Influence of Genetic Factor on Oxidative Stress Mediated Heart Damage

  • Branislav Rovcanin


Several decades have passed since the oxidative stress has been recognized as one of the principal factors which contributes to the initiation and progression of heart diseases. From that moment, numerous studies were commenced, and provided a vast knowledge about the molecular pathophysiology of redox imbalance in cardiac pathology. Combining the molecular biology and principles of genetics, the role of genetic factor is implemented in the characterization of oxidative heart damage as an intrinsic factor of each individual. Genetic studies of oxidative stress included analysis of numerous polymorphisms of enzymes which regulate or contribute to the redox metabolic pathways. Additionally, regulation of critical gene expression was also designated as an important element in cardiovascular disease evolution. Finally, exploiting the acquired information, various strategies of gene therapy are formulated in order to control the oxidative heart injury. This paper refers to the previously stated principles and presents only a part of abundant current knowledge about the oxidative stress genetics in heart diseases.


Oxidative stress Polymorphisms Gene expression Gene therapy 


  1. 1.
    Stocker R, Keaney J (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1476PubMedCrossRefGoogle Scholar
  2. 2.
    Giordano F (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hare J, Stamler J (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Huggins GS (2015) Genetic susceptibility to oxidative stress and cardiovascular disease. EBioMedicine 2:1864–1865PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Dominiczak AF (2004) Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci (Lond) 106:219–234CrossRefGoogle Scholar
  7. 7.
    Padmanabhan S, Melander O, Hastie C et al (2008) Hypertension and genome-wide association studies: combining high fidelity phenotyping and hypercontrols. J Hypertens 26:1275–1281PubMedCrossRefGoogle Scholar
  8. 8.
    Park GH, Choe J, Choo HJ et al (2002) Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray. Exp Mol Med 34:84–193Google Scholar
  9. 9.
    Latronico MV, Catalucci D, Condorelli G (2007) Emerging role of microRNAs in cardiovascular biology. Circ Res 101:1225–1236PubMedCrossRefGoogle Scholar
  10. 10.
    Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hamanishi T, Furuta H, Kato H et al (2004) Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 53:2455–2460PubMedCrossRefGoogle Scholar
  12. 12.
    Tang NP, Wang LS, Yang L et al (2008) Genetic variant in glutathione peroxidase 1 gene is associated with an increased risk of coronary artery disease in a Chinese population. Clin Chim Acta 395:89–93PubMedCrossRefGoogle Scholar
  13. 13.
    Heslop CL, Tebbutt SJ, Podder M et al (2012) Combined polymorphisms in oxidative stress genes predict coronary artery disease and oxidative stress in coronary angiography patients. Ann Hum Genet 76:435–447PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang JX, Wang ZM, Zhang JJ et al (2014) Association of glutathione peroxidase-1 (GPx-1) rs1050450 Pro198Leu and Pro197Leu polymorphisms with cardiovascular risk: a meta-analysis of observational studies. J Geriatr Cardiol 11:141–150PubMedPubMedCentralGoogle Scholar
  15. 15.
    Souiden Y, Mallouli H, Meskhi S et al (2016) MnSOD and GPx1 polymorphism relationship with coronary heart disease risk and severity. Biol Res 49:22PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferase. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  17. 17.
    Li R, Boerwinkle E, Olshan AF et al (2000) Glutathione S-transferase genotype as a susceptibility factor in smoking-related coronary heart disease. Atherosclerosis 149:451–462PubMedCrossRefGoogle Scholar
  18. 18.
    Turkanoglu A, Demirdogen BC, Demirkaya S et al (2010) Association analysis of GSTT1, GSTM1 genotype polymorphisms and serum total GST activity with ischemic stroke risk. Neurol Sci 31:727–734PubMedCrossRefGoogle Scholar
  19. 19.
    Doney ASF, Lee S, Leese GP et al (2005) Increased cardiovascular morbidity and mortality in Type 2 diabetes is associated with the Glutathione S-Transferse theta-null genotype: a Go-Darts study. Circulation 111:2927–2934PubMedCrossRefGoogle Scholar
  20. 20.
    Lo HW, Ali-Osman F (2007) Genetic polymorphism and function of glutathione S-transferase in tumor drug resistance. Curr Opin Pharmacol 7:367–374PubMedCrossRefGoogle Scholar
  21. 21.
    Ntais C, Polycarpou A, Loannidis JP (2005) Association of GSTM1, GTTT1 and GSTP1 gene polymorphisms with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomark Prev 14:176–181Google Scholar
  22. 22.
    Nomani H, Mozafari H, Ghobadloo SM et al (2011) The association between GSTT1, M1 and P1 polymorphisms with coronary artery disease in Western Iran. Mol Cell Biochem 354:181–187PubMedCrossRefGoogle Scholar
  23. 23.
    Singh N, Sinha N, Kumar S et al (2011) Glutathione S-transferase gene polymorphism as a susceptibility factor for acute myocardial infarction and smoking in the North Indian population. Cardiology 118:16–21PubMedCrossRefGoogle Scholar
  24. 24.
    Phulukdaree A, Khan S, Moodley D, Chuturgoon AA (2012) GST polymorphisms and early onset coronary artery disease in young South African Indians. S Afr Med J 102:627–630PubMedCrossRefGoogle Scholar
  25. 25.
    Yeh HL, Kuo LT, Sung FC et al (2013) GSTM1, GSTT1, GSTP1 and GSTA1 genetic variants are not associated with coronary artery disease in Taiwan. Gene 523:64–69PubMedCrossRefGoogle Scholar
  26. 26.
    Bhat MA, Gandhi G (2017) Glutathione S-transferase P1 gene polymorphisms and susceptibility to coronary artery disease in a subgroup of north Indian population. J Genet 96:927–932PubMedCrossRefGoogle Scholar
  27. 27.
    Delles C, Padmanabhan S, Lee WK et al (2008) Glutathione S-transferase variants and hypertension. J Hypertens 26:1343–1352PubMedCrossRefGoogle Scholar
  28. 28.
    Oniki K, Hori M, Takata K et al (2008) Association between glutathione S-transferase A1, M1 and T1 polymorphisms and hypertension. Pharmacogenet Genomics 18:275–277PubMedCrossRefGoogle Scholar
  29. 29.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  30. 30.
    Minova HR, Mulcahy RT (1998) An electrophile responsive element (EpRE) regulates gamma-naphthoflavone induction of the human gamma-glutamyl cysteine synthetase regulatory subunit gene. J Biol Chem 273:14683–14689CrossRefGoogle Scholar
  31. 31.
    Nakamura S, Kugiyama K, Sugiyama S et al (2002) Polymorphism in the 5′-flanking region of human glutamate-cysteine ligase modifier subunit gene is associated with myocardial infarction. Circulation 105:2968–2973PubMedCrossRefGoogle Scholar
  32. 32.
    Qi L, Qi Q, Prudente S et al (2013) Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310:821–828PubMedCrossRefGoogle Scholar
  33. 33.
    Shahid SU, Shabana HS (2018) The SNP rs10911021 is associated with oxidative stress in coronary heart disease patients from Pakistan. Lipids Health Dis 17:6PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112PubMedCrossRefGoogle Scholar
  35. 35.
    Otaki Y, Watanabe T, Nishiyama S et al (2016) The impact of superoxide dismutase-1 genetic variation on cardiovascular and all-cause mortality in a prospective cohort study: The Yamagata (Takahata) Study. PLoS One 11:e0164732PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Becuwe P, Ennen M, Klotz R et al (2014) Manganese superoxide dismutase in breast cancer: from molecular mechanisms of gene regulation to biological and clinical significance. Free Radic Biol Med 77:139–151PubMedCrossRefGoogle Scholar
  37. 37.
    Shimoda-Matsubayashi S, Matsumine H, Kobayashi T et al (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 226:561–565PubMedCrossRefGoogle Scholar
  38. 38.
    Sutton A, Khoury H, Prip-Buus C et al (2003) The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 13:145–157PubMedCrossRefGoogle Scholar
  39. 39.
    Jones DA, Prior SL, Tang TS et al (2010) Association between the rs4880 superoxide dismutase 2 (C>T) gene variant and coronary heart disease in diabetes mellitus. Diabetes Res Clin Pract 90:196–201PubMedCrossRefGoogle Scholar
  40. 40.
    Stralin P, Karlsson K, Johansson BO, Marklund SL (1995) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15:2032–2036PubMedCrossRefGoogle Scholar
  41. 41.
    Takatsu H, Tasaki H, Kim HN et al (2001) Overexpression of EC-SOD suppresses endothelial-cell-mediated LDL oxidation. Biochem Biophys Res Commun 285:84–91PubMedCrossRefGoogle Scholar
  42. 42.
    Mohammedi K, Bellili-Muñoz N, Marklund SL et al (2015) Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes. Cardiovasc Diabetol 14:845PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Goth L, Rass P, Pay A (2004) Catalase enzyme mutations and their association with diseases. Mol Diagn 8:141–149PubMedCrossRefGoogle Scholar
  44. 44.
    dos Santos KG, Canani LH, Gross JL et al (2006) The catalase -262C/T promoter polymorphism and diabetic complications in Caucasians with type 2 diabetes. Dis Markers 22:355–359PubMedCrossRefGoogle Scholar
  45. 45.
    Shuvalova YA, Kaminnyi AI, Meshkov AN et al (2012) Association between polymorphisms of eNOS and GPx-1 genes, activity of free-radical processes and in-stent restenosis. Mol Cell Biochem 370:241–249PubMedCrossRefGoogle Scholar
  46. 46.
    Podgoreanu MV, White WD, Morris RW et al (2006) Inflammatory gene polymorphism and risk of postoperative myocardial infarction after cardiac surgery. Circulation 114:I275–I281PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Azumi H, Inoue N, Takeshita S et al (1999) Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 100:1494–1498PubMedCrossRefGoogle Scholar
  48. 48.
    Guzik TJ, West NE, Black E et al (2000) Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 102:1744–1747PubMedCrossRefGoogle Scholar
  49. 49.
    Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94:437–444PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Reynolds WF, Chang E, Douer E et al (1997) An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Blood 90:2730–2737PubMedCrossRefGoogle Scholar
  51. 51.
    Piedrafita FJ, Molander RB, Vansant G et al (1996) An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem 271:14412–14420PubMedCrossRefGoogle Scholar
  52. 52.
    Katakami N, Kume S, Kaneto H et al (2013) Association of myeloperoxidase G-463A gene polymorphism with diabetic nephropathy in Japanese type 2 diabetic subjects. Endocr J 60:457–471PubMedGoogle Scholar
  53. 53.
    Farre A, Casado S (2001) Heart failure, redox alterations, and endothelial dysfunction. Hypertension 38:1400–1405CrossRefGoogle Scholar
  54. 54.
    Baldus S, Heeschen C, Meinertz T et al (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108:1440–1445CrossRefGoogle Scholar
  55. 55.
    Brennan ML, Penn M, Lente F et al (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1585–1604CrossRefGoogle Scholar
  56. 56.
    Katakami N, Kaneto H, Matsuoka TA et al (2014) Accumulation of oxidative stress-related gene polymorphisms and the risk of coronary heart disease events in patients with type 2 diabetes-an 8-year prospective study. Atherosclerosis 235:408–414PubMedCrossRefGoogle Scholar
  57. 57.
    Wang XL, Sim AS, Wang MX et al (2000) Genotype dependent and cigarette specific effects on endothelial nitric oxide synthase gene expression and enzyme activity. FEBS Lett 471:45–50PubMedCrossRefGoogle Scholar
  58. 58.
    Tesauro M, Thompson WC, Rogliani P et al (2000) Intracellular processing of endothelial nitric oxide synthase isoforms associated with differences in severity of cardiopulmonary diseases: cleavage of proteins with aspartate vs. glutamate at position 298. Proc Natl Acad Sci U S A 97:2832–2835PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Veldman BA, Spiering W, Doevendans PA et al (2002) The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. J Hypertens 20:2023–2027PubMedCrossRefGoogle Scholar
  60. 60.
    Noiri E, Satoh H, Taguchi J et al (2002) Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension 40:535–540PubMedCrossRefGoogle Scholar
  61. 61.
    van Geel P, Pinto Y, Voors A et al (2000) Angiotensin II type 1 receptor A116C gene polymorphism is associated with an increased response to angiotensin II in human arteries. Hypertension 35:717–721PubMedCrossRefGoogle Scholar
  62. 62.
    Cameron VA, Mocatta TJ, Pilbrow AP et al (2006) Angiotensin type-1 receptor A1166C gene polymorphism correlates with oxidative stress levels in human heart failure. Hypertension 47:1155–1161PubMedCrossRefGoogle Scholar
  63. 63.
    Mihm MJ, Yu F, Carnes CA, Reiser PJ et al (2001) Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 104:174–180PubMedCrossRefGoogle Scholar
  64. 64.
    Carnes CA, Chung MK, Nakayama T et al (2001) Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res 89:E32–E38PubMedCrossRefGoogle Scholar
  65. 65.
    Kim YH, Lim DS, Lee JH et al (2003) Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med 35:336–349PubMedCrossRefGoogle Scholar
  66. 66.
    Mak S, Newton G (2001) The oxidative stress hypothesis of congestive heart failure. Chest 120:2035–2046PubMedCrossRefGoogle Scholar
  67. 67.
    Griendling K, Minieri C, Ollerenshaw J, Alexander R (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148PubMedCrossRefGoogle Scholar
  68. 68.
    Griendling K, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501PubMedCrossRefGoogle Scholar
  69. 69.
    Lassegue U, Sorescu D, Szocs K et al (2001) Novel gp91phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-sensitive superoxide formation and redox-sensitive signaling pathways. Circ Res 88:888–894PubMedCrossRefGoogle Scholar
  70. 70.
    Seshiah P, Weber D, Rocic P et al (2002) Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91:406–413PubMedCrossRefGoogle Scholar
  71. 71.
    Wang H, Xu S, Johns D et al (2001) Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res 88:947–953PubMedCrossRefGoogle Scholar
  72. 72.
    Weber DS, Rocic P, Mellis AM et al (2005) Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle. Am J Physiol Heart Circ Physiol 288:H37–H42PubMedCrossRefGoogle Scholar
  73. 73.
    Grieve D, Shah A (2003) Oxidative stress in heart failure: more than just damage. Eur Heart J 24:2161–2163PubMedCrossRefGoogle Scholar
  74. 74.
    Cohn J, Ferrari R, Sharpe N (2000) Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582PubMedCrossRefGoogle Scholar
  75. 75.
    Gopcevic K, Rovcanin B, Kekic D, Radenkovic S (2011) Matrix metalloproteinases and membrane damage markers in sera of patients with acute myocardial infarction. Mol Cell Biochem 350:163–168PubMedCrossRefGoogle Scholar
  76. 76.
    Gopcevic K, Rovcanin B, Kekic D et al (2017) Gelatinases A and B and antioxidant enzyme activity in the early phase of acute myocardial infarction. Folia Biol (Praha) 63:20–26Google Scholar
  77. 77.
    Kameda K, Matsunaga T, Abe N et al (2003) Correlation of oxidative stress with activity of matrix metalloproteinase in patients with coronary artery disease. Possible role for left ventricular remodelling. Eur Heart J 24:2180–2185PubMedCrossRefGoogle Scholar
  78. 78.
    Askari A, Brennan ML, Zhou X et al (2003) Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med 197:615–624PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kim DS, Stanaway IB, Rajagopalan R et al (2012) Results of genome-wide analyses on neurodevelopmental phenotypes at four-year follow-up following cardiac surgery in infancy. PLoS One 7:e45936PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Weis S, Shintani S, Weber A et al (2004) Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 113:885–894PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Matsudaira K, Maeda K, Okumura N et al (2012) Impact of low levels of vascular endothelial growth factor after myocardial infarction on 6-month clinical outcome. Circ J 76:1509–1516PubMedCrossRefGoogle Scholar
  82. 82.
    Guo HD, Cui GH, Yang JJ et al (2012) Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction. Biochem Biophys Res Commun 424:105–111PubMedCrossRefGoogle Scholar
  83. 83.
    Bastaki M, Huen K, Manzanillo P et al (2006) Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 16:279–286PubMedCrossRefGoogle Scholar
  84. 84.
    Kim DS, Kim JH, Burt AA et al (2014) Patient genotypes impact survival after surgery for isolated congenital heart disease. Ann Thorac Surg 98:104–110PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Schulze-Osthoff K, Bauer MK, Vogt M, Wesselborg S (1997) Oxidative stress and signal transduction. Int J Vitam Nutr Res 67:336–342PubMedGoogle Scholar
  86. 86.
    Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499PubMedCrossRefGoogle Scholar
  87. 87.
    Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285PubMedCrossRefGoogle Scholar
  88. 88.
    Kunsch C, Medford RM (1999) Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85:753–766PubMedCrossRefGoogle Scholar
  89. 89.
    De Marchi E, Baldassari F, Bononi A et al (2013) Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. Oxidative Med Cell Longev 2013:564961CrossRefGoogle Scholar
  90. 90.
    Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMedCrossRefGoogle Scholar
  91. 91.
    Dhalla NS, Golfman L, Takeda S et al (1999) Evidence for the role of oxidative stress in acute ischemic heart disease: a brief review. Can J Cardiol 15:587–593PubMedGoogle Scholar
  92. 92.
    Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673PubMedCrossRefGoogle Scholar
  93. 93.
    Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012PubMedCrossRefGoogle Scholar
  94. 94.
    Heffetz D, Bushkin I, Dror R, Zick Y (1990) The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem 265:2896–2902PubMedGoogle Scholar
  95. 95.
    Sundaresan M, Yu ZX, Ferrans VJ et al (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299PubMedCrossRefGoogle Scholar
  96. 96.
    Torti SV, Akimoto H, Lin K et al (1998) Selective inhibition of muscle gene expression by oxidative stress in cardiac cells. J Mol Cell Cardiol 30:1173–1180PubMedCrossRefGoogle Scholar
  97. 97.
    Peng M, Huang L, Xie ZJ et al (1995) Oxidant-induced activations of nuclear factor-kappa B and activator protein-1 in cardiac myocytes. Cell Mol Biol Res 41:189–197PubMedGoogle Scholar
  98. 98.
    Temsah RM, Netticadan T, Chapman D et al (1999) Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Phys 277:H584–H594Google Scholar
  99. 99.
    Ferran C, Millan MT, Csizmadia V et al (1995) Inhibition of NF-kappa B by pyrrolidine dithiocarbamate blocks endothelial cell activation. Biochem Biophys Res Commun 214:212–223PubMedCrossRefGoogle Scholar
  100. 100.
    Hingtgen SD, Davisson RL (2001) Gene therapeutic approaches to oxidative stress-induced cardiac disease: principles, progress, and prospects. Antioxid Redox Signal 3:433–449PubMedCrossRefGoogle Scholar
  101. 101.
    Svensson EC, Marshall DJ, Woodard K et al (1999) Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99:201–205PubMedCrossRefGoogle Scholar
  102. 102.
    Woo YJ, Zhang JC, Vijayasarathy C et al (1998) Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction. Circulation 98:II255–II261PubMedGoogle Scholar
  103. 103.
    Yoshida T, Maulik N, Engelman RM et al (2000) Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res 86:264–269PubMedCrossRefGoogle Scholar
  104. 104.
    Wang P, Chen H, Qin H et al (1998) Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc Natl Acad Sci U S A 95:4556–4560PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Abunasra HJ, Smolenski RT, Morrison K et al (2001) Efficacy of adenoviral gene transfer with manganese superoxide dismutase and endothelial nitric oxide synthase in reducing ischemia and reperfusion injury. Eur J Cardiothorac Surg 20:153–158PubMedCrossRefGoogle Scholar
  106. 106.
    Chen Z, Siu B, Ho YS et al (1998) Overexpression of Mn-SOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30:2281–2289PubMedCrossRefGoogle Scholar
  107. 107.
    Li Q, Bolli R, Qiu Y et al (1998) Gene therapy with extracellular superoxide dismutase attenuates myocardial stunning in conscious rabbits. Circulation 98:1438–1448PubMedCrossRefGoogle Scholar
  108. 108.
    Li Q, Bolli R, Qiu Y et al (2001) Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation 103:1893–1898PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zhu HL, Stewart AS, Taylor MD et al (2000) Blocking free radical production via adenoviral gene transfer decreases cardiac ischemia-reperfusion injury. Mol Ther 2:470–475PubMedCrossRefGoogle Scholar
  110. 110.
    Melo LG, Agrawal R, Zhang L et al (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105:602–607PubMedCrossRefGoogle Scholar
  111. 111.
    Weiss N, Zhang YY, Heydrick S et al (2001) Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci U S A 98:12503–12508PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zanetti M, Katusic ZS, O’Brien T (2002) Adenoviral-mediated overexpression of catalase inhibits endothelial cell proliferation. Am J Physiol Heart Circ Physiol 283:H2620–H2626PubMedCrossRefGoogle Scholar
  113. 113.
    Erzurum SC, Lemarchand P, Rosenfeld MA et al (1993) Protection of human endothelial cells from oxidant injury by adenovirus mediated transfer of the human catalase cDNA. Nucleic Acids Res 21:1607–1612PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Yang L, Quan S, Abraham NG (1999) Retrovirus-mediated HO gene transfer into endothelial cells protects against oxidant-induced injury. Am J Phys 277:L127–L133Google Scholar
  115. 115.
    Sakoda T, Kasahara N, Hamamori Y, Kedes L (1999) A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 31:2037–2047PubMedCrossRefGoogle Scholar
  116. 116.
    Hamilton CA, Miller WH, Al-Benna S et al (2005) Corcoran lecture. Cardiovascular genomics and oxidative stress. Hypertension 45:636–642PubMedCrossRefGoogle Scholar
  117. 117.
    Baker AH (2002) Development and use of gene transfer for treatment of cardiovascular disease. J Card Surg 17:543–548PubMedCrossRefGoogle Scholar
  118. 118.
    Work LM, Nicklin SA, Baker AH (2003) Targeting gene therapy vectors to the vascular endothelium. Curr Atheroscler Rep 5:163–170PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Branislav Rovcanin
    • 1
  1. 1.Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations