Role of Oxidative Stress in Myocardial Ischemia and Infarction

  • Bodh I. JugduttEmail author
  • Bernadine A. Jugdutt


Myocardial ischemia, ischemia-reperfusion (I/R) and myocardial infarction (MI) are major causes of morbidity and mortality in patients with ischemic heart disease in developed and developing countries worldwide. Much basic and translational research has elucidated how the determinants of myocardial O2 supply and demand modulate cardiac function and dysfunction and underscored how maintaining the balance between O2 supply and demand is essential in therapeutic efforts to interrupt the progression of myocardial ischemia, I/R and MI. Moving forward, while the timely restoration of myocardial blood flow and O2 supply has been shown to save muscle and lives, efforts to prevent I/R injury and reperfusion damage have been frustrating for nearly four decades despite recognition that the major culprit was the reactive oxygen species (ROS) and associated oxidative stress (OXS). Ongoing translational research is therefore focused on providing a broader understanding of the biology of OXS, identifying the key players in ROS regulation and dysregulation, and unravelling pathways and targets for intervention. Such data may allow future development of novel pharmacological treatments and strategies for the limitation and prevention of ROS-induced damage during myocardial ischemia, I/R and MI. If these efforts succeed, the clinical and socioeconomic impact will likely be tremendous.


Oxidative stress Mitochondria Apoptosis Necrosis Inflammation Ischemia Infarction Reperfusion Heart failure 



AMP-activated protein kinase


adenosine triphosphate




coronary artery bypass surgery


Ca2+/calmodulin kinase II


cyclic guanosine monophosphate


creatine phosphate


drug-eluting stents




electron transfer chain


long-chain fatty-acyl-CoA


long-chain fatty-acyl-carnitine




anti-diabetic glucagon-like peptide-1


guanosine triphosphate


hydrogen peroxide


hypochlorous acid






infarct-related artery


left anterior descending


left circumflex


left ventricular


myocardial infarction


mitochondrial permeability transition pore


magnetic resonance imaging


myocardial oxygen consumption


nitric oxide


NO-derived peroxynitrite


nitric oxide synthase


NADPH oxidase


non-ST segment elevation MI




oxygen free radicals


oxidative stress


hydroxyl radical


percutaneous coronary intervention


pyruvate dehydrogenase


phosphokinase G


peroxisome proliferator-activated receptors


primary PCI


permeability transition pore


superoxide anion radical


randomized clinical trial


receptor-interacting protein 3


reactive oxygen species


sarcoendoplasmic reticulum (SR) calcium transport ATPase


superoxide dismutase


sarcoplasmic reticulum


ST-segment elevation MI


triacyl glycerol


tumor necrosis factor.


  1. 1.
    O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA et al (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American college of cardiology foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol 61:485–510CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H et al (2018) 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 39:119–177CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B et al (2017) Targeting reperfusion injury in patient with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38:935–941PubMedPubMedCentralGoogle Scholar
  4. 4.
    Selwyn AP (2010) Coronary physiology and pathophysiology. In: Brown DL, Jeremias A (eds) Textbook of cardiac intensive care, 2nd edn. Elsevier, Philadelphia, pp 69–72CrossRefGoogle Scholar
  5. 5.
    Herrick JB (1912) Clinical features of sudden obstruction of the coronary arteries. JAMA 9:2015–2022CrossRefGoogle Scholar
  6. 6.
    DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS, Lang HT (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    DeWood MA, Stifter WF, Simpson CS, Spores J, Eugster GS, Judge TP, Hinnen ML (1986) Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 315:417–423CrossRefGoogle Scholar
  8. 8.
    Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372CrossRefGoogle Scholar
  9. 9.
    Thygesen K, Alpert JS, White HD, on behalf of the joint ESC/ACCF/AHA/WHF Task force for the redefinition of myocardial infarction (2007) Universal definition of myocardial infarction. Eur Heart J 28:2525–2538CrossRefGoogle Scholar
  10. 10.
    Spriet LL (1990) Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol 70:157–165CrossRefGoogle Scholar
  11. 11.
    Hargreaves M (2000) Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol 27:225–228CrossRefGoogle Scholar
  12. 12.
    Neely JR, Morgan HE (1974) Relationship between carbohydrate metabolism and energy balance of heart muscle. Annu Rev Physiol 36:413–459CrossRefGoogle Scholar
  13. 13.
    Neely JR, Feuvray D (1981) Metabolic products and myocardial ischemia. Am J Pathol 102:282–291PubMedPubMedCentralGoogle Scholar
  14. 14.
    Meissner A, Morgan JP (1995) Contractile dysfunction and abnormal Ca2+ modulation during post-schemic reperfusion in the rat heart. Am J Physiol 268:H100–H111PubMedGoogle Scholar
  15. 15.
    Steenbergen C, Deleeuw G, Rich T, Williamson JR (1977) Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res 41:849–858CrossRefGoogle Scholar
  16. 16.
    Weissler AM, Kruger FA, Baba N, Scarpelli DG, Leighton RF, Gallimore JK (1968) Role of anaerobic metabolism in the preservation of functional capacity and structure of anoxic myocardium. J Clin Invest 47:403–416CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Henry PD, Sobel RE, Braunwald E (1974) Protection of hypoxic guinea pig hearts with glucose and insulin. Am J Physiol 226:309–313CrossRefGoogle Scholar
  18. 18.
    Jennings RB (1969) Early phase of myocardial ischemic injury and infarction. Am J Cardiol 24:753–765CrossRefGoogle Scholar
  19. 19.
    Weglicki WB, Owens K, Urschel CW, Serur JR, Sonnenblick EH (1972) Hydrolysis of myocardial lipids during acidosis and ischemia. In: Dhalla NS (ed) Recent advances in studies on cardiac structure and metabolism, vol 3, pp 781–793Google Scholar
  20. 20.
    Schaper J, Hehrlein F, Schlepper M, Thiedemann K-U (1977) Ultrastructural alterations during ischemia and reperfusion in human hearts during cardiac surgery. J Mol Cell Cardiol 9:175–189CrossRefGoogle Scholar
  21. 21.
    Sobel BE, Corr PB, Robison AK, Goldstein RA, Witkowski FX, Klein MS (1978) Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest 62:546–553CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Van der Vusse GJ, van Bilsen M, Glatz JF (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45:279–293CrossRefGoogle Scholar
  24. 24.
    Braunwald E (1969) Thirteenth Bowditch Lecture: the determinants of myocardial oxygen consumption. Physiologist 12:65–93PubMedGoogle Scholar
  25. 25.
    Braunwald E, Epstein SE, Glick G, Wechsler AS, Braunwald NS (1967) Relief of angina pectoris by electrical stimulation of the carotid-sinus nerves. N Engl J Med 277:1278–1283CrossRefGoogle Scholar
  26. 26.
    Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J Jr, Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82CrossRefGoogle Scholar
  27. 27.
    Maroko PR, Braunwald E (1973) Modification of myocardial infarction size after coronary occlusion. Ann Intern Med 79:720–733CrossRefGoogle Scholar
  28. 28.
    Braunwald E (1976) Symposium on protection of the ischemic myocardium. Circulation 53(Suppl 3):I-1–I-2Google Scholar
  29. 29.
    Maroko PR, Braunwald E (1976) Effects of metabolic and pharmacologic interventions on myocardial infarct size following coronary occlusion. Circulation 53(Suppl 3):I-162–I-168Google Scholar
  30. 30.
    Jugdutt BI, Lee SJ, Taylor RF (1976) Abolition of ischemic response to atrial pacing following aortocoronary bypass surgery. Circulation 54:225–229CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jugdutt BI, Lee SJ (1978) Intravenous therapy with propranolol in acute myocardial infarction: effects on changes in the S-T segment and hemodynamics. Chest 74:514–521CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fulton WFM (1965) The Coronary Arteries. Arteriography, microanatomy, and pathogenesis of obliterative coronary artery disease. Charles C. Thomas, SpringfieldGoogle Scholar
  33. 33.
    Schaper W (1971) The collateral circulation of the heart. North-Holland Publishing Co, AmsterdamGoogle Scholar
  34. 34.
    Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1979) Myocardial infarction in the conscious dog: three-dimensional mapping of infarct, collateral flow and region at risk. Circulation 60:1141–1150CrossRefGoogle Scholar
  35. 35.
    Jugdutt BI, Becker LC, Hutchins GM (1979) Early changes in collateral blood flow during myocardial infarction in conscious dogs. Am J Physiol 237:H371–H380PubMedGoogle Scholar
  36. 36.
    Jugdutt BI, Hutchins GM, Bulkley BH, Pitt B, Becker LC (1979) Effect of indomethacin on collateral blood flow and infarct size in the conscious dog. Circulation 59:734–743CrossRefGoogle Scholar
  37. 37.
    Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1980) Salvage of ischemic myocardium by ibuprofen during infarction in the conscious dog. Am J Cardiol 46:74–82CrossRefGoogle Scholar
  38. 38.
    Jugdutt BI, Becker LC, Hutchins GM, Bulkley BH, Reid PR, Kallman CH (1981) Effect of intravenous nitroglycerin on collateral blood flow and infarct size in the conscious dog. Circulation 63:17–28CrossRefGoogle Scholar
  39. 39.
    Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1981) Dissimilar effects of prostacyclin, prostaglandin E1, and prostaglandin E2 on myocardial infarct size after coronary occlusion in conscious dogs. Circ Res 49:685–700CrossRefGoogle Scholar
  40. 40.
    Blumenthal DS, Hutchins GM, Jugdutt BI, Becker LC (1981) Salvage of ischemic myocardium by dipyridamole in the conscious dog. Circulation 64:915–923CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ambrosio G, Becker LC, Hutchins GM, Weisman HF, Weisfeldt ML (1986) Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into the pathophysiology of reperfusion injury. Circulation 74:1424–1143CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lieberman AN, Weiss JL, Jugdutt BI, Becker LC, Bulkley BH, Garrison JG et al (1981) Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jugdutt BI, Sussex BA, Haraphongse M, Rossall RE (1983) Right ventricular involvement in transmural inferior wall infarction: two-dimensional echocardiographic and clinical correlations. Clin Invest Med 6:261–273PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jugdutt BI, Sussex BA, Sivaram CA, Rossall RE (1984) Right ventricular infarction: two-dimensional echocardiographic evaluation. Am Heart J 107:505–518CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Jugdutt BI, Sussex BA, Warnica JW, Rossall RE (1983) Persistent reduction in left ventricular asynergy in patients with acute myocardial infarction by intravenous infusion of nitroglycerin. Circulation 68:1264–1273CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jugdutt BI (1983) Myocardial salvage by intravenous nitroglycerin in conscious dogs: loss of beneficial effect with marked nitroglycerin-induced hypotension. Circulation 68:673–684CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jugdutt BI, Warnica JW (1988) Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion, and complications. Effect of timing, dosage, and infarct location. Circulation 78:906–919. Erratum in: Circulation 1989 79:1151CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Jugdutt BI, Warnica JW (1989) Tolerance with low dose intravenous nitroglycerin therapy in acute myocardial infarction. Am J Cardiol 64:581–587CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jugdutt BI, Warnica JW (1987) Improved left ventricular function with metoprolol in acute myocardial infarction. Circulation 76:IV–276. (Abstract)Google Scholar
  50. 50.
    Jugdutt BI, Tymchak WJ, Burton JR (1991) Preservation of left ventricular geometry and function after late reperfusion and intravenous nitroglycerin in acute transmural myocardial infarction. Circulation 84:II–683. (Abstract)Google Scholar
  51. 51.
    Jugdutt BI, Tymchak WJ, Humen DP, Gulamhusein S, Tang SB (1992) Effect of thrombolysis and prolonged captopril and nitroglycerin on infarct size and remodeling in transmural myocardial infarction. J Am Coll Cardiol 19(Suppl A):205A. (Abstract)Google Scholar
  52. 52.
    Jugdutt BI, Menon V, Kumar D, Idikio H (2002) Vascular remodeling during healing after myocardial infarction in the dog model: effects of reperfusion, amlodipine and enalapril. J Am Coll Cardiol 39:1538–1545CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jugdutt BI, Idikio H, Uwiera RR (2007) Angiotensin receptor blockade and angiotensin-converting-enzyme inhibition limit adverse remodeling of infarct zone collagens and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction. Mol Cell Biochem 303:27–38CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Palaniyappan A, Uwiera RR, Idikio H, Jugdutt BI (2009) Comparison of vasopeptidase inhibitor omapatrilat and angiotensin receptor blocker candesartan on extracellular matrix, myeloperoxidase, cytokines, and ventricular remodeling during healing after reperfused myocardial infarction. Mol Cell Biochem 321:9–22CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Jugdutt BI, Palaniyappan A, Uwiera RR, Idikio H (2009) Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Mol Cell Biochem 322:25–36CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Jugdutt BI, Jelani A, Palaniyappan A, Idikio H, Uweira RE, Menon V et al (2010) Aging-related early changes in markers of ventricular and matrix remodeling after reperfused ST-segment elevation myocardial infarction in the canine model: effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation 122:341–351CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ubachs JFA, Sörensson P, Henrik E, Carlsson M, Jovinge S, Pernow J et al (2012) Myocardium at risk by magnetic resonance imaging: head-to-head comparison of T2-weighted imaging and contrast-enhanced steady-state free precession. Eur Heart J Cardiovasc Imaging 13:1008–1015CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jennings RB, Reimer KA (1991) The cell biology of acute myocardial ischemia. Annu Rev Med 42:225–246CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lowe JE, Reimer KA, Jennings RB (1978) Experimental infarct size as a function of the amount of myocardium at risk. Am J Pathol 90:363–379PubMedPubMedCentralGoogle Scholar
  61. 61.
    Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, post ischemic ventricular dysfunction. Circulation 66:1146–1149CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rentrop KP, Feit F, Blanke H, Stecy P, Schneider R, Rey M et al (1984) Effects of intracoronary streptokinase and intracoronary nitroglycerin infusion on coronary angiographic patterns and mortality in patients with acute myocardial infarction. N Engl J Med 311:1457–1463CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Simoons ML, Serruys PW, van den Brand M, Bär F, de Zwaan C, Res J et al (1985) Improved survival after early thrombolysis in acute myocardial infarction. A randomized trial conducted by the Interuniversity Cardiology Institute in the Netherlands. Lancet 2:578–582CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kennedy JW, Ritchie JL, Davis KB, Stadius ML, Maynard C, Fritz JK (1985) The Western Washington randomized trial of intracoronary streptokinase trial in acute myocardial infarction. N Engl J Med 312:1073–1078CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Simoons ML, Serruys PW, van den Brand M, Res J, Verheugt FW, Krauss XH et al (1986) Early thrombolysis in acute myocardial infarction: reduction of infarct size, preservation of left ventricular function and improved survival. J Am Coll Cardiol 7:718–728CrossRefGoogle Scholar
  66. 66.
    Serruys PW, Simoons ML, Suryapranata H, Vermeer F, Wijns W, van den Brand M et al (1986) Preservation of global and regional left ventricular function after early thrombolysis in acute myocardial infarction. J Am Coll Cardiol 7:729–742CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Grüntzig A (1978) Transluminal dilatation of coronary stenosis. Lancet 1:263CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Grüntzig AR, Senning Å, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 301:61–68CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    de Feyter PJ, Suryapranata H, Serruys PW, Beatt K, van Domburg R, van den Brand M et al (1988) Coronary angioplasty for unstable angina: immediate and late results in 200 consecutive patients with identification of risk factors for unfavorable early and late outcome. J Am Coll Cardiol 12:324–333CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rentrop P, Blanke H, Karsch KR, Kreutzer H (1979) Initial experience with transluminal recanalization of the recently occluded infarct-related coronary artery in acute myocardial infarction – comparison with conventionally treated patients. Clin Cardiol 2:92–105CrossRefGoogle Scholar
  71. 71.
    Meyer J, Merx W, Schweizer P, Erbel R, Kiesslich T, Dörr R et al (1982) Advantages of combining transluminal coronary angioplasty (PTCA) with selective coronary thrombolysis in acute infarction. Circulation 66:905–913CrossRefGoogle Scholar
  72. 72.
    Hartzler GO, Rutherford BD, McConahay DR (1984) Percutaneous transluminal coronary angioplasty: application for acute myocardial infarction. Am J Cardiol 53:117C–121CCrossRefGoogle Scholar
  73. 73.
    Suryapranata H, Serruys PW, de Feyter PJ, van den Brand M, Beatt K, van Domburg R et al (1988) Coronary angioplasty immediately after thrombolysis in 115 consecutive patients with acute myocardial infarction. Am Heart J 115:519–529CrossRefGoogle Scholar
  74. 74.
    Gruentzig AR, King SB III, Schlumff SW (1987) Longterm follow-up after percutaneous transluminal coronary angioplasty.The early Zurich experience. N Engl J Med 316:1127–1132CrossRefGoogle Scholar
  75. 75.
    Man J, Tymchak W, Jugdutt BI (2010) Adjunctive pharmacologic treatment for acute myocardial infarction. In: Brown DL, Jeremias A (eds) Textbook of cardiac intensive care, 2nd edn. Elsevier, Philadelphia, pp 1–72Google Scholar
  76. 76.
    Simari RD, Berger PB, Bell MR, Gibbons RJ, Holmes DR Jr (1994) Mayo Clin Proc 69:346–358CrossRefGoogle Scholar
  77. 77.
    Welsh RC, Goldstein P, Adgey J, Verheugt F, Bestilny SA, Wallentin L, for the ASSENT 3 plus trial investigators et al (2004) Variations in pre-hospital fibrinolysis process of care: insights from the assessment of the safety and efficacy of a new thrombolytic 3 plus international acute myocardial infarction prehospital care survey. Eur J Emerg Med 11:134–140CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Welsh RC, Chang W, Goldstein P, Adgey J, Granger CB, Verheugt FW et al (2005) Time to treatment and the impact of a physician on prehospital management of acute ST elevation myocardial infarction: insights from the ASSENT-3 PLUS trial. Heart 91:1400–1406CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Terkelsen CJ, Lassen JF, Nørgaard BL, Gerdes JC, Poulsen SH, Bendix K et al (2005) Reduction of treatment delay in patients with ST-elevation myocardial infarction: impact of pre-hospital diagnosis and direct referral to primary percutanous coronary intervention. Eur Heart J 26:770–777CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Crea F, Falk V, Filippatos G, Fox K, Huber K, Kastrati A et al (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the task force on the management of ST-Segment elevation acute myocardial infarction of the European Society of Cardiology. Eur Heart J 29:2909–2945CrossRefGoogle Scholar
  81. 81.
    Kushner FG, Hand M, Smith SC, King SB, Anderson JL, Antman EM et al (2009) 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol 54:2205–2241CrossRefGoogle Scholar
  82. 82.
    Estevez-Loureiro R, Lopez-Sainz A, de Prado AP, Cuellas C, Santos RC, Alonzo-Orcajo N et al (2014) Timely reperfusion for ST-elevation myocardial infarction: effect of direct transfer to primary angioplasty on time delays and clinical outcomes. World J Cardiol 6:424–433CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    De Luca G, Suryapranata H, Ottervanger JP, Antman EM (2004) Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation 109:1223–1225CrossRefGoogle Scholar
  84. 84.
    Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ et al (2000) Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283:2941–2947CrossRefGoogle Scholar
  85. 85.
    Serruys PW, Wijns W, van den Brand M, Mey S, Slager CJ, Schuurbiers JCH et al (1984) Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation 70:25–36CrossRefGoogle Scholar
  86. 86.
    Wijns WW, Serruys PW, Slager CJ, Grimm J, Krayenbuehl HP, Hugenholtz PG et al (1986) Effect of coronary occlusion during percutaneous transluminal angioplasty in humans on left ventricular chamber stiffness and regional diastolic pressure-radius relations. J Am Coll CardioI 7:455–463CrossRefGoogle Scholar
  87. 87.
    Heusch G (1998) Stunning-great paradigmatic, but little clinical evidence. Basic Res Cardio 93:164–166CrossRefGoogle Scholar
  88. 88.
    Sheiban I, Tonni S, Benussi P, Martini A, Trevi GP (1993) Left ventricular dysfunction following transient ischemia induced by transluminal coronary angioplasty. Benficial effects of calcium antagonists against post-ischaemic myocardial stunning. Eur Heart J 14(suppl A):14–21CrossRefGoogle Scholar
  89. 89.
    Yingzhong C, Lin C, Chunbin W (2016) Clinical effects of cyclosporine a on reperfusion injury in myocardial infarction: a meta-analysis of randomized controlled trials. SpringerPlus 5:1117–1126CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bulluck H, Yellon DM, Hausenloy DJ (2016) Reducing myocardial infarct size: challenges and future opportunities. Heart 102:341–348CrossRefGoogle Scholar
  91. 91.
    Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634CrossRefGoogle Scholar
  92. 92.
    Reffelmann T, Kloner RA (2002) The “no-reflow” phenomenon: basic science and clinical correlates. Heart 87:162–168CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Ducas A, Bartekova M, Dhalla NS (2015) Ischemia-reperfusion injury of the heart: moving forward with our knowledge. J Hear Health 1:1–10. CrossRefGoogle Scholar
  94. 94.
    Rao V, Ivanov J, Weisel RD, Cohen G, Borger MA, Mickle DA (2001) Lactate release during reperfusion predicts low cardiac output syndrome after coronary bypass surgery. Ann Thorac Surg 71:1925–1930CrossRefGoogle Scholar
  95. 95.
    Merante F, Mickle DA, Weisel RD, Li RK, Tumiati LC, al RV (1998) Myocardial aerobic metabolism is impaired in a cell culture model of cyanotic heart disease. Am J Physiol 275:H1673–H1681PubMedGoogle Scholar
  96. 96.
    Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN et al (2016) American Heart Association council on basic cardiovascular sciences, council on clinical cardiology, and council on functional genomics and translational biology. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res 118:1960–1991CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC (2017) Basic biology of oxidative stress and the cardiovascular system. Part 1 of 3-Part series. J Am Coll Cardiol 70:196–211CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Bartesagh S, Radi (2018) Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol 14:618–625CrossRefGoogle Scholar
  99. 99.
    Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142:288–297CrossRefGoogle Scholar
  100. 100.
    Jugdutt BI, Idikio HA (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem 270:177–200CrossRefGoogle Scholar
  101. 101.
    Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in dogs. J Clin Invest 54:1496–1508CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Ambrosio G, Weisman HF, Mannisi JA, Becker LC (1989) Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation 80:1846–1861CrossRefGoogle Scholar
  103. 103.
    Becker LC, Jeremy RW, Schaper J, Schaper W (1999) Ultrastructural assessment of myocardial necrosis occurring during ischemia and 3-h reperfusion in the dog. Am J Physiol 277:H243–H252CrossRefGoogle Scholar
  104. 104.
    Jugdutt BI, Sawicki G (2004) AT1 receptor blockade alters metabolic, functional and structural proteins after reperfused myocardial infarction: detection using proteomics. Mol Cell Biochem 263:179–188. Erratum in: Mol Cell Biochem (2007) 300:269-270CrossRefGoogle Scholar
  105. 105.
    Sawicki G, Menon V, Jugdutt BI (2004) Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade. J Card Fail 10:442–449CrossRefGoogle Scholar
  106. 106.
    Sawicki G, Jugdutt BI (2007) Valsartan reverses post-translational modifications of the delta-subunit of ATP synthase during in vivo canine reperfused myocardial infarction. Proteomics 7:2100–2110CrossRefGoogle Scholar
  107. 107.
    Jugdutt BI, Menon V (2004) AT1 receptor blockade limits myocardial injury and upregulates AT2 receptors during reperfused myocardial infarction. Mol Cell Biochem 260:111–118CrossRefGoogle Scholar
  108. 108.
    Jugdutt BI, Menon V (2004) Valsartan-induced cardioprotection involves angiotensin II type 2 receptor upregulation in dog and rat models of in vivo reperfused myocardial infarction. J Card Fail 10:74–82CrossRefGoogle Scholar
  109. 109.
    Moe G, Konig A, Liu P, Jugdutt BI (2008) Selective type 1 angiotensin II receptor blockade attenuates oxidative stress and regulates angiotensin II receptors in the canine failing heart. Mol Cell Biochem 17:97–104CrossRefGoogle Scholar
  110. 110.
    Moudgil R, Menon V, Xu Y, Musat-Marcu S, Kumar D, Jugdutt BI (2001) Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in isolated working rat hearts. J Hypertens 19:1121–1129CrossRefGoogle Scholar
  111. 111.
    Ford WR, Khan MI, Jugdutt BI (1998) Effect of the novel angiotensin II type 1 receptor antagonist L-158,809 on acute infarct expansion and acute anterior myocardial infarction in the dog. Can J Cardiol 14:73–80PubMedGoogle Scholar
  112. 112.
    Jugdutt BI (2011) Optimizing pharmacotherapy for limiting cardiovascular remodeling a matter of timing therapy to match biology. J Am Coll Cardiol 57:2029–2030CrossRefGoogle Scholar
  113. 113.
    Flaherty JT, Pitt B, Gruber JW, Heuser RR, Rothbaum DA, Burwell LR et al (1994) Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 89:1982–1991CrossRefGoogle Scholar
  114. 114.
    Przyklenk K, Kloner RA (1989) “Reperfusion injury” by oxygen-derived free radicals? Effect of superoxide dismutase plus catalase, given at the time of reperfusion, on myocardial infarct size, contractile function, coronary microvasculature, and regional myocardial blood flow. Circ Res 674:86–96CrossRefGoogle Scholar
  115. 115.
    Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R et al (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 86:4695–4599CrossRefGoogle Scholar
  116. 116.
    Verma S, Fedak PWM, Weisel RD, Butany J, Rao V, Maitland A et al (2002) Fundamentals of reperfusion Injury for the clinical cardiologist. Circulation 105:2332–2336CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Cung TT, Morel O, Rioufol CG, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E et al (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031CrossRefGoogle Scholar
  118. 118.
    Jugdutt BI, Jelani A (2008) Aging and defective healing, adverse remodeling, and blunted post-conditioning in the reperfused wounded heart. J Am Coll Cardiol 51:1399–1403CrossRefGoogle Scholar
  119. 119.
    Przyklenk K, Maynard M, Darling CE, Whittaker P (2008) Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol 51:1393–1398CrossRefGoogle Scholar
  120. 120.
    Jugdutt BI, Jelani A (2013) Chapter 27: Aging and markers of adverse remodeling after myocardial infarction. In: Jugdutt BI, Dhalla NS (eds) Cardiac remodeling: molecular mechanisms. Springer, New York, pp 487–512CrossRefGoogle Scholar
  121. 121.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47CrossRefGoogle Scholar
  122. 122.
    Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Jugdutt BI (2002) Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev 7:391–405CrossRefGoogle Scholar
  125. 125.
    Neumann F-J, Gick M (2018) Direct stenting in ST-segment elevation myocardial infarction: convenient, but not improving outcomes. Eur Heart J 39:2480–2483CrossRefGoogle Scholar
  126. 126.
    Mahmood KO, Jolly SS, James S, Dzavik V, Cairns JA, Olivecrona CK et al (2018) Clinical impact of direct stenting and interaction with thrombus aspiration in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention: thrombectomy trialists collaboration. Eur Heart J 39:2472–2479CrossRefGoogle Scholar
  127. 127.
    Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na+-H+ exchange structure, regulation, and its role in heart disease. Circ Res 85:777–786CrossRefGoogle Scholar
  128. 128.
    Karmazyn M, Moffat MP (1993) Role of Na+/H+ exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovasc Res 27:915–924CrossRefGoogle Scholar
  129. 129.
    Churchill EN, Murriel CL, Chen CH, Mochly-Rosen D, Szweda LI (2005) Reperfusion-induced translocation of δPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circ Res 97:78–85CrossRefGoogle Scholar
  130. 130.
    Chambers KT, Leone TC, Sambandam N, Kovacs A, Wagg CS, Lopaschuk GD et al (2011) Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J Biol Chem 286:11155–11162CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    McCormack JC, Barr EL, Wolff AA, Lopaschuk GD (1996) Ranolazine stimulates glucose oxidation in normoxic, ischemic and repefused ischemic hearts. Circulation 93:135–142CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Vitulano N, Ciaidella P, Gustapane M, Vitulano L, Pedicino A, Pelargonio D (2015) Ranolazine: beyond the treatment of chronic stable angina pectoris. Int J Clin Cardiol 2(4):1–7. ISSN: 2378-2951CrossRefGoogle Scholar
  133. 133.
    Codolosa JN, Acharjee S, Figueredo VM (2014) Update on ranolazine in the management of angina. Vasc Health Risk Manag 10:353–362PubMedPubMedCentralGoogle Scholar
  134. 134.
    Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res 61:372–385CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Kornfeld O, Hwang S, Disatnik MH, Chen CH, Qvit N, Mochly-Rosen D (2015) Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 116:1783–1799CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Inserte J, Hernando V, Garcia-Dorado D (2012) Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res 96:23–31CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F et al (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Valls-Lacalle L, Barba I, Miro-Casas E, Alburquerque-Bejar JJ, Ruiz-Meana M, Fuertes-Agudo M et al (2016) Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc Res 109:374–384CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Inserte J, Hernando V, Vilardosa U, Abad E, Poncelas-Nozal M, Garcia-Dorado D (2013) Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc 2:e005975CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W et al (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107:106–116CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    O’Connor PM, Gutterman DG (2010) Resurrecting hope for antioxidant treatment of cardiovascular disease. Focus on mitochondria. Circ Res 107:9–11CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Taegtmeyer H (1994) Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol 19:59–113CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Chen YR, Zweir JL (2014) Cardiac mitochondria and reactive oxgen species generation. Circ Res 114:424–537Google Scholar
  145. 145.
    Schaper J, Meiser E, Stammler G (1985) Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 56:377–391CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG et al (2007) Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol 292:C689–C697CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Opie LH, Sack MN (2002) Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning. J Mol Cell Cardiol 34:1077–1089CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Sack MN (2009) Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol 46:842–849CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Marín-García J, Damle S, Jugdutt BI, Moe GW (2012) Nuclear-mitochondrial cross-talk in global myocardial ischemia. A time-course analysis. Mol Cell Biochem 364:225CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Ibáñez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471CrossRefGoogle Scholar
  151. 151.
    Barrabes JA, Inserte J, Mirabet M, Quiroga A, Hernando V, Figueras J et al (2010) Antagonism of P2Y12 or GPIIb/IIIa receptors reduces plateletmediated myocardial injury after ischaemia and reperfusion in isolated rat hearts. Thromb Haemost 104:128–135CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H et al (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123:594–604CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Ruiz-Meana M, Inserte J, Fernandez-Sanz C, Hernando V, Miro-Casas E, Barba I et al (2011) The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia. Basic Res Cardiol 106:1259–1268CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Jugdutt BI (1997) Effect of reperfusion on ventricular mass, topography and function during healing of anterior infarction. Am J Physiol 272:H1205–H1211PubMedPubMedCentralGoogle Scholar
  155. 155.
    Jugdutt BI (2012) Ischemia/Infarction. Heart Fail Clin 8:43–51CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Atar D, Petzelbauer P, Schwitter J, Huber K, Rensing B, Kasprzak JD et al (2009) Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. Efficacy of FX06 in the prevention of myocardial reperfusion injury trial. J Am Coll Cardiol 53:720–729CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Armstrong PW, Granger CB, Adams PX, Hamm C, Holmes D Jr, O’Neill WW (2007) Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297:43–51CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part II. Circulation 104:3158–3167CrossRefGoogle Scholar
  159. 159.
    Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123:92–100CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I et al (2005) Postconditioning the human heart. Circulation 112:2143–2148CrossRefGoogle Scholar
  161. 161.
    Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G et al (2008) Long-term benefit of postconditioning. Circulation 117:1037–1044CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S et al (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1417CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Yellon DM, Ackbarkhan AK, Balgobin V, Bulluck H, Deelchand A, Dhuny MR et al (2015) Remote ischemic conditioning reduces myocardial infarct size in STEMI patients treated by thrombolysis. J Am Coll Cardiol 65:2764–2765CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T et al (2007) Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 370:1483–1493CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Selker HP, Beshansky JR, Sheehan PR, Massaro JM, Griffith JL, D’Agostino RB et al (2012) Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA 307:1925–1933CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB et al (2012) Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart 33:1491–1499CrossRefGoogle Scholar
  167. 167.
    Lonborg J, Kelbaek H, Vejlstrup N, Botker HE, Kim WY, Holmvang L et al (2012) Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv 5:288–295CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Woo JS, KimW HSJ, Kim JB, Kim SJ, Kim WS et al (2013) Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol 33:2252–2260CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Chen WR, Hu SY, Chen YD, Zhang Y, Qian G, Wang J et al (2015) Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J 170:845–854CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Lefer D, Jones S, Steenbergen C, Kukreja R, Guo Y, Tang X-L et al (2014) Sodium nitrite fails to limit myocardial infarct size: results from the CAESAR cardioprotection consortium. FASEB J 28:LB645Google Scholar
  171. 171.
    Siddiqi N, Neil C, Bruce M, MacLennan G, Cotton S, Papadopoulou S et al (2014) Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur Heart J 35:1255–1262CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Jones DA, Pellaton C, Velmurugan S, Rathod KS, Andiapen M, Antoniou S et al (2015) Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ Res 116:437–447CrossRefGoogle Scholar
  173. 173.
    Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–543CrossRefGoogle Scholar
  174. 174.
    Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D et al (2005) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 38:367–374CrossRefGoogle Scholar
  175. 175.
    Skyschally A, Schulz R, Heusch G (2010) Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther 24:85–87CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Karlsson LO, Zhou AX, Larsson E, Astrom-Olsson K, Mansson C, Akyurek LM et al (2010) Cyclosporine does not reduce myocardial infarct size in a porcine ischemia-reperfusion model. J Cardiovasc Pharmacol Ther 15:182–189CrossRefGoogle Scholar
  177. 177.
    Lim WY, Messow CM, Berry C (2012) Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: a systematic review and meta-analysis. Br J Pharmacol 165:2034–2043CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481CrossRefGoogle Scholar
  179. 179.
    Ghaffari S, Kazemi B, Toluey M, Sepehrvand N (2013) The effect of prethrombolytic cyclosporine-A injection on clinical outcome of acute anterior ST-elevation myocardial infarction. Cardiovasc Ther 31:e34–e39CrossRefGoogle Scholar
  180. 180.
    Ottani F, Latini R, Staszewsky L, La Vecchia L, Locuratolo N, Sicuro M et al (2016) Cyclosporine A in reperfused myocardial infarction. The multicenter, controlled ,open-label Cycle trial. J Amer Coll Cardiol 67:365–374CrossRefGoogle Scholar
  181. 181.
    Chiari P, Angoulvant D, Mewton N, Desebbe O, Obadia JF, Robin J et al (2014) Cyclosporine protects the heart during aortic valve surgery. Anesthesiology 121:232–238CrossRefGoogle Scholar
  182. 182.
    Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA (2014) Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J Cardiovasc Pharmacol 64:543–553CrossRefGoogle Scholar
  183. 183.
    Shi J, Dai W, Hale SL, Brown DA, Wang M, Han X et al (2015) Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sci 141:170–178CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Chakrabarti AK, Feeney K, Abueg C et al (2013) Rationale and design of the EMBRACE STEMI study: a phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. Am Heart J 165:509–514CrossRefGoogle Scholar
  185. 185.
    Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Jánosi A et al (2016) EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J 37:1296–1303CrossRefGoogle Scholar
  186. 186.
    Ibanez B, Prat-Gonzalez S, Speidl WS, Vilahur G, Pinero A, Cimmino G et al (2007) Early metoprolol administration before coronary reperfusionresults in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115:2909–2916CrossRefGoogle Scholar
  187. 187.
    Ibanez B, Macaya C, Sanchez-Brunete V, Pizarro G, Fernandez-Friera L, Mateos A et al (2013) Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) trial. Circulation 128:1495–1503CrossRefGoogle Scholar
  188. 188.
    Pizarro G, Fernandez-Friera L, Fuster V, Fernandez-Jimenez R, Garcia-Ruiz JM, Garcia-Alvarez A et al (2014) Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (Effect of metoprolol in cardioprotection during an acute myocardial infarction). J Am Coll Cardiol 63:2356–2362CrossRefGoogle Scholar
  189. 189.
    Roolvink V, Rasoul S, Ottervanger JP, Dambrink JH, Lipsic E, van der Horst IC et al (2014) Rationale and design of a double-blind, multicenter, randomized, placebo-controlled clinical trial of early administration of intravenous beta-blockers in patients with ST-elevation myocardial infarction before primary percutaneous coronary intervention. EARLY beta-blocker administration before primary PCI in patients with ST-elevation myocardial infarction trial. Am Heart J 168:661–666CrossRefGoogle Scholar
  190. 190.
    Schaller S, Paradis S, Ngoh GA, Assaly R, Buisson B, Drouot C et al (2010) TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition. J Pharmacol Exp Ther 333:696–706CrossRefGoogle Scholar
  191. 191.
    Hansson MJ, Llwyd O, Morin D, De PD, Arnoux T, Gouarne C et al (2015) Differences in the profile of protection afforded by TRO40303 and mild hypothermia in models of cardiac ischemia/reperfusion injury. Eur J Pharmacol 760:7–19CrossRefGoogle Scholar
  192. 192.
    Atar D, Arheden H, Berdeaux A, Bonnet JL, Carlsson M, Clemmensen P et al (2015) Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J 36:112–119CrossRefGoogle Scholar
  193. 193.
    Bates E, Bode C, Costa M, Gibson CM, Granger C, Green C et al (2008) Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 117:886–896CrossRefGoogle Scholar
  194. 194.
    Lincoff AM, Roe M, Aylward P, Galla J, Rynkiewicz A, Guetta V et al (2014) Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: results of the PROTECTION AMI randomized controlled trial. Eur Heart J 35:2516–2523CrossRefGoogle Scholar
  195. 195.
    Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC et al (1987) Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 76:1135–1145CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Bulluck H, Sirker A, Loke YK, Garcia-Dorado D, Hausenloy DJ (2015) Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: an updated meta-analysis of randomized controlled trials. Int J Cardiol 202:228–237CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Karlsson J-E, El-Saadi W, Ali M, Puskar W, Skogvard P, Engvall JE et al (2015) Mangafodipir as a cardioprotective adjunct to reperfusion therapy: a feasibility study in patients with ST-segment elevation myocardial infarction. Eur Heart J 1:39–45Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Cardiology Division, Department of Medicine, Faculty of Medicine, Walter MacKenzie Health Sciences CentreUniversity of AlbertaEdmontonCanada

Personalised recommendations