein and alpha-tocopherol on CD36 scavenger receptor expression in monocytes: involvement of protein kinase B and peroxisome proliferator-activated receptor-gamma. J Biol Chem 281:6489–6497CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Khanduja KL, Avti PK, Kumar S et al (2005) Inhibitory effect of vitamin E on proinflammatory cytokines-and endotoxin-induced nitric oxide release in alveolar macrophages. Life Sci 76:2669–2680CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Cachia O, Benna JE, Pedruzzi E et al (1998) alpha-tocopherol inhibits the respiratory burst in human monocytes. Attenuation of p47(phox) membrane translocation and phosphorylation. J Biol Chem 273:32801–32805CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Yamauchi R (1997) Vitamin E: mechanism of its antioxidant activity. Food Sci Technol Int Tokyo 3:301–309CrossRefGoogle Scholar
  114. 114.
    Niki E (1987) Interaction of ascorbate and alpha-tocopherol. Ann N Y Acad Sci 498:186–199CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Brigelius-Flohe R (2009) Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 46:543–554CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Laranjinha J, Cadenas E (1999) Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation. IUBMB Life 48:57–65CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Niki E, Noguchi N, Tsuchihashi H et al (1995) Interaction among vitamin C, vitamin E, and beta-carotene. Am J Clin Nutr 62:1322S–1326SCrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Shils ME, Shike M (2006) Modern nutrition in health and disease. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  119. 119.
    Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66:606–630CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Rhee EJ, Nallamshetty S, Plutzky J (2012) Retinoid metabolism and its effects on the vasculature. Biochim Biophys Acta 1821:230–240CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Solomons NW (2012) Vitamin A. In: Present knowledge in nutrition. Wiley-Blackwell, Ames, pp 149–184CrossRefGoogle Scholar
  122. 122.
    Streb JW, Miano JM (2003) Retinoids: pleiotropic agents of therapy for vascular diseases? Curr Drug Targets Cardiovasc Haematol Disord 3:31–57CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Rutkowski M, Grzegorczyk K (2012) Adverse effects of antioxidative vitamins. Int J Occup Med Environ Health 25:105–121CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Raiten DJ, Namaste S, Brabin B et al (2011) Executive summary--biomarkers of nutrition for development: building a consensus. Am J Clin Nutr 94:633S–650SCrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Neuville P, Yan Z, Gidlof A et al (1999) Retinoic acid regulates arterial smooth muscle cell proliferation and phenotypic features in vivo and in vitro through an RARalpha-dependent signaling pathway. Arterioscler Thromb Vasc Biol 19:1430–1436CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Kurakula K, Hamers AA, De Waard V et al (2013) Nuclear receptors in atherosclerosis: a superfamily with many ‘Goodfellas’. Mol Cell Endocrinol 368:71–84CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Ross AC (2007) Vitamin A supplementation and retinoic acid treatment in the regulation of antibody responses in vivo. Vitam Horm 75:197–222CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Thurnham DI, Mccabe GP, Northrop-Clewes CA et al (2003) Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: meta-analysis. Lancet 362:2052–2058CrossRefGoogle Scholar
  129. 129.
    Chadwick CC, Shaw LJ, Winneker RC (1998) TNF-alpha and 9-cis-retinoic acid synergistically induce ICAM-1 expression: evidence for interaction of retinoid receptors with NF-kappa B. Exp Cell Res 239:423–429CrossRefGoogle Scholar
  130. 130.
    De Ferranti S, Rifai N (2002) C-reactive protein and cardiovascular disease: a review of risk prediction and interventions. Clin Chim Acta 317:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Brazionis L, Walker KZ, Itsiopoulos C et al (2012) Plasma retinol: a novel marker for cardiovascular disease mortality in Australian adults. Nutr Metab Cardiovasc Dis 22:914–920CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Kulda V (2012) Vitamin D metabolism. Vnitr Lek 58:400–404PubMedPubMedCentralGoogle Scholar
  133. 133.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281CrossRefGoogle Scholar
  134. 134.
    Hollis BW (1996) Assessment of vitamin D nutritional and hormonal status: what to measure and how to do it. Calcif Tissue Int 58:4–5CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Cashman KD, Van Den Heuvel EG, Schoemaker RJ et al (2017) 25-hydroxyvitamin D as a biomarker of vitamin D status and its modeling to inform strategies for prevention of vitamin D deficiency within the population. Adv Nutr 8:947–957CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Holick MF, Schnoes HK, Deluca HF et al (1971) Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry 10:2799–2804CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Razzaque MS (2011) The dualistic role of vitamin D in vascular calcifications. Kidney Int 79:708–714CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Nagy L, Szanto A, Szatmari I et al (2012) Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 92:739–789CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Bouillon R, Carmeliet G, Verlinden L et al (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29:726–776CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Somjen D, Weisman Y, Kohen F et al (2005) 25-hydroxyvitamin D3-1alpha-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation 111:1666–1671CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Merke J, Milde P, Lewicka S et al (1989) Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 83:1903–1915CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Guillot X, Semerano L, Saidenberg-Kermanac’h N et al (2010) Vitamin D and inflammation. Joint Bone Spine 77:552–557CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Silvagno F, De Vivo E, Attanasio A et al (2010) Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes. PLoS One 5:e8670CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Rosen CJ, Adams JS, Bikle DD et al (2012) The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 33:456–492CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Zittermann A, Schleithoff SS, Koerfer R (2005) Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr 94:483–492CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Shapses SA, Manson JE (2011) Vitamin D and prevention of cardiovascular disease and diabetes: why the evidence falls short. JAMA 305:2565–2566CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Lahoute C, Herbin O, Mallat Z et al (2011) Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol 8:348–358CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Cardus A, Panizo S, Encinas M et al (2009) 1,25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis 204:85–89CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Chen Y, Liu W, Sun T et al (2013) 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. J Immunol 190:3687–3695CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Helming L, Bose J, Ehrchen J et al (2005) 1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood 106:4351–4358CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Mousavi SN, Faghihi A, Motaghinejad M et al (2018) Zinc and selenium co-supplementation reduces some lipid peroxidation and angiogenesis markers in a rat model of NAFLD-fed high fat diet. Biol Trace Elem Res 181:288–295CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Dallak M (2017) A synergistic protective effect of selenium and taurine against experimentally induced myocardial infarction in rats. Arch Physiol Biochem 123:344–355CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Zhang C, Deng Y, Lei Y et al (2017) Effects of selenium on myocardial apoptosis by modifying the activity of mitochondrial STAT3 and regulating potassium channel expression. Exp Ther Med 14:2201–2205CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 9:21–37CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Schutten JC, Joosten MM, De Borst MH et al (2018) Magnesium and blood pressure: a physiology-based approach. Adv Chronic Kidney Dis 25:244–250CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Han H, Fang X, Wei X et al (2017) Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and meta-analysis of prospective cohort studies. Nutr J 16:26CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Shimosawa T, Takano K, Ando K et al (2004) Magnesium inhibits norepinephrine release by blocking N-type calcium channels at peripheral sympathetic nerve endings. Hypertension 44:897–902CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Ma J, Folsom AR, Melnick SL et al (1995) Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis risk in communities study. J Clin Epidemiol 48:927–940CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Gommers LM, Hoenderop JG, Bindels RJ et al (2016) Hypomagnesemia in type 2 diabetes: a vicious circle? Diabetes 65:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Dongiovanni P, Fracanzani AL, Fargion S et al (2011) Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol 55:920–932CrossRefGoogle Scholar
  161. 161.
