Role of Oxidative Stress in the Pathophysiology of Arterial Hypertension and Heart Failure

  • Teresa Sousa
  • Marta Reina-Couto
  • Pedro GomesEmail author


Oxidative stress is an imbalance between endogenous prooxidant and antioxidant systems leading to excessive production of reactive oxygen species (ROS), which potentially disrupt redox signalling and/or inflict damage to macromolecules. Numerous studies over the last two decades have suggested a central role for oxidative stress in the development of several cardiovascular diseases. This chapter aims to summarize the current experimental and clinical evidence about the major oxidant and antioxidant changes occurring in hypertension and heart failure, and to provide a critical overview of the relevance of oxidative stress in the pathophysiology of these prevalent diseases. Finally, the strategies known to prevent or ameliorate oxidative damage, both in animal models and in patients, will be discussed.


ROS Oxidative stress Arterial hypertension Heart failure Signalling 



We apologize to all colleagues whose work has not been discussed or cited owing to space limitations. TS is currently supported by FEDER funds via COMPETE (Portugal 2020) and by national funds through the Portuguese Foundation for Science and Technology (FCT) (project grant PTDC/MEC-CAR/32188/2017; SFRH/BPD/112005/2015). PG is funded by FEDER, Centro2020 Regional Operational Programme: CENTRO-01-0145-FEDER-000012-HealthyAging2020, COMPETE 2020-Operational Programme for Competitiveness & Internationalization; and FCT (strategic project UID/NEU/04539/2013; SFRH/BPD/111815/2015).


  1. 1.
    Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7(8):504–511PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Valko M et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Brewer AC et al (2013) Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal 18(9):1114–1127PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Martinez MC, Andriantsitohaina R (2009) Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 11(3):669–702PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Turko IV, Murad F (2002) Protein nitration in cardiovascular diseases. Pharmacol Rev 54(4):619–634PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Costa S et al (2016) Statins and oxidative stress in chronic heart failure. Rev Port Cardiol 35(1):41–57PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sousa T et al (2012) Lipid peroxidation and antioxidants in arterial hypertension. In: Catala A (ed) Lipid peroxidation. IntechOpen, Rijeka, pp 345–392Google Scholar
  11. 11.
    Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114(3):524–537PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13CrossRefGoogle Scholar
  13. 13.
    Addabbo F, Montagnani M, Goligorsky MS (2009) Mitochondria and reactive oxygen species. Hypertension 53(6):885–892PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Nazarewicz RR et al (2013) Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am J Physiol Heart Circ Physiol 305(8):H1131–H1140PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhang A et al (2011) Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int 80(1):51–60PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Dey S et al (2018) Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 123(3):356–371PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Moris D et al (2017) The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med 5(16):324PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6):H2181–H2190PubMedCrossRefGoogle Scholar
  20. 20.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Datla SR, Griendling KK (2010) Reactive oxygen species, NADPH oxidases, and hypertension. Hypertension 56(3):325–330PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nistala R, Whaley-Connell A, Sowers JR (2008) Redox control of renal function and hypertension. Antioxid Redox Signal 10(12):2047–2089PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Brandes RP, Takac I, Schroder K (2011) No superoxide--no stress?: Nox4, the good NADPH oxidase! Arterioscler Thromb Vasc Biol 31(6):1255–1257PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47(9):1239–1253PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sedeek M et al (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24(10):1512–1518PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Montezano AC et al (2015) Redox signaling, Nox5 and vascular remodeling in hypertension. Curr Opin Nephrol Hypertens 24(5):425–433PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yu P et al (2014) Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol 2:570–579PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Manea A et al (2015) Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem Biophys Res Commun 461(1):172–179PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Munzel T et al (2017) Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J Am Coll Cardiol 70(2):212–229PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhang M et al (2013) NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid Redox Signal 18(9):1024–1041PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Matsushima S et al (2013) Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1alpha and upregulation of peroxisome proliferator-activated receptor-alpha. Circ Res 112(8):1135–1149PubMedCrossRefGoogle Scholar
  32. 32.
    Davies MJ (2011) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 48(1):8–19PubMedCrossRefGoogle Scholar
  33. 33.
    Liu YC et al (2013) Genetic polymorphisms of myeloperoxidase and their effect on hypertension. Blood Press 22(5):282–289PubMedCrossRefGoogle Scholar
  34. 34.
    Anatoliotakis N et al (2013) Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease. Curr Top Med Chem 13(2):115–138PubMedCrossRefGoogle Scholar
  35. 35.
    Baldus S et al (2006) Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation 113(15):1871–1878PubMedCrossRefGoogle Scholar
  36. 36.
    Nussbaum C et al (2013) Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 18(6):692–713PubMedCrossRefGoogle Scholar
  37. 37.
    Tang WH et al (2007) Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J Am Coll Cardiol 49(24):2364–2370PubMedCrossRefGoogle Scholar
  38. 38.
    Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837PubMedCrossRefGoogle Scholar
  39. 39.
    Gewaltig MT, Kojda G (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 55(2):250–260PubMedCrossRefGoogle Scholar
  40. 40.
    Horita S et al (2014) Regulatory roles of nitric oxide and angiotensin II on renal tubular transport. World J Nephrol 3(4):295–301PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Massion PB et al (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93(5):388–398PubMedCrossRefGoogle Scholar
  42. 42.
    Briones AM, Touyz RM (2010) Oxidative stress and hypertension: current concepts. Curr Hypertens Rep 12(2):135–142PubMedCrossRefGoogle Scholar
  43. 43.
    Li H et al (2006) Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol 47(12):2536–2544PubMedCrossRefGoogle Scholar
  44. 44.
    Yamamoto E et al (2015) The pivotal role of eNOS uncoupling in vascular endothelial dysfunction in patients with heart failure with preserved ejection fraction. Int J Cardiol 190:335–337PubMedCrossRefGoogle Scholar
  45. 45.
    Moens AL et al (2008) Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation 117(20):2626–2636PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(Pt 3):589–606PubMedCrossRefGoogle Scholar
  47. 47.
    Kuzkaya N et al (2005) Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol 70(3):343–354PubMedCrossRefGoogle Scholar
  48. 48.
    Hooper DC et al (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95(2):675–680PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Johnson RJ et al (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41(6):1183–1190PubMedCrossRefGoogle Scholar
  50. 50.
    Niskanen LK et al (2004) Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med 164(14):1546–1551PubMedCrossRefGoogle Scholar
  51. 51.
    Loperena R, Harrison DG (2017) Oxidative stress and hypertensive diseases. Med Clin North Am 101(1):169–193PubMedCrossRefGoogle Scholar
  52. 52.
    Feig DI, Soletsky B, Johnson RJ (2008) Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 300(8):924–932PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    MacIsaac RL et al (2016) Allopurinol and cardiovascular outcomes in adults with hypertension. Hypertension 67(3):535–540PubMedCrossRefGoogle Scholar
  54. 54.
    Guzik TJ et al (2006) Coronary artery superoxide production and NOX isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26(2):333–339PubMedCrossRefGoogle Scholar
  55. 55.
    Baldus S et al (2006) Inhibition of xanthine oxidase improves myocardial contractility in patients with ischemic cardiomyopathy. Free Radic Biol Med 41(8):1282–1288PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Givertz MM et al (2015) Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation 131(20):1763–1771PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hare JM et al (2008) Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 51(24):2301–2309CrossRefGoogle Scholar
  58. 58.
    Casas AI et al (2015) Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid Redox Signal 23(14):1171–1185PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Deshwal S et al (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69PubMedCrossRefGoogle Scholar
  60. 60.
    Kaludercic N et al (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813(7):1323–1332PubMedCrossRefGoogle Scholar
  61. 61.
    Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15(7):1957–1997PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wassmann S, Wassmann K, Nickenig G (2004) Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44(4):381–386PubMedCrossRefGoogle Scholar
  64. 64.
    Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115PubMedCrossRefGoogle Scholar
  65. 65.
    Williams B et al (2018) ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 39(33):3021–3104CrossRefGoogle Scholar
  66. 66.
    Coffman TM (2011) Under pressure: the search for the essential mechanisms of hypertension. Nat Med 17(11):1402–1409PubMedCrossRefGoogle Scholar
  67. 67.
    Davisson RL, Zimmerman MC (2010) Angiotensin II, oxidant signaling, and hypertension: down to a T? Hypertension 55(2):228–230PubMedCrossRefGoogle Scholar
  68. 68.
    Kobori H et al (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59(3):251–287PubMedCrossRefGoogle Scholar
  69. 69.
    Reckelhoff JF, Romero JC (2003) Role of oxidative stress in angiotensin-induced hypertension. Am J Phys Regul Integr Comp Phys 284(4):R893–R912Google Scholar
  70. 70.
    Weir MR, Dzau VJ (1999) The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 12(12 Pt 3):205S–213SPubMedCrossRefGoogle Scholar
  71. 71.
    Zimmerman MC et al (2004) Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res 95(2):210–216PubMedCrossRefGoogle Scholar
  72. 72.
    Makino A et al (2003) Increased renal medullary H2O2 leads to hypertension. Hypertension 42(1):25–30PubMedCrossRefGoogle Scholar
  73. 73.
    Sousa T et al (2012) Role of H(2)O(2) in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br J Pharmacol 166(8):2386–2401PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gomes P et al (2009) Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure. Oxidative Med Cell Longev 2(3):138–145CrossRefGoogle Scholar
  75. 75.
    Simao S et al (2011) Age-related changes in renal expression of oxidant and antioxidant enzymes and oxidative stress markers in male SHR and WKY rats. Exp Gerontol 46(6):468–474PubMedCrossRefGoogle Scholar
  76. 76.
    Gomes P et al (2013) Loss of oxidative stress tolerance in hypertension is linked to reduced catalase activity and increased c-Jun NH2-terminal kinase activation. Free Radic Biol Med 56:112–122PubMedCrossRefGoogle Scholar
  77. 77.
    Ulker S et al (2003) Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovasc Res 59(2):488–500PubMedCrossRefGoogle Scholar
  78. 78.
    Chan SH et al (2009) Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension 53(2):217–227PubMedCrossRefGoogle Scholar
  79. 79.
    Kristal B et al (1998) Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension. Am J Hypertens 11(8 Pt 1):921–928PubMedCrossRefGoogle Scholar
  80. 80.
    Lacy F et al (2000) Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 36(5):878–884PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Zhou L et al (2006) Reduction in extracellular superoxide dismutase activity in African-American patients with hypertension. Free Radic Biol Med 41(9):1384–1391PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Redon J et al (2003) Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 41(5):1096–1101PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kedziora-Kornatowska K et al (2004) The markers of oxidative stress and activity of the antioxidant system in the blood of elderly patients with essential arterial hypertension. Cell Mol Biol Lett 9(4A):635–641PubMedPubMedCentralGoogle Scholar
  84. 84.
    Wen Y et al (1996) Lipid peroxidation and antioxidant vitamins C and E in hypertensive patients. Ir J Med Sci 165(3):210–212PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Pedro-Botet J et al (2000) Decreased endogenous antioxidant enzymatic status in essential hypertension. J Hum Hypertens 14(6):343–345PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Ward NC, Croft KD (2006) Hypertension and oxidative stress. Clin Exp Pharmacol Physiol 33(9):872–876PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ceriello A (2008) Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 31(Suppl 2):S181–S184PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Grossman E (2008) Does increased oxidative stress cause hypertension? Diabetes Care 31(Suppl 2):S185–S189PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lin HH et al (2003) Hydrogen peroxide increases the activity of rat sympathetic preganglionic neurons in vivo and in vitro. Neuroscience 121(3):641–647PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Vaziri ND et al (2000) Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 36(1):142–146PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Dikalova A et al (2005) Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112(17):2668–2676PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Godin N et al (2010) Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int 77(12):1086–1097PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Gavazzi G et al (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580(2):497–504PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Simao S et al (2011) H2 O2 stimulates Cl- /HCO 3- exchanger activity through oxidation of thiol groups in immortalized SHR renal proximal tubular epithelial cells. J Cell Biochem 112(12):3660–3665PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Baumer AT et al (2007) The NAD(P)H oxidase inhibitor apocynin improves endothelial NO/superoxide balance and lowers effectively blood pressure in spontaneously hypertensive rats: comparison to calcium channel blockade. Clin Exp Hypertens 29(5):287–299PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Beswick RA et al (2001) NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 38(5):1107–1111PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Sousa T et al (2008) Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. Eur J Pharmacol 588(2–3):267–276PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Zhang Y et al (2004) The antioxidant tempol prevents and partially reverses dexamethasone-induced hypertension in the rat. Am J Hypertens 17(3):260–265PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Nabha L et al (2005) Vascular oxidative stress precedes high blood pressure in spontaneously hypertensive rats. Clin Exp Hypertens 27(1):71–82PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Wilcox CS (2005) Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Phys Regul Integr Comp Phys 289(4):R913–R935Google Scholar
  101. 101.
    Heart Protection Study Collaborative, G (2002) MRC/BHF heart protection study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360(9326):23–33CrossRefGoogle Scholar
  102. 102.
    Sesso HD et al (2012) Multivitamins in the prevention of cardiovascular disease in men: the physicians’ health study II randomized controlled trial. JAMA 308(17):1751–1760PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vivekananthan DP et al (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361(9374):2017–2023PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Baykal Y et al (2003) Effects of antihypertensive agents, alpha receptor blockers, beta blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium channel blockers, on oxidative stress. J Hypertens 21(6):1207–1211PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    de Cavanagh EM et al (2010) Vascular structure and oxidative stress in salt-loaded spontaneously hypertensive rats: effects of losartan and atenolol. Am J Hypertens 23(12):1318–1325PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Dauchet L et al (2006) Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 136(10):2588–2593PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Steinhubl SR (2008) Why have antioxidants failed in clinical trials? Am J Cardiol 101(10A):14D–19DPubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Brown DA et al (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14(4):238–250PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Haworth RA, Potter KT, Russell DC (2010) Role of arachidonic acid, lipoxygenase, and mitochondrial depolarization in reperfusion arrhythmias. Am J Physiol Heart Circ Physiol 299(1):H165–H174PubMedCrossRefGoogle Scholar
  112. 112.
    Santos CX et al (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50(7):777–793PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Buggisch M et al (2007) Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci 120(Pt 5):885–894PubMedCrossRefGoogle Scholar
  114. 114.
    Sauer H et al (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476(3):218–223PubMedCrossRefGoogle Scholar
  115. 115.
    Saitoh S et al (2007) Redox-dependent coronary metabolic dilation. Am J Physiol Heart Circ Physiol 293(6):H3720–H3725PubMedCrossRefGoogle Scholar
  116. 116.
    Saitoh S et al (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26(12):2614–2621PubMedCrossRefGoogle Scholar
  117. 117.
    Andersson DC et al (2011) Mitochondrial production of reactive oxygen species contributes to the beta-adrenergic stimulation of mouse cardiomycytes. J Physiol 589(Pt 7):1791–1801PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 15(4):686–690PubMedCrossRefGoogle Scholar
  119. 119.
    Zhang M et al (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A 107(42):18121–18126PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ponikowski P et al (2016) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Reina-Couto M et al (2016) Resolving inflammation in heart failure: novel protective lipid mediators. Curr Drug Targets 17(10):1206–1223PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Braunwald E (2015) The war against heart failure: the lancet lecture. Lancet 385(9970):812–824PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Guha K, McDonagh T (2013) Heart failure epidemiology: European perspective. Curr Cardiol Rev 9(2):123–127PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ramani GV, Uber PA, Mehra MR (2010) Chronic heart failure: contemporary diagnosis and management. Mayo Clin Proc 85(2):180–195PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Spodick DH (2003) Acute cardiac tamponade. N Engl J Med 349(7):684–690PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    von Haehling S et al (2010) Elevated levels of asymmetric dimethylarginine in chronic heart failure: a pathophysiologic link between oxygen radical load and impaired vasodilator capacity and the therapeutic effect of allopurinol. Clin Pharmacol Ther 88(4):506–512CrossRefGoogle Scholar
  127. 127.
    Kanaan GN, Harper ME (2017) Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta Gen Subj 1861(11 Pt A):2822–2829PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Heymans S et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11(2):119–129PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108(4):356PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Mueller C et al (2006) Inflammation and long-term mortality in acute congestive heart failure. Am Heart J 151(4):845–850PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Khaper N et al (2010) Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 13(7):1033–1049PubMedCrossRefGoogle Scholar
  132. 132.
    Chen X et al (2008) Role of reactive oxygen species in tumor necrosis factor-alpha induced endothelial dysfunction. Curr Hypertens Rev 4(4):245–255PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zhang C et al (2003) Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases. Am J Physiol Heart Circ Physiol 285(6):H2563–H2572PubMedCrossRefGoogle Scholar
  134. 134.
    Reina-Couto M et al (2014) Impaired resolution of inflammation in human chronic heart failure. Eur J Clin Investig 44(6):527–538CrossRefGoogle Scholar
  135. 135.
    Reina-Couto M et al (2018) Endocan as a new biomarker of severity in acute heart failure. Eur J Heart Fail 20:P459Google Scholar
  136. 136.
    Reina-Couto M et al (2018) Inflammation resolution mediators in acute heart failure. J Hypertens 36(e-Supplement 1):e211CrossRefGoogle Scholar
  137. 137.
    Munzel T et al (2015) Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J 36(38):2555–2564PubMedCrossRefGoogle Scholar
  138. 138.
    van Riet EE et al (2014) Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur J Heart Fail 16(7):772–777PubMedCrossRefGoogle Scholar
  139. 139.
    Karimi Galougahi K et al (2015) Redox biomarkers in cardiovascular medicine. Eur Heart J 36(25):1576–1582. 1582a-bPubMedCrossRefGoogle Scholar
  140. 140.
    Patel RS et al (2016) Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation 133(4):361–369PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358(20):2148–2159PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tang WH et al (2006) Plasma myeloperoxidase levels in patients with chronic heart failure. Am J Cardiol 98(6):796–799CrossRefGoogle Scholar
  143. 143.
    Adam M et al (2015) Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Sci Rep 5:9704PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    O’Donoghue ML et al (2016) Multimarker risk stratification in patients with acute myocardial infarction. J Am Heart Assoc 5(5):e002586PubMedPubMedCentralGoogle Scholar
  145. 145.
    Virzi GM et al (2018) Levels of proinflammatory cytokines, oxidative stress, and tissue damage markers in patients with acute heart failure with and without cardiorenal syndrome type 1. Cardiorenal Med 8(4):321–331PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kataoka Y et al (2014) Myeloperoxidase levels predict accelerated progression of coronary atherosclerosis in diabetic patients: insights from intravascular ultrasound. Atherosclerosis 232(2):377–383PubMedCrossRefGoogle Scholar
  147. 147.
    Meuwese MC et al (2007) Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-norfolk prospective population study. J Am Coll Cardiol 50(2):159–165CrossRefGoogle Scholar
  148. 148.
    Pastori D et al (2015) Does mediterranean diet reduce cardiovascular events and oxidative stress in atrial fibrillation? Antioxid Redox Signal 23(8):682–687PubMedCrossRefGoogle Scholar
  149. 149.
    Cunnington C et al (2012) Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation 125(11):1356–1366PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Shirodaria C et al (2007) Global improvement of vascular function and redox state with low-dose folic acid: implications for folate therapy in patients with coronary artery disease. Circulation 115(17):2262–2270PubMedCrossRefGoogle Scholar
  151. 151.
    Santos CN et al (2018) Pure polyphenols applications for cardiac health and disease. Curr Pharm Des 24(19):2137–2156PubMedCrossRefGoogle Scholar
  152. 152.
    Driver C et al (2018) Cardioprotective effects of metformin. J Cardiovasc Pharmacol 72(2):121–127PubMedGoogle Scholar
  153. 153.
    Alemayehu M et al (2017) Effect of ticagrelor versus clopidogrel on vascular reactivity. J Am Coll Cardiol 69(17):2246–2248PubMedCrossRefGoogle Scholar
  154. 154.
    Nanhwan MK et al (2014) Chronic treatment with ticagrelor limits myocardial infarct size: an adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol 34(9):2078–2085PubMedCrossRefGoogle Scholar
  155. 155.
    Montuschi P, Barnes PJ, Roberts LJ 2nd (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18(15):1791–1800PubMedCrossRefGoogle Scholar
  156. 156.
    Mallat Z et al (1998) Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97(16):1536–1539PubMedCrossRefGoogle Scholar
  157. 157.
    Polidori MC et al (2004) Increased F2 isoprostane plasma levels in patients with congestive heart failure are correlated with antioxidant status and disease severity. J Card Fail 10(4):334–338PubMedCrossRefGoogle Scholar
  158. 158.
    Davies SS, Roberts LJ 2nd (2011) F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med 50(5):559–566PubMedCrossRefGoogle Scholar
  159. 159.
    Hummel SL et al (2012) Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension 60(5):1200–1206PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    de Meirelles LR et al (2011) Platelet activation, oxidative stress and overexpression of inducible nitric oxide synthase in moderate heart failure. Clin Exp Pharmacol Physiol 38(10):705–710PubMedCrossRefGoogle Scholar
  161. 161.
    Ellis GR et al (2002) Addition of candesartan to angiotensin converting enzyme inhibitor therapy in patients with chronic heart failure does not reduce levels of oxidative stress. Eur J Heart Fail 4(2):193–199PubMedCrossRefGoogle Scholar
  162. 162.
    White M et al (2006) Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond) 110(4):483–489CrossRefGoogle Scholar
  163. 163.
    Amaki T et al (2004) Circulating malondialdehyde modified LDL is a biochemical risk marker for coronary artery disease. Heart 90(10):1211–1213PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Charach G et al (2015) Usefulness of antibodies to oxidized low-density lipoproteins as predictors of morbidity and prognosis in heart failure patients aged >/=65 years. Am J Cardiol 116(9):1379–1384PubMedCrossRefGoogle Scholar
  165. 165.
    Kato M et al (2017) Stretching exercises improve vascular endothelial dysfunction through attenuation of oxidative stress in chronic heart failure patients with an implantable cardioverter defibrillator. J Cardiopulm Rehabil Prev 37(2):130–138PubMedCrossRefGoogle Scholar
  166. 166.
    Mondal NK et al (2016) Systemic inflammatory response syndrome in end-stage heart failure patients following continuous-flow left ventricular assist device implantation: differences in plasma redox status and leukocyte activation. Artif Organs 40(5):434–443PubMedCrossRefGoogle Scholar
  167. 167.
    Lokuta AJ et al (2005) Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111(8):988–995PubMedCrossRefGoogle Scholar
  168. 168.
    Cabassi A et al (2014) Low serum ferroxidase I activity is associated with mortality in heart failure and related to both peroxynitrite-induced cysteine oxidation and tyrosine nitration of ceruloplasmin. Circ Res 114(11):1723–1732PubMedCrossRefGoogle Scholar
  169. 169.
    Peluffo G, Radi R (2007) Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 75(2):291–302PubMedCrossRefGoogle Scholar
  170. 170.
    Ahn B et al (2016) Diaphragm abnormalities in patients with end-stage heart failure: NADPH oxidase upregulation and protein oxidation. Front Physiol 7:686PubMedGoogle Scholar
  171. 171.
    Parissis JT et al (2007) Effects of Levosimendan on circulating markers of oxidative and nitrosative stress in patients with advanced heart failure. Atherosclerosis 195(2):e210–e215PubMedCrossRefGoogle Scholar
  172. 172.
    Cameron VA et al (2006) Angiotensin type-1 receptor A1166C gene polymorphism correlates with oxidative stress levels in human heart failure. Hypertension 47(6):1155–1161PubMedCrossRefGoogle Scholar
  173. 173.
    Kobayashi S et al (2011) Urinary 8-hydroxy-2′-deoxyguanosine reflects symptomatic status and severity of systolic dysfunction in patients with chronic heart failure. Eur J Heart Fail 13(1):29–36PubMedCrossRefGoogle Scholar
  174. 174.
    Masugata H et al (2013) Association between oxidative stress assessed by urinary 8-hydroxydeoxyguanosine and the cardiac function in hypertensive patients without overt heart disease. Clin Exp Hypertens 35(5):308–312PubMedCrossRefGoogle Scholar
  175. 175.
    Susa T et al (2012) Urinary 8-hydroxy-2′-deoxyguanosine as a novel biomarker for predicting cardiac events and evaluating the effectiveness of carvedilol treatment in patients with chronic systolic heart failure. Circ J 76(1):117–126PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Blankenberg S et al (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349(17):1605–1613PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Caruso R et al (2007) Pre-operative redox state affects 1-month survival in patients with advanced heart failure undergoing left ventricular assist device implantation. J Heart Lung Transplant 26(11):1177–1181PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Sam F et al (2005) Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail 11(6):473–480PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Hokamaki J et al (2004) Urinary biopyrrins levels are elevated in relation to severity of heart failure. J Am Coll Cardiol 43(10):1880–1885PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Ellidag HY et al (2014) Oxidative stress and ischemia-modified albumin in chronic ischemic heart failure. Redox Rep 19(3):118–123PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Lonn E et al (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293(11):1338–1347PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Thomson MJ, Frenneaux MP, Kaski JC (2009) Antioxidant treatment for heart failure: friend or foe? QJM 102(5):305–310PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Yamauchi Y et al (2017) Is serum uric acid independently associated with left ventricular mass index, ejection fraction, and B-type natriuretic peptide among female and male cardiac patients? Int Heart J 58(4):562–569PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Wannamethee SG et al (2018) Serum uric acid as a potential marker for heart failure risk in men on antihypertensive treatment: the British regional heart study. Int J Cardiol 252:187–192PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Teresa Sousa
    • 1
    • 2
  • Marta Reina-Couto
    • 1
    • 2
    • 3
  • Pedro Gomes
    • 1
    • 4
    Email author
  1. 1.Department of Biomedicine – Unit of Pharmacology and Therapeutics, Faculty of MedicineUniversity of PortoPortoPortugal
  2. 2.Center for Drug Discovery and Innovative Medicines (MedInUP)PortoPortugal
  3. 3.Department of Intensive MedicineCentro Hospitalar São JoãoPortoPortugal
  4. 4.CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations