Histone Deacetylases and Oxidative Stress: Role in Diabetic Cardiomyopathy

  • Bhoomika M. Patel


Diabetic cardiomyopathy is a serious complication of diabetes and is associated with severe morbidity and mortality. Several new targets have been identified for diabetic cardiomyopathy. Oxidative stress plays an important role in diabetic cardiomyopathy and several anti-oxidants are reported to exhibit cardioprotective effects in diabetes. Histone deacetylases (HDAC) are group of enzymes involved in epigenetic regulation of genes and thereby exhibit varied effects. In addition to diabetic cardiomyopathy, HDACs are known to play a role in various diseases like cancer, neurological disorders, immune diseases etc. Documented evidences have suggests role of histone modifications in diabetic cardiomyopathy and hence HDACs serve as an important therapeutic target for diabetic cardiomyopathy. The present book chapter provides an overview of histone modifications in diabetic cardiomyopathy and exploring HDACs as therapeutic option for the same.


Histone deacetylases (HDAC) Epigenetic modifications Cardiovascular complications 


  1. 1.
    Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Raghunathan S, Patel BM (2013) Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundam Clin Pharmacol 27(1):1–20CrossRefPubMedGoogle Scholar
  3. 3.
    Rawal H, Patel BM (2018) Opioids in cardiovascular disease: therapeutic options. J Cardiovasc Pharmacol Ther 23(4):279–291CrossRefPubMedGoogle Scholar
  4. 4.
    Goyal BR, Mehta AA (2013) Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfunction. Hum Exp Toxicol 32(6):571–590CrossRefPubMedGoogle Scholar
  5. 5.
    Patel BM, Mehta AA (2013) The choice of anti-hypertensive agents in diabetic subjects. Diab Vasc Dis Res 10(50):385–396CrossRefPubMedGoogle Scholar
  6. 6.
    Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122(4):624–638CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wong AK, Symon R, AlZadjali MA, Ang DS, Ogston S, Choy A et al (2012) The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail 14:1303–1310CrossRefGoogle Scholar
  8. 8.
    Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B et al (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60:1770–1778CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Younce CW, Burmeister MA, Ayala JE (2013) Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Phys Cell Physiol 304:C508–C518CrossRefGoogle Scholar
  10. 10.
    Doehner W, Frenneaux M, Anker SD (2014) Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol 64:1388–1400CrossRefPubMedGoogle Scholar
  11. 11.
    Witteles RM, Keu KV, Quon A, Tavana H, Fowler MB (2012) Dipeptidyl peptidase 4 inhibition increases myocardial glucose uptake in nonischemic cardiomyopathy. J Card Fail 18:804–809CrossRefPubMedGoogle Scholar
  12. 12.
    Bostick B, Habibi J, Ma L, Aroor A, Rehmer N, Hayden MR et al (2014) Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism 63:1000–1011CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S et al (2015) SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 12:90–100CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMedGoogle Scholar
  15. 15.
    Caglayan E, Stauber B, Collins AR, Lyon CJ, Yin F, Liu J et al (2008) Differential roles of cardiomyocyte and macrophage peroxisome proliferator-activated receptor gamma in cardiac fibrosis. Diabetes 57:2470–2479CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Goyal BR, Solanki N, Goyal RK, Mehta AA (2009) Investigation into the cardiac effects of spironolactone in the experimental model of type 1 diabetes. J Cardiovasc Pharmacol 54(6):502–509CrossRefPubMedGoogle Scholar
  17. 17.
    Patel BM, Kakadiya J, Goyal RK, Mehta AA (2013) Effect of spironolactone on cardiovascular complications associated with type-2 diabetes in rats. Exp Clin Endocrinol Diabetes 121(08):441–447CrossRefPubMedGoogle Scholar
  18. 18.
    Sharma V, McNeill JH (2011) Parallel effects of β-adrenoceptor blockade on cardiac function and fatty acid oxidation in the diabetic heart: confronting the maze. World J Cardiol 3:281–302CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Thomas CM, Yong QC, Seqqat R, Chandel N, Feldman DL, Baker KM et al (2013) Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clin Sci (Lond) 124:529–541CrossRefGoogle Scholar
  20. 20.
    Machackova J, Liu X, Lukas A, Dhalla NS (2004) Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol Cell Biochem 261:271–278CrossRefPubMedGoogle Scholar
  21. 21.
    Goyal BR, Parmar K, Goyal RK, Mehta AA (2011) Beneficial role of telmisartan on cardiovascular complications associated with STZ-induced type-2 diabetic rats. Pharmacol Rep 63(4):956–966CrossRefPubMedGoogle Scholar
  22. 22.
    Goyal BR, Mesariya P, Goyal RK, Mehta AA (2008) Effect of telmisartan on cardiovascular complications associated with STZ-diabetic rats. Mol Cell Biochem 314(1–2):123–131CrossRefPubMedGoogle Scholar
  23. 23.
    Mohamad HE, Askar ME, Hafez MM (2011) Management of cardiac fibrosis in diabetic rats: the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs). Diabetol Metab Syndr 3:4CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Symeonides P, Koulouris S, Vratsista E, Triantafyllou K, Ioannidis G, Thalassinos N et al (2007) Both ramipril and telmisartan reverse indices of early diabetic cardiomyopathy: a comparative study. Eur J Echocardiogr 8:480–486CrossRefPubMedGoogle Scholar
  25. 25.
    Patel BM, Bhadada SV (2014) Type 2 diabetes induced cardiovascular complications: comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril. Clin Exp Hypertens 36(5):340–347CrossRefPubMedGoogle Scholar
  26. 26.
    Goyal BR, Patel MM, Bhadada SV (2011) Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril on diabetes induced cardiovascular complications in type 1 diabetes in rats. Int J Diabetes Metab 19(1):11–18Google Scholar
  27. 27.
    Raghunathan S, Tank P, Bhadada SV, Patel BM (2014). Evaluation of Buspirone on Streptozotocin induced Type 1 diabetes and its associated complications. Biomed Res Int 2014:9. Article ID 948427
  28. 28.
    Chen YH, Feng B, Chen ZW (2012) Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Exp Clin Endocrinol Diabetes 120:116–120CrossRefPubMedGoogle Scholar
  29. 29.
    Dai QM, Lu J, Liu NF (2011) Fluvastatin attenuates myocardial interstitial fibrosis and cardiac dysfunction in diabetic rats by inhibiting over-expression of connective tissue growth factor. Chin Med J 124:89–94PubMedGoogle Scholar
  30. 30.
    Teshima Y, Takahashi N, Nishio S, Saito S, Kondo H, Fukui A et al (2014) Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J 78:300–306CrossRefPubMedGoogle Scholar
  31. 31.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Thomas CM, Yong QC, Rosa RM, Seqqat R, Gopal S, Casarini DE et al (2014) Cardiac-specific suppression of NF- κB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am J Physiol Heart Circ Physiol 307:H1036–H1045CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Patel BM, Mehta AA (2012) Aldosterone and angiotensin: role in diabetes and cardiovascular diseases. Eur J Pharmacol 697(1–3):1–12CrossRefPubMedGoogle Scholar
  34. 34.
    Szeto HH (2014) First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 171:2029–2050CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xu YJ, Tappia PS, Neki NS, Dhalla NS (2014) Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail Rev 19:113–121CrossRefPubMedGoogle Scholar
  36. 36.
    Huynh K, Kiriazis H, Du XJ, Love JE, Jandeleit-Dahm KA, Forbes JM et al (2012) Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 55:1544–1553CrossRefPubMedGoogle Scholar
  37. 37.
    Ji L, Liu Y, Zhang Y, Chang W, Gong J, Wei S et al (2016) The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high-glucose-induced injured H9c2 cardiomyoblasts. Can J Physiol Pharmacol 94(9):996–1006CrossRefPubMedGoogle Scholar
  38. 38.
    Abdel-Raheem MH, Salim SU, Mosad E, Al-Rifaay A, Salama HS, Hasan-Ali H (2015) Antiapoptotic and antioxidant effects of carvedilol and vitamin E protect against diabetic nephropathy and cardiomyopathy in diabetic Wistar albino rats. Horm Metab Res 47(2):97–106PubMedGoogle Scholar
  39. 39.
    Mohammadshahi M, Haidari F, Soufi FG (2014) Chronic resveratrol administration improves diabetic cardiomyopathy in part by reducing oxidative stress. Cardiol J 21(1):39–46CrossRefPubMedGoogle Scholar
  40. 40.
    Wu H, Li GN, Xie J, Li R, Chen QH, Chen JZ et al (2016) Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord 16:5CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sun X, Chen RC, Yang ZH, Sun GB, Wang M, Ma XJ et al (2014) Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem Toxicol 63:221–232CrossRefPubMedGoogle Scholar
  42. 42.
    Luan SS, Yu F, Li BY, Qin RJ, Li XL, Cai Q et al (2014) Quantitative proteomics study of protective effects of grape seed procyanidin B2 on diabetic cardiomyopathy in db/db mice. Biosci Biotechnol Biochem 78(9):1577–1583CrossRefPubMedGoogle Scholar
  43. 43.
    Wang G, Li W, Lu X, Bao P, Zhao X (2012) Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complicat 26(4):259–265CrossRefPubMedGoogle Scholar
  44. 44.
    Taye A, Abouzied MM, Mohafez OM (2013) Tempol ameliorates cardiac fibrosis in streptozotocin-induced diabetic rats: role of oxidative stress in diabetic cardiomyopathy. Naunyn Schmiedeberg's Arch Pharmacol 386(12):1071–1080CrossRefGoogle Scholar
  45. 45.
    Badole SL, Jangam GB, Chaudhari SM, Ghule AE, Zanwar AA (2014) L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats. PLoS One 9(3):e92697CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Khan S, Zhang D, Zhang Y, Li M, Wang C (2016) Wogonin attenuates diabetic cardiomyopathy through its anti-inflammatory and anti-oxidative properties. Mol Cell Endocrinol 428:101–108CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Soetikno V, Sari FR, Sukumaran V, Lakshmanan AP, Mito S, Harima M et al (2012) Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC-MAPK signaling pathway. Eur J Pharm Sci 47(3):604–614CrossRefPubMedGoogle Scholar
  48. 48.
    Han DN, Zhang DH, Wang LP, Zhang YS (2013) Protective effect of β-casomorphin-7 on cardiomyopathy of streptozotocin-induced diabetic rats via inhibition of hyperglycemia and oxidative stress. Peptides 44:120–126CrossRefPubMedGoogle Scholar
  49. 49.
    Guimaraes JF, Muzio BP, Rosa CM, Nascimento AF, Sugizaki MM, Fernandes AA et al (2015) Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovasc Diabetol 14:90CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Saklani R, Gupta SK, Mohanty IR, Kumar B, Srivastava S, Mathur R (2016) Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol Cell Biochem 420(1–2):65–72CrossRefPubMedGoogle Scholar
  51. 51.
    Celik T, Yuksel C, Iyisoy A (2010) Alpha tocopherol use in the management of diabetic cardiomyopathy: lessons learned from randomized clinical trials. J Diabetes Complicat 24(4):286–288CrossRefPubMedGoogle Scholar
  52. 52.
    Hegazy SK, Tolba OA, Mostafa TM, Eid MA, El-Afify DR (2013) Alpha-lipoic acid improves subclinical left ventricular dysfunction in asymptomatic patients with type 1 diabetes. Rev Diabet Stud 10(1):58–67CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cai Q, Li B, Yu F, Lu W, Zhang Z, Yin M et al (2013) Investigation of the protective effects of phlorizin on diabetic cardiomyopathy in db/db mice by quantitative proteomics. J Diabetes Res 2013:263845CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Su W, Zhang Y, Zhang Q, Xu J, Zhan L, Zhu Q et al (2016) N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats. Cardiovasc Diabetol 15(1):146CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rosa CM, Gimenes R, Campos DH, Guirado GN, Gimenes C, Fernandes AA et al (2016) Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc Diabetol 15(1):126CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gupta SK, Dongare S, Mathur R, Mohanty IR, Srivastava S, Mathur S et al (2015) Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Mol Cell Biochem 408(1–2):63–72CrossRefPubMedGoogle Scholar
  57. 57.
    McClure JJ, Li X, Chou CJ (2018) Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv Cancer Res 138:183–211CrossRefPubMedGoogle Scholar
  58. 58.
    Patel M, Patel BM (2018) Repurposing of sodium valproate in colon cancer associated with diabetes mellitus: role of HDAC inhibition. Eur J Pharm Sci 121:188–199CrossRefPubMedGoogle Scholar
  59. 59.
    Felice C, Lewis A, Armuzzi A, Lindsay JO, Silver A (2015) Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases. Aliment Pharmacol Ther 41(1):26–38CrossRefPubMedGoogle Scholar
  60. 60.
    Ganguly S, Seth S (2018) A translational perspective on histone acetylation modulators in psychiatric disorders. Psychopharmacology (Berl). [Epub ahead of print]
  61. 61.
    Dubey H, Gulati K, Ray A (2018) Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase. Rev Neurosci 29(3):241–260CrossRefPubMedGoogle Scholar
  62. 62.
    Sachweh MC, Drummond CJ, Higgins M, Campbell J, Laín S (2013) Incompatible effects of p53 and HDAC inhibition on p21 expression and cell cycle progression. Cell Death Dis 4:e533CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892–901CrossRefPubMedGoogle Scholar
  64. 64.
    Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L et al (2018) Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant. [Epub ahead of print]
  65. 65.
    Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J 52(1):1–11CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Patel BM (2018) Sodium butyrate controls cardiac hypertrophy in experimental models of rats. Cardiovasc Toxicol 18(1):1–8CrossRefPubMedGoogle Scholar
  67. 67.
    Gray S, De Meyts P (2005) Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev 21(5):416–433CrossRefPubMedGoogle Scholar
  68. 68.
    Miao F, Gonzalo I, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279:18091–18097CrossRefPubMedGoogle Scholar
  69. 69.
    Khullar M, Cheema BS, Raut SK (2017) Emerging evidence of epigenetic modifications in vascular complication of diabetes. Front Endocrinol (Lausanne) 8:237CrossRefGoogle Scholar
  70. 70.
    Al-Haddad R, Karnib N, Assaad RA, Bilen Y, Emmanuel N, Ghanem A et al (2016) Epigenetic changes in diabetes. Neurosci Lett 625:64–69CrossRefPubMedGoogle Scholar
  71. 71.
    Gaikwad A, Sayyed S, Lichtnekert J, Tikoo K, Anders H (2010) Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy-related genes in type 2 diabetes. Am J Pathol 176(3):1079–1083CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Vahtola E, Louhelainen M, Forste’n H, Merasto S, Raivio J, Kaheinen P et al (2010) Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol 27(9):5CrossRefGoogle Scholar
  73. 73.
    Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S (2010) Transcriptional coactivator p300 regulates glucose induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 298:E127–E137CrossRefPubMedGoogle Scholar
  74. 74.
    Feng B, Chen S, Chiu J, George B, Chakrabarti S (2008) Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab 294:E1119–E1126CrossRefPubMedGoogle Scholar
  75. 75.
    Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S et al (2010) High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 316(17):2903–2909CrossRefPubMedGoogle Scholar
  76. 76.
    Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105:13793–13798CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Marsh SA, Collins HE, Chatham JC (2014) Protein O-GlcNAcylation and cardiovascular (patho) physiology. J Biol Chem 289:34449–34456CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Cox EJ, Marsh SA (2013) Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol 12:101CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Xu Z, Tong Q, Zhang Z, Wang S, Zheng Y, Liu Q et al (2017) Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin Sci 131(15):1841–1857CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM et al (2008) Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118(11):3588–3597CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo C (2002) The role of poly(ADPribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51(2):514–521CrossRefPubMedGoogle Scholar
  82. 82.
    Chiu J, Farhangkhoee H, Xu BY, Chen S, George B, Chakrabarti S (2008) PARP mediates structural alterations in diabetic cardiomyopathy. J Mol Cell Cardiol 45(3):385–393CrossRefPubMedGoogle Scholar
  83. 83.
    Wu Y, Leng Y, Meng Q, Xue R, Zhao B, Zhan L et al (2017) Suppression of excessive histone deacetylases activity in diabetic hearts attenuates myocardial ischemia/reperfusion injury via mitochondria apoptosis pathway. J Diabetes Res 2017:8208065PubMedPubMedCentralGoogle Scholar
  84. 84.
    Winnik S, Auwerx J, Sinclair DA, Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36(48):3404–3412CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Duan J, Yin Y, Wei G, Cui J, Zhang E, Guan Y et al (2015) Chikusetsu saponin IVa confers cardioprotection via SIRT1/ ERK1/2 and Homer1a pathway. Sci Rep 5:18123CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Koka S, Aluri HS, Xi L, Lesnefsky EJ, Kukreja RC (2014) Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: role of NO/SIRT1/PGC-1a signaling. Am J Physiol Heart Circ Physiol 306(11):H1558–H1568CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C (2012) SIRT1 modulates MAPK pathways in ischemic–reperfused cardiomyocytes. Cell Mol Life Sci 69(13):2245–2260CrossRefPubMedGoogle Scholar
  88. 88.
    Bugyei-Twum A, Advani A, Advani SL, Zhang Y, Thai K, Kelly DJ et al (2014) High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovasc Diabetol 13(1):1CrossRefGoogle Scholar
  89. 89.
    He C, Zhu H, Li H, Zou MH, Xie Z (2013) Dissociation of Bcl-2–Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62(4):1270–1281CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhang J, Cheng Y, Gu J, Wang S, Zhou S, Wang Y et al (2016) Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice. Clin Sci 130(8):625–641CrossRefPubMedGoogle Scholar
  91. 91.
    Chen Y, Du J, Zhao YT, Zhang L, Lv G, Zhuang S et al (2015) Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc Diabetol 14:99CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Rabadiya S, Bhadada S, Dudhrejiya A, Vaishnav D, Patel BM (2018) Magnesium valproate ameliorates type 1 diabetes and cardiomyopathy in diabetic rats through estrogen receptors. Biomed Pharmacother 97:919–927CrossRefPubMedGoogle Scholar
  93. 93.
    Raghunathan S, Goyal RK, Patel BM (2017) Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy. Can J Physiol Pharmacol 95(3):260–267CrossRefPubMedGoogle Scholar
  94. 94.
    Patel BM, Raghunathan S, Porwal U (2014) Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. Eur J Pharmacol 728:128–134CrossRefPubMedGoogle Scholar
  95. 95.
    Lee T-I, Kao Y-H, Tsai W-C, Chung C-C, Chen Y-C, Chen Y-J (2016) HDAC inhibition modulates cardiac PPARs and fatty acid metabolism in diabetic cardiomyopathy. PPAR Res 2016:5938740CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lee TI, Bai KJ, Chen YC, Lee TW, Chung CC, Tsai WC et al (2018) Histone deacetylase inhibition of cardiac autophagy in rats on a high fat diet with low dose streptozotocin-induced type 2 diabetes mellitus. Mol Med Rep 17(1):594–601PubMedGoogle Scholar
  97. 97.
    Uruno A, Yagishita Y, Yamamoto M (2015) The Keap1-Nrf2 system and diabetes mellitus. Arch Biochem Biophys 566:76–84CrossRefPubMedGoogle Scholar
  98. 98.
    Kawai Y, Garduno L, Theodore M, Yang J, Arinze IJ (2011) Acetylation deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286:7629–7640CrossRefPubMedGoogle Scholar
  99. 99.
    Lee DY, Lee CI, Lin TE, Lim SH, Zhou J, Tseng YC et al (2012) Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci U S A 109:1967–1972CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Ichikawa T, Li J, Meyer CJ, Janicki JS, Hannink M, Cui T (2009) Dihydro-CDDO trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PLoS One 4:e8391CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Sultana MR, Bagul PK, Katare PB, Anwar Mohammed S, Padiya R, Banerjee SK (2016) Garlic activates SIRT-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes. Life Sci 164:42–51CrossRefPubMedGoogle Scholar
  102. 102.
    Bagul PK, Dinda AK, Banerjee SK (2015) Effect of resveratrol on sirtuins expression and cardiac complications in diabetes. Biochem Biophys Res Commun 468(1–2):221–227CrossRefPubMedGoogle Scholar
  103. 103.
    Rizk SM, El-Maraghy SA, Nassar NN (2014) A novel role for SIRT-1 in L-arginine protection against STZ induced myocardial fibrosis in rats. PLoS One 9(12):e114560CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bhoomika M. Patel
    • 1
  1. 1.Department of Pharmacology, Institute of PharmacyNirma UniversityAhmedabadIndia

Personalised recommendations