    Mohammadifard N, Humphries KH, Gotay C et al (2017) Trace minerals intake: risks and benefits for cardiovascular health. Crit Rev Food Sci Nutr 59:1–13Google Scholar
  162. 162.
    She H, Xiong S, Lin M et al (2002) Iron activates NF-κB in Kupffer cells. Am J Physiol Gastrointest Liver Physiol 283:G719–G726CrossRefGoogle Scholar
  163. 163.
    Sullivan JL (2003) Are menstruating women protected from heart disease because of, or in spite of, estrogen? Relevance to the iron hypothesis. Am Heart J 145:190–194CrossRefGoogle Scholar
  164. 164.
    Galhardi CM, Diniz YS, Faine LA et al (2004) Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem Toxicol 42:2053–2060CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Saari JT (2000) Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol 78:848–855CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Riccioni G (2009) Carotenoids and cardiovascular disease. Curr Atheroscler Rep 11:434–439CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Krinsky NI (2001) Carotenoids as antioxidants. Nutrition 17:815–817CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Khoo H-E, Prasad KN, Kong K-W et al (2011) Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules 16:1710–1738CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Kellogg EW, Fridovich I (1975) Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 250:8812–8817PubMedPubMedCentralGoogle Scholar
  170. 170.
    Bendich A (1989) Carotenoids and the immune response. J Nutr 119:112–115CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Verghese M, Richardson JE, Boateng J, Shackelford LA, Howard C, Walker LT, Chawan CB (2008) Dietary lycopene has a protective effect on cardiovascular disease in New Zealand male rabbits. J Biol Sci 8:268–277CrossRefGoogle Scholar
  172. 172.
    Paiva SA, Russell RM (1999) Beta-carotene and other carotenoids as antioxidants. J Am Coll Nutr 18:426–433CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34:907–929CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Li W, Hellsten A, Jacobsson LS et al (2004) Alpha-tocopherol and astaxanthin decrease macrophage infiltration, apoptosis and vulnerability in atheroma of hyperlipidaemic rabbits. J Mol Cell Cardiol 37:969–978CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81:215S–217SCrossRefPubMedGoogle Scholar
  176. 176.
    Kurek-Gorecka A, Rzepecka-Stojko A, Gorecki M et al (2013) Structure and antioxidant activity of polyphenols derived from propolis. Molecules 19:78–101CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Lambert JD, Hong J, Yang GY et al (2005) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81:284S–291SCrossRefPubMedGoogle Scholar
  179. 179.
    Furuuchi R, Shimizu I, Yoshida Y et al (2018) Boysenberry polyphenol inhibits endothelial dysfunction and improves vascular health. PLoS One 13:e0202051CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Hider RC, Liu ZD, Khodr HH (2001) Metal chelation of polyphenols. Methods Enzymol 335:190–203CrossRefPubMedGoogle Scholar
  181. 181.
    Storniolo CE, Rosello-Catafau J, Pinto X et al (2014) Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biol 2:971–977CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Hosoyamada Y, Yamada M (2017) Effects of dietary fish oil and apple polyphenol on the concentration serum lipids and excretion of fecal bile acids in rats. J Nutr Sci Vitaminol (Tokyo) 63:21–27CrossRefGoogle Scholar
  183. 183.
    Lin JK, Lin-Shiau SY (2006) Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 50:211–217CrossRefPubMedGoogle Scholar
  184. 184.
    Hsieh SR, Cheng WC, Su YM et al (2014) Molecular targets for anti-oxidative protection of green tea polyphenols against myocardial ischemic injury. Biomedicine (Taipei) 4:23CrossRefGoogle Scholar
  185. 185.
    Liou YM, Hsieh SR, Wu TJ et al (2010) Green tea extract given before regional myocardial ischemia-reperfusion in rats improves myocardial contractility by attenuating calcium overload. Pflugers Arch 460:1003–1014CrossRefPubMedGoogle Scholar
  186. 186.
    Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042CrossRefPubMedGoogle Scholar
  187. 187.
    Yi L, Jin X, Chen C-Y et al (2011) Chemical structures of 4-oxo-flavonoids in relation to inhibition of oxidized low-density lipoprotein (LDL)-induced vascular endothelial dysfunction. Int J Mol Sci 12:5471CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Nijveldt RJ, Van Nood E, Van Hoorn DE et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425CrossRefPubMedGoogle Scholar
  189. 189.
    Burke AC, Sutherland BG, Telford DE et al (2018) Intervention with citrus flavonoids reverses obesity and improves metabolic syndrome and atherosclerosis in obese Ldlr(-/-) mice. J Lipid Res 59:1714–1728CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Leopoldini M, Russo N, Chiodo S et al (2006) Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem 54:6343–6351CrossRefPubMedGoogle Scholar
  191. 191.
    Spencer JP (2007) The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2:257–273CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849CrossRefPubMedGoogle Scholar
  193. 193.
    Choi JS, Choi YJ, Shin SY et al (2008) Dietary flavonoids differentially reduce oxidized LDL-induced apoptosis in human endothelial cells: role of MAPK- and JAK/STAT-signaling. J Nutr 138:983–990CrossRefPubMedGoogle Scholar
  194. 194.
    Ferrandiz ML, Alcaraz MJ (1991) Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions 32:283–288CrossRefPubMedGoogle Scholar
  195. 195.
    Friesenecker B, Tsai AG, Intaglietta M (1995) Cellular basis of inflammation, edema and the activity of Daflon 500 mg. Int J Microcirc Clin Exp 15(Suppl 1):17–21CrossRefPubMedGoogle Scholar
  196. 196.
    Ciz M, Denev P, Kratchanova M et al (2012) Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxid Med Cell Longev 2012:181295CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17CrossRefGoogle Scholar
  198. 198.
    Belwal T, Nabavi SF, Nabavi SM et al (2017) Dietary anthocyanins and insulin resistance: when food becomes a medicine. Nutrients 9.
  199. 199.
    Liobikas J, Skemiene K, Trumbeckaite S et al (2016) Anthocyanins in cardioprotection: a path through mitochondria. Pharmacol Res 113:808–815CrossRefPubMedGoogle Scholar
  200. 200.
    Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Han KH, Sekikawa M, Shimada K et al (2006) Anthocyanin-rich purple potato flake extract has antioxidant capacity and improves antioxidant potential in rats. Br J Nutr 96:1125–1133CrossRefPubMedGoogle Scholar
  202. 202.
    Speciale A, Anwar S, Canali R et al (2013) Cyanidin-3-O-glucoside counters the response to TNF-alpha of endothelial cells by activating Nrf2 pathway. Mol Nutr Food Res 57:1979–1987CrossRefPubMedGoogle Scholar
  203. 203.
    Lampe JW, Chang JL (2007) Interindividual differences in phytochemical metabolism and disposition. Semin Cancer Biol 17:347–353CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Youdim KA, Mcdonald J, Kalt W et al (2002) Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults☆. J Nutr Biochem 13:282–288CrossRefPubMedGoogle Scholar
  205. 205.
    Joo HK, Choi S, Lee YR et al (2018) Anthocyanin-rich extract from red chinese cabbage alleviates vascular inflammation in endothelial cells and apo E(-/-) mice. Int J Mol Sci 19.
  206. 206.
    Han MH, Kim HJ, Jeong JW et al (2018) Inhibition of adipocyte differentiation by anthocyanins isolated from the fruit of vitis coignetiae pulliat is associated with the activation of AMPK signaling pathway. Toxicol Res 34:13–21CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Mckay DL, Eliasziw M, Chen CYO et al (2018) A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: a randomized controlled trial. Nutrients 10.
  208. 208.
    Widmer RJ, Flammer AJ, Lerman LO et al (2015) The Mediterranean diet, its components, and cardiovascular disease. Am J Med 128:229–238CrossRefPubMedGoogle Scholar
  209. 209.
    Capurso C, Massaro M, Scoditti E et al (2014) Vascular effects of the Mediterranean diet part I: anti-hypertensive and anti-thrombotic effects. Vascul Pharmacol 63:118–126CrossRefPubMedGoogle Scholar
  210. 210.
    Estruch R, Martínez-González MA, Corella D et al (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145:1–11CrossRefGoogle Scholar
  211. 211.
    Sleiman D, Al-Badri MR, Azar ST (2015) Effect of mediterranean diet in diabetes control and cardiovascular risk modification: a systematic review. Front Public Health 3:69CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Llorente-Cortes V, Estruch R, Mena MP et al (2010) Effect of Mediterranean diet on the expression of pro-atherogenic genes in a population at high cardiovascular risk. Atherosclerosis 208:442–450CrossRefGoogle Scholar
  213. 213.
    Parikh M, Netticadan T, Pierce GN (2018) Flaxseed: its bioactive components and their cardiovascular benefits. Am J Physiol Heart Circ Physiol 314:H146–H159CrossRefGoogle Scholar
  214. 214.
    Jangale NM, Devarshi PP, Dubal AA et al (2013) Dietary flaxseed oil and fish oil modulates expression of antioxidant and inflammatory genes with alleviation of protein glycation status and inflammation in liver of streptozotocin-nicotinamide induced diabetic rats. Food Chem 141:187–195CrossRefGoogle Scholar
  215. 215.
    Garcia N, Zazueta C, Aguilera-Aguirre L (2017) Oxidative Stress and Inflammation in Cardiovascular Disease. Oxid Med Cell Longev 2017:5853238CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Hannan PA, Khan JA, Ullah I et al (2016) Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants. Lipids Health Dis 15:151CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Liu H-H, Shih T-S, Huang H-R et al (2013) Plasma homocysteine is associated with increased oxidative stress and antioxidant enzyme activity in welders. Sci World J:2013, 370487Google Scholar
  218. 218.
    Sansone R, Rodriguez-Mateos A, Heuel J et al (2015) Cocoa flavanol intake improves endothelial function and Framingham Risk Score in healthy men and women: a randomised, controlled, double-masked trial: the Flaviola Health Study. Br J Nutr 114:1246–1255CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Hamza-Reguig S, Louala S, Boualga A et al (2013) Effect of sardine protein on redox status in hypercholesterolemic rats. Nutr Food Sci 43:277–284CrossRefGoogle Scholar
  220. 220.
    Affane F, Louala S, El Imane Harrat N et al (2018) Hypolipidemic, antioxidant and antiatherogenic property of sardine by-products proteins in high-fat diet induced obese rats. Life Sci 199:16–22CrossRefGoogle Scholar
  221. 221.
    Cyrus T, Yao Y, Rokach J et al (2003) Vitamin E reduces progression of atherosclerosis in low-density lipoprotein receptor-deficient mice with established vascular lesions. Circulation 107:521–523CrossRefGoogle Scholar
  222. 222.
    Adams MR, Golden DL, Anthony MS et al (2002) The inhibitory effect of soy protein isolate on atherosclerosis in mice does not require the presence of LDL receptors or alteration of plasma lipoproteins. J Nutr 132:43–49CrossRefGoogle Scholar
  223. 223.
    Deng Y, Lei T, Li H et al (2018) ERK5/KLF2 activation is involved in the reducing effects of puerarin on monocyte adhesion to endothelial cells and atherosclerotic lesion in apolipoprotein E-deficient mice. Biochim Biophys Acta Mol Basis Dis 1864:2590–2599CrossRefGoogle Scholar
  224. 224.
    Ren K, Jiang T, Zhao GJ (2018) Quercetin induces the selective uptake of HDL-cholesterol via promoting SR-BI expression and the activation of the PPARgamma/LXRalpha pathway. Food Funct 9:624–635CrossRefGoogle Scholar
  225. 225.
    Ren K, Jiang T, Zhou HF et al (2018) Apigenin Retards Atherogenesis by Promoting ABCA1-Mediated Cholesterol Efflux and Suppressing Inflammation. Cell Physiol Biochem 47:2170–2184CrossRefGoogle Scholar
  226. 226.
    Averill MM, Bennett BJ, Rattazzi M et al (2009) Neither antioxidants nor genistein inhibit the progression of established atherosclerotic lesions in older apoE deficient mice. Atherosclerosis 203:82–88CrossRefGoogle Scholar
  227. 227.
    Karppi J, Kurl S, Mäkikallio TH et al (2013) Serum β-carotene concentrations and the risk of congestive heart failure in men: a population-based study. Int J Cardiol 168:1841–1846CrossRefGoogle Scholar
  228. 228.
    Imamura F, Lemaitre RN, King IB et al (2013) Long-chain monounsaturated Fatty acids and incidence of congestive heart failure in 2 prospective cohorts. Circulation 127:1512–1521. 1521e1511-1518CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Tavazzi L, Maggioni AP, Marchioli R et al (2008) Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet (London, UK) 372:1223–1230CrossRefGoogle Scholar
  230. 230.
    Kerley CP (2018) Dietary patterns and components to prevent and treat heart failure: a comprehensive review of human studies. Nutr Res Rev 32:1–27CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Ahmet I, Tae H-J, Lakatta EG et al (2016) Long-term low dose dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in chronic heart failure in rats. Can J Physiol Pharmacol 95:268–274CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Riba A, Deres L, Sumegi B et al (2017) Cardioprotective effect of resveratrol in a postinfarction heart failure model. Oxid Med Cell Longev 2017:6819281CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Coggan AR, Peterson LR (2016) Dietary Nitrate and Skeletal Muscle Contractile Function in Heart Failure. Curr Heart Fail Rep 13:158–165CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Xiao Y, Ye J, Zhou Y et al (2018) Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-beta/Smads signaling pathway. Arch Biochem Biophys 640:37–46CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Wang Y, Zhong L, Liu X et al (2017) ZYZ-772 prevents cardiomyocyte injury by suppressing Nox4-derived ROS production and apoptosis. Molecules 22.
  236. 236.
    Gao L, Yao R, Liu Y et al (2017) Isorhamnetin protects against cardiac hypertrophy through blocking PI3K-AKT pathway. Mol Cell Biochem 429:167–177CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Fan D, Yang Z, Liu F-Y et al (2017) Sesamin Protects Against Cardiac Remodeling Via Sirt3/ROS Pathway. Cell Physiol Biochem 44:2212–2227CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Su S, Li Q, Xiong C et al (2014) Sesamin ameliorates doxorubicin-induced cardiotoxicity: involvement of Sirt1 and Mn-SOD pathway. Toxicol Lett 224:257–263CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Chen QM, Alpert JS (2016) To supplement or not: a role for antioxidant vitamins in the management of heart failure? Am J Med 129:767–768CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Brito R, Castillo G, Gonzalez J et al (2015) Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp Clin Endocrinol Diabetes 123:325–335CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Kawashima S (2004) The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis. Endothelium 11:99–107CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Laursen JB, Somers M, Kurz S et al (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103:1282–1288CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Boonprom P, Boonla O, Chayaburakul K et al (2017) Garcinia mangostana pericarp extract protects against oxidative stress and cardiovascular remodeling via suppression of p47(phox) and iNOS in nitric oxide deficient rats. Ann Anat 212:27–36CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Dos Santos RL, Dellacqua LO, Delgado NT et al (2016) Pomegranate peel extract attenuates oxidative stress by decreasing coronary angiotensin-converting enzyme (ACE) activity in hypertensive female rats. J Toxicol Environ Health A 79:998–1007CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Sovari AA (2016) Cellular and Molecular Mechanisms of Arrhythmia by Oxidative Stress. Cardiol Res Pract 2016:9656078CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Liu M, Liu H, Dudley SC Jr (2010) Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ Res 107:967–974CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    Erickson JR, Joiner ML, Guan X et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Goff DC Jr, Lloyd-Jones DM, Bennett G et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129:S49–S73CrossRefGoogle Scholar
  250. 250.
    Aiba T, Hesketh GG, Liu T et al (2010) Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res 85:454–463CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Singh JA, Cleveland J (2017) Allopurinol and the risk of ventricular arrhythmias in the elderly: a study using US Medicare data. BMC Med 15:59CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Wang ZJ, Hu WK, Liu YY et al (2014) The effect of intravenous vitamin C infusion on periprocedural myocardial injury for patients undergoing elective percutaneous coronary intervention. Can J Cardiol 30:96–101CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Ashor AW, Lara J, Mathers JC et al (2014) Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 235:9–20CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Hemila H, Suonsyrja T (2017) Vitamin C for preventing atrial fibrillation in high risk patients: a systematic review and meta-analysis. BMC Cardiovasc Disord 17:49CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Chang JH, Chang SL, Hong PD et al (2017) Epigallocatechin-3-gallate modulates arrhythmogenic activity and calcium homeostasis of left atrium. Int J Cardiol 236:174–180CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Stephens NG, Parsons A, Schofield PM et al (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–786CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Anonymous (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 354:447–455CrossRefGoogle Scholar
  258. 258.
    Yusuf S, Dagenais G, Pogue J et al (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 342:154–160CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    De Gaetano G (2001) Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Collaborative Group of the Primary Prevention Project. Lancet 357:89–95CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Anonymous (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330:1029–1035CrossRefGoogle Scholar
  261. 261.
    Stampfer MJ, Hennekens CH, Manson JE et al (1993) Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 328:1444–1449CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Bjelakovic G, Nikolova D, Gluud LL et al (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 3:CD007176Google Scholar
  263. 263.
    Boaz M, Smetana S, Weinstein T et al (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356:1213–1218CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Enstrom JE, Kanim LE, Klein MA (1992) Vitamin C intake and mortality among a sample of the United States population. Epidemiology 3:194–202CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Ramirez J, Flowers NC (1980) Leukocyte ascorbic acid and its relationship to coronary artery disease in man. Am J Clin Nutr 33:2079–2087CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Nyyssonen K, Parviainen MT, Salonen R et al (1997) Vitamin C deficiency and risk of myocardial infarction: prospective population study of men from eastern Finland. BMJ 314:634–638CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Simon JA, Hudes ES (1999) Serum ascorbic acid and cardiovascular disease prevalence in U.S. adults: the Third National Health and Nutrition Examination Survey (NHANES III). Ann Epidemiol 9:358–365CrossRefPubMedPubMedCentralGoogle Scholar
  268. 268.
    Costa AL, Amato A, Loteta A et al (1979) Biological characteristics of various strains of Pseudomonas aeruginosa isolated from human pathological matter. G Batteriol Virol Immunol 71:55–61PubMedPubMedCentralGoogle Scholar
  269. 269.
    Osganian SK, Stampfer MJ, Rimm E et al (2003) Vitamin C and risk of coronary heart disease in women. J Am Coll Cardiol 42:246–252CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Lee DH, Folsom AR, Harnack L et al (2004) Does supplemental vitamin C increase cardiovascular disease risk in women with diabetes? Am J Clin Nutr 80:1194–1200CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Salonen JT, Alfthan G, Huttunen JK et al (1982) Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study. Lancet 2:175–179CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Miettinen TA, Alfthan G, Huttunen JK et al (1983) Serum selenium concentration related to myocardial infarction and fatty acid content of serum lipids. Br Med J (Clin Res Ed) 287:517–519CrossRefGoogle Scholar
  273. 273.
    Virtamo J, Valkeila E, Alfthan G et al (1985) Serum selenium and the risk of coronary heart disease and stroke. Am J Epidemiol 122:276–282CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Salonen JT, Salonen R, Penttila I et al (1985) Serum fatty acids, apolipoproteins, selenium and vitamin antioxidants and the risk of death from coronary artery disease. Am J Cardiol 56:226–231CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Ringstad J, Thelle D (1986) Risk of myocardial infarction in relation to serum concentrations of selenium. Acta Pharmacol Toxicol (Copenh) 59(Suppl 7):336–339Google Scholar
  276. 276.
    Paine AJ (1978) Excited states of oxygen in biology: their possible involvement in cytochrome P450 linked oxidations as well as in the induction of the P450 system by many diverse compounds. Biochem Pharmacol 27:1805–1813CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Ringstad J, Jacobsen BK, Thomassen Y et al (1987) The Tromso Heart Study: serum selenium and risk of myocardial infarction a nested case-control study. J Epidemiol Community Health 41:329–332CrossRefPubMedPubMedCentralGoogle Scholar
  278. 278.
    Suadicani P, Hein HO, Gyntelberg F (1992) Serum selenium concentration and risk of ischaemic heart disease in a prospective cohort study of 3000 males. Atherosclerosis 96:33–42CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Salvini S, Hennekens CH, Morris JS et al (1995) Plasma levels of the antioxidant selenium and risk of myocardial infarction among U.S. physicians. Am J Cardiol 76:1218–1221CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Marniemi J, Jarvisalo J, Toikka T et al (1998) Blood vitamins, mineral elements and inflammation markers as risk factors of vascular and non-vascular disease mortality in an elderly population. Int J Epidemiol 27:799–807CrossRefGoogle Scholar
  281. 281.
    Kilander L, Berglund L, Boberg M et al (2001) Education, lifestyle factors and mortality from cardiovascular disease and cancer. A 25-year follow-up of Swedish 50-year-old men. Int J Epidemiol 30:1119–1126CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Yoshizawa K, Ascherio A, Morris JS et al (2003) Prospective study of selenium levels in toenails and risk of coronary heart disease in men. Am J Epidemiol 158:852–860CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Wei WQ, Abnet CC, Qiao YL et al (2004) Prospective study of serum selenium concentrations and esophageal and gastric cardia cancer, heart disease, stroke, and total death. Am J Clin Nutr 79:80–85CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Akbaraly NT, Arnaud J, Hininger-Favier I et al (2005) Selenium and mortality in the elderly: results from the EVA study. Clin Chem 51:2117–2123CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Oster O, Drexler M, Schenk J et al (1986) The serum selenium concentration of patients with acute myocardial infarction. Ann Clin Res 18:36–42PubMedPubMedCentralGoogle Scholar
  286. 286.
    Auzepy P, Blondeau M, Richard C et al (1987) Serum selenium deficiency in myocardial infarction and congestive cardiomyopathy. Acta Cardiol 42:161–166PubMedPubMedCentralGoogle Scholar
  287. 287.
    Beaglehole R, Jackson R, Watkinson J et al (1990) Decreased blood selenium and risk of myocardial infarction. Int J Epidemiol 19:918–922CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Thiele R, Schuffenhauer M, Winnefeld K et al (1995) Selenium level in patients with acute myocardial infarct and in patients with severe angina pectoris without myocardial infarct. Med Klin (Munich) 90(Suppl 1):45–48Google Scholar
  289. 289.
    Kardinaal AF, Kok FJ, Kohlmeier L et al (1997) Association between toenail selenium and risk of acute myocardial infarction in European men. The EURAMIC Study. European Antioxidant Myocardial Infarction and Breast Cancer. Am J Epidemiol 145:373–379CrossRefPubMedPubMedCentralGoogle Scholar
  290. 290.
    Coudray C, Roussel AM, Mainard F et al (1997) Lipid peroxidation level and antioxidant micronutrient status in a pre-aging population; correlation with chronic disease prevalence in a French epidemiological study (Nantes, France). J Am Coll Nutr 16:584–591PubMedPubMedCentralGoogle Scholar
  291. 291.
    Navarro-Alarcon M, De La Serrana HL-G, Perez-Valero V et al (1999) Serum and urine selenium concentrations in patients with cardiovascular diseases and relationship to other nutritional indexes. Ann Nutr Metab 43:30–36CrossRefPubMedPubMedCentralGoogle Scholar
  292. 292.
    Bor MV, Cevik C, Uslu I et al (1999) Selenium levels and glutathione peroxidase activities in patients with acute myocardial infarction. Acta Cardiol 54:271–276PubMedPubMedCentralGoogle Scholar
  293. 293.
    Zachara BA, Ukleja-Adamowicz M, Nartowicz E et al (2001) Increased plasma glutathione peroxidase activity in patients with acute myocardial infarction. Med Sci Monit 7:415–420PubMedPubMedCentralGoogle Scholar
  294. 294.
    Schnabel R, Lubos E, Messow CM et al (2008) Selenium supplementation improves antioxidant capacity in vitro and in vivo in patients with coronary artery disease The SElenium Therapy in Coronary Artery disease Patients (SETCAP) Study. Am Heart J 156:1201 e1201–1201 e1211CrossRefGoogle Scholar
  295. 295.
    Stranges S, Marshall JR, Trevisan M et al (2006) Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol 163:694–699CrossRefPubMedPubMedCentralGoogle Scholar
  296. 296.
    Cold F, Winther KH, Pastor-Barriuso R et al (2015) Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br J Nutr 114:1807–1818CrossRefPubMedGoogle Scholar
  297. 297.
    Korpela H, Kumpulainen J, Jussila E et al (1989) Effect of selenium supplementation after acute myocardial infarction. Res Commun Chem Pathol Pharmacol 65:249–252PubMedGoogle Scholar
  298. 298.
    Alvarenga Americano Do Brasil PE, Pereira De Souza A, Hasslocher-Moreno AM et al (2014) Selenium Treatment and Chagasic Cardiopathy (STCC): study protocol for a double-blind randomized controlled trial. Trials 15:388CrossRefPubMedGoogle Scholar
  299. 299.
    Brigo F, Storti M, Lochner P et al (2014) Selenium supplementation for primary prevention of cardiovascular disease: proof of no effectiveness. Nutr Metab Cardiovasc Dis 24:e2–e3CrossRefPubMedGoogle Scholar
  300. 300.
    Eaton CB, Abdul Baki AR, Waring ME et al (2010) The association of low selenium and renal insufficiency with coronary heart disease and all-cause mortality: NHANES III follow-up study. Atherosclerosis 212:689–694CrossRefPubMedGoogle Scholar
  301. 301.
    Hawkes WC, Laslett LJ (2009) Selenium supplementation does not improve vascular responsiveness in healthy North American men. Am J Physiol Heart Circ Physiol 296:H256–H262CrossRefPubMedGoogle Scholar
  302. 302.
    Hennekens CH, Buring JE, Manson JE et al (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334:1145–1149CrossRefPubMedGoogle Scholar
  303. 303.
    Morris DL, Kritchevsky SB, Davis CE (1994) Serum carotenoids and coronary heart disease. The Lipid Research Clinics Coronary Primary Prevention Trial and Follow-up Study. JAMA 272:1439–1441CrossRefPubMedGoogle Scholar
  304. 304.
    Gaziano JM, Manson JE, Branch LG et al (1995) A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. Ann Epidemiol 5:255–260CrossRefPubMedGoogle Scholar
  305. 305.
    Osganian SK, Stampfer MJ, Rimm E et al (2003) Dietary carotenoids and risk of coronary artery disease in women. Am J Clin Nutr 77:1390–1399CrossRefPubMedGoogle Scholar
  306. 306.
    Iribarren C, Folsom AR, Jacobs DR Jr et al (1997) Association of serum vitamin levels, LDL susceptibility to oxidation, and autoantibodies against MDA-LDL with carotid atherosclerosis. A case-control study. The ARIC Study Investigators. Atherosclerosis Risk in Communities. Arterioscler Thromb Vasc Biol 17:1171–1177CrossRefPubMedGoogle Scholar
  307. 307.
    Hertog MG, Kromhout D, Aravanis C et al (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155:381–386CrossRefPubMedGoogle Scholar
  308. 308.
    Knekt P, Jarvinen R, Reunanen A et al (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 312:478–481CrossRefPubMedPubMedCentralGoogle Scholar
  309. 309.
    Knekt P, Kumpulainen J, Jarvinen R et al (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568CrossRefPubMedGoogle Scholar
  310. 310.
    Yochum L, Kushi LH, Meyer K et al (1999) Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol 149:943–949CrossRefGoogle Scholar
  311. 311.
    Arts IC, Jacobs DR Jr, Harnack LJ et al (2001) Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology 12:668–675CrossRefGoogle Scholar
  312. 312.
    Geleijnse JM, Launer LJ, Van Der Kuip DA et al (2002) Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 75:880–886CrossRefGoogle Scholar
  313. 313.
    Hertog MG, Sweetnam PM, Fehily AM et al (1997) Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr 65:1489–1494CrossRefGoogle Scholar
  314. 314.
    Sesso HD, Gaziano JM, Liu S et al (2003) Flavonoid intake and the risk of cardiovascular disease in women. Am J Clin Nutr 77:1400–1408CrossRefGoogle Scholar
  315. 315.
    Rimm EB, Katan MB, Ascherio A et al (1996) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125:384–389CrossRefPubMedPubMedCentralGoogle Scholar
  316. 316.
    Lin J, Rexrode KM, Hu F et al (2007) Dietary intakes of flavonols and flavones and coronary heart disease in US women. Am J Epidemiol 165:1305–1313CrossRefPubMedPubMedCentralGoogle Scholar
  317. 317.
    Mink PJ, Scrafford CG, Barraj LM et al (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909CrossRefGoogle Scholar
  318. 318.
    Farouque HM, Leung M, Hope SA et al (2006) Acute and chronic effects of flavanol-rich cocoa on vascular function in subjects with coronary artery disease: a randomized double-blind placebo-controlled study. Clin Sci (Lond) 111:71–80CrossRefGoogle Scholar
  319. 319.
    Brown CA, Bolton-Smith C, Woodward M et al (1993) Coffee and tea consumption and the prevalence of coronary heart disease in men and women: results from the Scottish Heart Health Study. J Epidemiol Community Health 47:171–175CrossRefPubMedPubMedCentralGoogle Scholar
  320. 320.
    Keli SO, Hertog MG, Feskens EJ et al (1996) Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med 156:637–642CrossRefPubMedGoogle Scholar
  321. 321.
    Mukamal KJ, Maclure M, Muller JE et al (2002) Tea consumption and mortality after acute myocardial infarction. Circulation 105:2476–2481CrossRefPubMedGoogle Scholar
  322. 322.
    Sesso HD, Gaziano JM, Buring JE et al (1999) Coffee and tea intake and the risk of myocardial infarction. Am J Epidemiol 149:162–167CrossRefPubMedGoogle Scholar
  323. 323.
    Taku K, Umegaki K, Sato Y et al (2007) Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 85:1148–1156CrossRefPubMedGoogle Scholar
  324. 324.
    Flammer AJ, Sudano I, Wolfrum M et al (2012) Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur Heart J 33:2172–2180CrossRefPubMedPubMedCentralGoogle Scholar
  325. 325.
    Simon JA, Hudes ES, Tice JA (2001) Relation of serum ascorbic acid to mortality among US adults. J Am Coll Nutr 20:255–263CrossRefPubMedGoogle Scholar
  326. 326.
    Auclair S, Chironi G, Milenkovic D et al (2010) The regular consumption of a polyphenol-rich apple does not influence endothelial function: a randomised double-blind trial in hypercholesterolemic adults. Eur J Clin Nutr 64:1158–1165CrossRefPubMedGoogle Scholar
  327. 327.
    Medina-Remon A, Zamora-Ros R, Rotches-Ribalta M et al (2011) Total polyphenol excretion and blood pressure in subjects at high cardiovascular risk. Nutr Metab Cardiovasc Dis 21:323–331CrossRefPubMedGoogle Scholar
  328. 328.
    Dohadwala MM, Holbrook M, Hamburg NM et al (2011) Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr 93:934–940CrossRefPubMedPubMedCentralGoogle Scholar
  329. 329.
    Valls-Pedret C, Lamuela-Raventos RM, Medina-Remon A et al (2012) Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J Alzheimers Dis 29:773–782CrossRefPubMedGoogle Scholar
  330. 330.
    Moreno-Luna R, Munoz-Hernandez R, Miranda ML et al (2012) Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am J Hypertens 25:1299–1304PubMedGoogle Scholar
  331. 331.
    Khan N, Monagas M, Andres-Lacueva C et al (2012) Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutr Metab Cardiovasc Dis 22:1046–1053CrossRefGoogle Scholar
  332. 332.
    Hassellund SS, Flaa A, Kjeldsen SE et al (2013) Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: a double-blind randomized placebo-controlled crossover study. J Hum Hypertens 27:100–106CrossRefGoogle Scholar
  333. 333.
    Chiva-Blanch G, Urpi-Sarda M, Ros E et al (2013) Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: a randomized clinical trial. Clin Nutr 32:200–206CrossRefGoogle Scholar
  334. 334.
    Annuzzi G, Bozzetto L, Costabile G et al (2014) Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. Am J Clin Nutr 99:463–471CrossRefGoogle Scholar
  335. 335.
    Medina-Remon A, Tresserra-Rimbau A, Pons A et al (2015) Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis 25:60–67CrossRefGoogle Scholar
  336. 336.
    Tresserra-Rimbau A, Guasch-Ferre M, Salas-Salvado J et al (2016) Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. In: J Nutr, vol 146, pp 767–777Google Scholar
  337. 337.
    Stockton A, Farhat G, Mcdougall GJ et al (2017) Effect of pomegranate extract on blood pressure and anthropometry in adults: a double-blind placebo-controlled randomised clinical trial. J Nutr Sci 6:e39CrossRefPubMedPubMedCentralGoogle Scholar
  338. 338.
    Bellone JA, Murray JR, Jorge P et al (2018) Pomegranate supplementation improves cognitive and functional recovery following ischemic stroke: a randomized trial. Nutr Neurosci 13:1–6Google Scholar
  339. 339.
    Razani Z, Dastani M, Kazerani HR (2017) Cardioprotective Effects of Pomegranate (Punica granatum) Juice in Patients with Ischemic Heart Disease. Phytother Res 31:1731–1738CrossRefGoogle Scholar
  340. 340.
    Tresserra-Rimbau A, Rimm EB, Medina-Remon A et al (2014) Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis 24:639–647CrossRefGoogle Scholar
  341. 341.
    Sumner MD, Elliott-Eller M, Weidner G et al (2005) Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am J Cardiol 96:810–814CrossRefGoogle Scholar
  342. 342.
    Lekakis J, Rallidis LS, Andreadou I et al (2005) Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil 12:596–600PubMedGoogle Scholar
  343. 343.
    Li SH, Tian HB, Zhao HJ et al (2013) The acute effects of grape polyphenols supplementation on endothelial function in adults: meta-analyses of controlled trials. PLoS One 8:e69818CrossRefPubMedPubMedCentralGoogle Scholar
  344. 344.
    Wang D, Chen C, Wang Y et al (2014) Effect of black tea consumption on blood cholesterol: a meta-analysis of 15 randomized controlled trials. PLoS One 9:e107711CrossRefPubMedPubMedCentralGoogle Scholar
  345. 345.
    Rimm EB, Stampfer MJ, Ascherio A et al (1993) Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 328:1450–1456CrossRefGoogle Scholar
  346. 346.
    Knekt P, Reunanen A, Jarvinen R et al (1994) Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am J Epidemiol 139:1180–1189CrossRefGoogle Scholar
  347. 347.
    Anonymous (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33CrossRefGoogle Scholar
  348. 348.
    Lee IM, Cook NR, Manson JE et al (1999) Beta-carotene supplementation and incidence of cancer and cardiovascular disease: the Women’s Health Study. J Natl Cancer Inst 91:2102–2106CrossRefGoogle Scholar
  349. 349.
    Lee IM, Cook NR, Gaziano JM et al (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA 294:56–65CrossRefGoogle Scholar
  350. 350.
    Bassuk SS, Albert CM, Cook NR et al (2004) The Women’s Antioxidant Cardiovascular Study: design and baseline characteristics of participants. J Womens Health (Larchmt) 13:99–117CrossRefGoogle Scholar
  351. 351.
    Hercberg S, Galan P, Preziosi P et al (2004) The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164:2335–2342CrossRefPubMedPubMedCentralGoogle Scholar
  352. 352.
    Hercberg S (2006) The SU.VI.MAX study, a randomized, placebo-controlled trial on the effects of antioxidant vitamins and minerals on health. Ann Pharm Fr 64:397–401CrossRefPubMedPubMedCentralGoogle Scholar
  353. 353.
    Gey KF, Puska P (1989) Plasma vitamins E and A inversely correlated to mortality from ischemic heart disease in cross-cultural epidemiology. Ann N Y Acad Sci 570:268–282CrossRefPubMedPubMedCentralGoogle Scholar
  354. 354.
    Losonczy KG, Harris TB, Havlik RJ (1996) Vitamin E and vitamin C supplement use and risk of all-cause and coronary heart disease mortality in older persons: the Established Populations for Epidemiologic Studies of the Elderly. Am J Clin Nutr 64:190–196CrossRefPubMedPubMedCentralGoogle Scholar
  355. 355.
    Riemersma RA, Wood DA, Macintyre CC et al (1991) Risk of angina pectoris and plasma concentrations of vitamins A, C, and E and carotene. Lancet 337:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  356. 356.
    Omenn GS, Goodman GE, Thornquist MD et al (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155CrossRefPubMedPubMedCentralGoogle Scholar
  357. 357.
    Klipstein-Grobusch K, Geleijnse JM, Den Breeijen JH et al (1999) Dietary antioxidants and risk of myocardial infarction in the elderly: the Rotterdam Study. Am J Clin Nutr 69:261–266CrossRefPubMedPubMedCentralGoogle Scholar
  358. 358.
    Ford ES, Giles WH (2000) Serum vitamins, carotenoids, and angina pectoris: findings from the National Health and Nutrition Examination Survey III. Ann Epidemiol 10:106–116CrossRefPubMedPubMedCentralGoogle Scholar
  359. 359.
    Klipstein-Grobusch K, Den Breeijen JH, Grobbee DE et al (2001) Dietary antioxidants and peripheral arterial disease: the Rotterdam Study. Am J Epidemiol 154:145–149CrossRefPubMedPubMedCentralGoogle Scholar
  360. 360.
    Kritchevsky SB, Shimakawa T, Tell GS et al (1995) Dietary antioxidants and carotid artery wall thickness. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation 92:2142–2150CrossRefPubMedPubMedCentralGoogle Scholar
  361. 361.
    Kushi LH, Folsom AR, Prineas RJ et al (1996) Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med 334:1156–1162CrossRefPubMedPubMedCentralGoogle Scholar
  362. 362.
    Muntwyler J, Hennekens CH, Manson JE et al (2002) Vitamin supplement use in a low-risk population of US male physicians and subsequent cardiovascular mortality. Arch Intern Med 162:1472–1476CrossRefPubMedPubMedCentralGoogle Scholar
  363. 363.
    Evans RW, Shaten BJ, Day BW et al (1998) Prospective association between lipid soluble antioxidants and coronary heart disease in men. The Multiple Risk Factor Intervention Trial. Am J Epidemiol 147:180–186CrossRefPubMedPubMedCentralGoogle Scholar
  364. 364.
    Smolkova B, Dusinska M, Raslova K et al (2004) Folate levels determine effect of antioxidant supplementation on micronuclei in subjects with cardiovascular risk. Mutagenesis 19:469–476CrossRefPubMedPubMedCentralGoogle Scholar
  365. 365.
    Trankmann P, Thiele R, Winnefeld K et al (1999) Effect of administration of selenium and vitamin E on heart failure and ventricular arrhythmias in patients with acute myocardial infarct. Med Klin (Munich) 94(Suppl 3):78–80CrossRefGoogle Scholar
  366. 366.
    Christen WG, Gaziano JM, Hennekens CH (2000) Design of Physicians’ Health Study II--a randomized trial of beta-carotene, vitamins E and C, and multivitamins, in prevention of cancer, cardiovascular disease, and eye disease, and review of results of completed trials. Ann Epidemiol 10:125–134CrossRefPubMedPubMedCentralGoogle Scholar
  367. 367.
    Alehagen U, Alexander J, Aaseth J (2016) Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial. PLoS One 11:e0157541CrossRefPubMedPubMedCentralGoogle Scholar
  368. 368.
    Kuklinski B, Weissenbacher E, Fahnrich A (1994) Coenzyme Q10 and antioxidants in acute myocardial infarction. Mol Aspects Med 15. Suppl:s143–s147CrossRefPubMedPubMedCentralGoogle Scholar
  369. 369.
    Brown BG, Zhao XQ, Chait A et al (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345:1583–1592CrossRefPubMedPubMedCentralGoogle Scholar
  370. 370.
    Stonehouse W, Brinkworth GD, Thompson CH et al (2016) Short term effects of palm-tocotrienol and palm-carotenes on vascular function and cardiovascular disease risk: a randomised controlled trial. Atherosclerosis 254:205–214CrossRefPubMedPubMedCentralGoogle Scholar
  371. 371.
    Saboori S, Djalali M, Yousefi Rad E et al (2016) Various Effects of Omega 3 and Omega 3 Plus Vitamin E Supplementations on Serum Glucose Level and Insulin Resistance in Patients with Coronary Artery Disease. Iran J Public Health 45:1465–1472PubMedPubMedCentralGoogle Scholar
  372. 372.
    Stepaniak U, Micek A, Grosso G et al (2016) Antioxidant vitamin intake and mortality in three Central and Eastern European urban populations: the HAPIEE study. Eur J Nutr 55:547–560CrossRefPubMedPubMedCentralGoogle Scholar
  373. 373.
    Rodrigo R, Hasson D, Prieto JC et al (2014) The effectiveness of antioxidant vitamins C and E in reducing myocardial infarct size in patients subjected to percutaneous coronary angioplasty (PREVEC Trial): study protocol for a pilot randomized double-blind controlled trial. Trials 15:192CrossRefPubMedPubMedCentralGoogle Scholar
  374. 374.
    Jaxa-Chamiec T, Bednarz B, Herbaczynska-Cedro K et al (2009) Effects of vitamins C and E on the outcome after acute myocardial infarction in diabetics: a retrospective, hypothesis-generating analysis from the MIVIT study. Cardiology 112:219–223CrossRefPubMedPubMedCentralGoogle Scholar
  375. 375.
    Jaxa-Chamiec T, Bednarz B, Drozdowska D et al (2005) Antioxidant effects of combined vitamins C and E in acute myocardial infarction. The randomized, double-blind, placebo controlled, multicenter pilot Myocardial Infarction and VITamins (MIVIT) trial. Kardiol Pol 62:344–350PubMedPubMedCentralGoogle Scholar
  376. 376.
    Sesso HD, Buring JE, Christen WG et al (2008) Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA 300:2123–2133CrossRefPubMedPubMedCentralGoogle Scholar
  377. 377.
    Marchioli R, Marfisi RM, Borrelli G et al (2007) Efficacy of n-3 polyunsaturated fatty acids according to clinical characteristics of patients with recent myocardial infarction: insights from the GISSI-Prevenzione trial. J Cardiovasc Med (Hagerstown) 8(Suppl 1):S34–S37CrossRefGoogle Scholar
  378. 378.
    Cook NR, Albert CM, Gaziano JM et al (2007) A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women’s Antioxidant Cardiovascular Study. Arch Intern Med 167:1610–1618CrossRefPubMedPubMedCentralGoogle Scholar
  379. 379.
    Assanelli D, Bonanome A, Pezzini A et al (2004) Folic acid and vitamin E supplementation effects on homocysteinemia, endothelial function and plasma antioxidant capacity in young myocardial-infarction patients. Pharmacol Res 49:79–84CrossRefPubMedPubMedCentralGoogle Scholar
  380. 380.
    Marchioli R (2003) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. Minerva Cardioangiol 51:561–576PubMedPubMedCentralGoogle Scholar
  381. 381.
    Singh RB, Neki NS, Kartikey K et al (2003) Effect of coenzyme Q10 on risk of atherosclerosis in patients with recent myocardial infarction. Mol Cell Biochem 246:75–82CrossRefPubMedPubMedCentralGoogle Scholar
  382. 382.
    Rapola JM, Virtamo J, Ripatti S et al (1997) Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet 349:1715–1720CrossRefPubMedPubMedCentralGoogle Scholar
  383. 383.
    Carrero JJ, Fonolla J, Marti JL et al (2007) Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J Nutr 137:384–390CrossRefPubMedPubMedCentralGoogle Scholar
  384. 384.
    Arad Y, Spadaro LA, Roth M et al (2005) Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol 46:166–172CrossRefPubMedPubMedCentralGoogle Scholar
  385. 385.
    Engler MM, Engler MB, Malloy MJ et al (2003) Antioxidant vitamins C and E improve endothelial function in children with hyperlipidemia: Endothelial Assessment of Risk from Lipids in Youth (EARLY) Trial. Circulation 108:1059–1063CrossRefPubMedPubMedCentralGoogle Scholar
  386. 386.
    Salonen RM, Nyyssonen K, Kaikkonen J et al (2003) Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation 107:947–953CrossRefPubMedPubMedCentralGoogle Scholar
  387. 387.
    Singhal S, Gupta R, Goyle A (2001) Comparison of antioxidant efficacy of vitamin E, vitamin C, vitamin A and fruits in coronary heart disease: a controlled trial. J Assoc Physicians India 49:327–331PubMedPubMedCentralGoogle Scholar
  388. 388.
    Ward NC, Hodgson JM, Croft KD et al (2005) The combination of vitamin C and grape-seed polyphenols increases blood pressure: a randomized, double-blind, placebo-controlled trial. J Hypertens 23:427–434CrossRefPubMedPubMedCentralGoogle Scholar
  389. 389.
    Yuanfeng W, Gongnian X, Jianwei M et al (2015) Dietary sulforaphane inhibits histone deacetylase activity in B16 melanoma cells. J Funct Foods 18:182–189CrossRefGoogle Scholar
  390. 390.
    Reuter S, Gupta SC, Park B et al (2011) Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr 6:93–108CrossRefPubMedPubMedCentralGoogle Scholar
  391. 391.
    Li Y, Saldanha SN, Tollefsbol TO (2014) Impact of epigenetic dietary compounds on transgenerational prevention of human diseases. AAPS J 16:27–36CrossRefPubMedPubMedCentralGoogle Scholar
  392. 392.
    Crescenti A, Sola R, Valls RM et al (2013) Cocoa consumption alters the global DNA methylation of peripheral leukocytes in humans with cardiovascular disease risk factors: a randomized controlled trial. PLoS One 8:e65744CrossRefPubMedPubMedCentralGoogle Scholar
  393. 393.
    Gracia-Sancho J, Villarreal G Jr, Zhang Y et al (2010) Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc Res 85:514–519CrossRefPubMedPubMedCentralGoogle Scholar
  394. 394.
    Speckmann B, Schulz S, Hiller F et al (2017) Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice. J Nutr Biochem 48:112–119CrossRefPubMedPubMedCentralGoogle Scholar
  395. 395.
    Vahid F, Zand H, Nosrat-Mirshekarlou E et al (2015) The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562:8–15CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Subhoshree Ghose
    • 1
    • 2
  • Swati Varshney
    • 1
    • 2
  • Rahul Chakraborty
    • 1
    • 2
  • Shantanu Sengupta
    • 1
    • 2
    Email author
  1. 1.Cardio-Respiratory Disease Biology, Genomics and Molecular Medicine UnitCSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB)New DelhiIndia
  2. 2.Academy of Scientific &Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations