Advertisement

Oxidative Stress and Cardiovascular Risk and Prevention in Children and Adolescents

  • Francesca Mastorci
  • Irene Traghella
  • Laura Sabatino
  • Alessandro Pingitore
  • Rudina Ndreu
  • Cristina VassalleEmail author
Chapter

Abstract

The process of atherosclerosis may begin early in lifetime and develop for decades, until leading to manifest cardiovascular disease (CVD).

Efforts for early identification and management of predisposing factors for CVD for primordial and primary prevention, sustaining the “ideal cardiovascular health”, must start early in life.

Oxidative stress is among the first signs of endothelial activation and cardiometabolic alterations, and might serve in future as an early tool to predict risk of developing cardiometabolic and lifestyle-related diseases in childhood and adolescence and later in adulthood.

This review aims to discuss available data on all these aspects, with particular emphasis on the relationship between cardiometabolic risk and oxidative stress in children and adolescents.

Keywords

Cardiometabolic risk Oxidative stress Inflammation Primordial prevention Primary prevention Cardiovascular health 

References

  1. 1.
    Chung RJ, Touloumtzis C, Gooding H (2015) Staying young at heart: cardiovascular disease prevention in adolescents and young adults. Curr Treat Options Cardiovasc Med 17:61CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kelishadi R, Poursafa P (2014) A review on the genetic, environmental, and lifestyle aspects of the early-life origins of cardiovascular disease. Curr Probl Pediatr Adolesc Health Care 44:54–72CrossRefGoogle Scholar
  3. 3.
    Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff DC Jr, Hayman LL, Lloyd-Jones D, Pandey DK, Sanchez EJ, Schram AP, Whitsel LP, American Heart Association Advocacy Coordinating Committee, Council on Cardiovascular Disease in the Young, Council on the Kidney in Cardiovascular Disease, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Clinical Cardiology, and Stroke Council (2011) Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association. Circulation 124:967–990CrossRefGoogle Scholar
  4. 4.
    Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc Pharmacol 100:1–19CrossRefGoogle Scholar
  5. 5.
    Graham P (2004) The end of adolescence. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    Pahkala K, Hietalampi H, Laitinen TT, Viikari JS, Rönnemaa T, Niinikoski H, Lagström H, Talvia S, Jula A, Heinonen OJ, Juonala M, Simell O, Raitakari OT (2013) Ideal cardiovascular health in adolescence: effect of lifestyle intervention and association with vascular intima-media thickness and elasticity (the Special Turku Coronary Risk Factor Intervention Project for Children [STRIP] study). Circulation 127:2088e96CrossRefGoogle Scholar
  7. 7.
    Laitinen TT, Ruohonen S, Juonala M, Magnussen CG, Mikkilä V, Mikola H, Hutri-Kähönen N, Laitinen T, Tossavainen P, Jokinen E, Niinikoski H, Jula A, Viikari JS, Rönnemaa T, Raitakari O, Pahkala K (2017) Ideal cardiovascular health in childhood longitudinal associations with cardiac structure and function: the Special Turku Coronary Risk Factor Intervention Project (STRIP) and the Cardiovascular Risk in Young Finns Study (YFS). Int J Cardiol 230:304e9CrossRefGoogle Scholar
  8. 8.
    Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults: the Bogalusa Heart Study. N Engl J Med 338:1650–1656.  https://doi.org/10.1056/NEJM199806043382302CrossRefPubMedGoogle Scholar
  9. 9.
    Barker DJP (1995) Fetal origins of coronary heart disease. BMJ 311:171–174CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Berenson GS, Srinivasan SR (2010) Cardiovascular risk in young persons: secondary or primordial prevention? Ann Intern Med 153:202–203CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lapinleimu H, Viikari J, Jokinen E, Salo P, Routi T, Leino A, Rönnemaa T, Seppänen R, Välimäki I, Simell O (1995) Prospective randomized trial in 1,062 infants of diet low in saturated fat and cholesterol. Lancet 345:471–476CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Berenson GS, Wattigney WA, Tracy RE, Newman WP 3rd, Srinivasan SR, Webber LS, Dalferes ER Jr, Strong JP (1992) Atherosclerosis of the aorta and coronary arteries and cardiovascular risk factors in persons aged 6 to 30 years and studied at necropsy (the Bogalusa Heart Study). Am J Cardiol 70:851–858CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Taylor SE, Way BM, Seeman TE (2011) Early adversity and adult health outcomes. Dev Psychopathol 23:939–954.  https://doi.org/10.1017/S0954579411000411CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Appleton AA, Buka SL, Loucks EB, Rimm EB, Martin LT, Kubzansky LD (2013) A prospective study of positive early-life psychosocial factors and favorable cardiovascular risk in adulthood. Circulation 127:905–912CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pulkki-Råback L, Elovainio M, Hakulinen C, Lipsanen J, Hintsanen M, Jokela M, Kubzansky LD, Hintsa T, Serlachius A, Laitinen TT, Pahkala K, Mikkilä V, Nevalainen J, Hutri-Kähönen N, Juonala M, Viikari J, Raitakari OT, Keltikangas-Järvinen L (2015) Cumulative effect of psychosocial factors in youth on ideal cardiovascular health in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation 131:245–253CrossRefGoogle Scholar
  16. 16.
    Futterman LG, Lemberg L (1998) Fifty percent of patients with coronary artery disease do not have any of the conventional risk factors. Am J Crit Care 7:240–244PubMedGoogle Scholar
  17. 17.
    Pedersen SS, von Känel R, Tully PJ, Denollet J (2017) Psychosocial perspectives in cardiovascular disease. Eur J Prev Cardiol 24:108–115CrossRefGoogle Scholar
  18. 18.
    Patton GC, Bond L, Carlin JB, Thomas L, Butler H, Glover S, Catalano R, Bowes G (2006) Promoting social inclusion in schools: a group-randomized trial of effects on student health risk behavior and well-being. Am J Public Health 96:1582–1587CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    O’Neil A, Scovelle AJ, Milner AJ, Kavanagh A (2018) Gender/sex as a social determinant of cardiovascular risk. Circulation 137:854–864CrossRefGoogle Scholar
  20. 20.
    Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mastorci F, Vassalle C, Chatzianagnostou K, Marabotti C, Siddiqui K, Eba AO, Mhamed SAS, Bandopadhyay A, Nazzaro MS, Passera M, Pingitore A (2017) Undernutrition and overnutrition burden for diseases in developing countries: the role of oxidative stress biomarkers to assess disease risk and interventional strategies. Antioxidants 6:41CrossRefGoogle Scholar
  23. 23.
    Ho E, Galougahi KK, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Codoñer-Franch P, Valls-Bellés V, Arilla-Codoñer A, Alonso-Iglesias E (2011) Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. Transl Res 158:369–384CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Montero D, Walther G, Perez-Martin A, Roche E, Vinet A (2012) Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention. Obes Rev 13:441–455CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McCrindle BW (2015) Cardiovascular consequences of childhood obesity. Can J Cardiol 31:124–130CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang LX, Filipp SL, Urbina EM, Gurka MJ, DeBoer MD (2018) Longitudinal associations of metabolic syndrome severity between childhood and young adulthood: the Bogalusa Heart Study. Metab Syndr Relat Disord 16:208–214CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    De Giuseppe R, Cossellu G, Vigna L, Dicorato F, De Vita C, Venturelli G, Bamonti F, Maiavacca R, Farronato G (2015) Correlation between salivary and serum oxidized LDL levels: a pilot study on overweight/obese subjects. J Oral Pathol Med 44:884–887CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Soukup M, Biesiada I, Henderson A, Idowu B, Rodeback D, Ridpath L, Bridges EG, Nazar AM, Bridges KG (2012) Salivary uric acid as a noninvasive biomarker of metabolic syndrome. Diabetol Metab Syndr 4:14CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Meagher EA, FitzGerald GA (2000) Indices of lipid peroxidation in vivo: strengths and limitations. Free Radic Biol Med 28:1745–1750CrossRefGoogle Scholar
  31. 31.
    Musiek ES, Yin H, Milne GL, Morrow JD (2005) Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids 40:987–994CrossRefGoogle Scholar
  32. 32.
    Tsimikas S (2006) Oxidized low-density lipoprotein biomarkers in atherosclerosis. Curr Atheroscler Rep 8:55–61CrossRefGoogle Scholar
  33. 33.
    Mertens A, Holvoet P (2001) Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 15:2073–2084CrossRefGoogle Scholar
  34. 34.
    Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31:916–922CrossRefGoogle Scholar
  35. 35.
    Neufeld EJ, Mietus-Snyder M, Beiser AS, Baker AL, Newburger JW (1997) Passive cigarette smoking and reduced HDL cholesterol levels in children with high-risk lipid profiles. Circulation 96:1403–1407CrossRefGoogle Scholar
  36. 36.
    Loffredo L, Zicari AM, Occasi F, Perri L, Carnevale R, Angelico F, Del Ben M, Martino F, Nocella C, De Castro G, Cammisotto V, Battaglia S, Duse M, Violi F (2018) Role of NADPH oxidase-2 and oxidative stress in children exposed to passive smoking. Thorax. pii: thoraxjnl-2017-211293Google Scholar
  37. 37.
    Kahraman FU, Torun E, Osmanoğlu NK, Oruçlu S, Özer ÖF (2017) Serum oxidative stress parameters and paraoxonase-1 in children and adolescents exposed to passive smoking. Pediatr Int 59(1):68–73CrossRefGoogle Scholar
  38. 38.
    Kosecik M, Erel O, Sevinc E, Selek S (2005) Increased oxidative stress in children exposed to passive smoking. Int J Cardiol 100:61–64CrossRefGoogle Scholar
  39. 39.
    Stephensen CB, Marquis GS, Douglas SD, Wilson CM (2005) Immune activation and oxidative damage in HIV-positive and HIV-negative adolescents. J Acquir Immune Defic Syndr 38:180–190CrossRefGoogle Scholar
  40. 40.
    Messner B, Bernhard D (2014) Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 34:509–515CrossRefGoogle Scholar
  41. 41.
    Bibiloni Mdel M, Pich J, Córdova A, Pons A, Tur JA (2012) Association between sedentary behaviour and socioeconomic factors, diet and lifestyle among the Balearic Islands adolescents. BMC Public Health 12:718CrossRefGoogle Scholar
  42. 42.
    Dennis BA, Ergul A, Gower BA, Allison JD, Davis CL (2013) Oxidative stress and cardiovascular risk in overweight children in an exercise intervention program. Child Obes 9:15–21CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Llorente-Cantarero FJ, Gil-Campos M, Benitez-Sillero JD, Muñoz-Villanueva MC, Túnez I, Pérez-Navero JL (2012) Prepubertal children with suitable fitness and physical activity present reduced risk of oxidative stress. Free Radic Biol Med 53:415–420CrossRefGoogle Scholar
  44. 44.
    Mager DR, Patterson C, So S, Rogenstein CD, Wykes LJ, Roberts EA (2010) Dietary and physical activity patterns in children with fatty liver. Eur J Clin Nutr 64:628–635CrossRefGoogle Scholar
  45. 45.
    Liu M, Timmons BW (2016) The effect of acute exercise on neutrophil reactive oxygen species production and inflammatory markers in healthy prepubertal and adult males. Pediatr Exerc Sci 28:55–63CrossRefGoogle Scholar
  46. 46.
    Van Horn L, Obarzanek E, Barton BA, Stevens VJ, Kwiterovich PO Jr, Lasser NL, Robson AM, Franklin FA Jr, Lauer RM, Kimm SY, Dorgan JF, Greenlick MR (2003) A summary of results of the Dietary Intervention Study in Children (DISC): lessons learned. Prog Cardiovasc Nurs 18:28–41CrossRefGoogle Scholar
  47. 47.
    Mohn A, Catino M, Capanna R, Giannini C, Marcovecchio M, Chiarelli F (2005) Increased oxidative stress in prepubertal severely obese children: effect of a dietary restriction-weight loss program. J Clin Endocrinol Metab 90:2653–2658CrossRefGoogle Scholar
  48. 48.
    Avloniti A, Chatzinikolaou A, Deli CK, Vlachopoulos D, Gracia-Marco L, Leontsini D, Draganidis D, Jamurtas AZ, Mastorakos G, Fatouros IG (2017) Exercise-induced oxidative stress responses in the pediatric population. Antioxidants (Basel) 6:6CrossRefGoogle Scholar
  49. 49.
    Zalavras A, Fatouros IG, Deli CK, Draganidis D, Theodorou AA, Soulas D, Koutsioras Y, Koutedakis Y, Jamurtas AZ (2015) Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle. Oxidative Med Cell Longev 2015:283921CrossRefGoogle Scholar
  50. 50.
    Roberts CK, Chen AK, Barnard RJ (2007) Effect of a short-term diet and exercise intervention in youth on atherosclerotic risk factors. Atherosclerosis 191:98–106CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kelishadi R, Hashemi M, Mohammadifard N, Asgary S, Khavarian N (2008) Association of changes in oxidative and proinflammatory states with changes in vascular function after a lifestyle modification trial among obese children. Clin Chem 54:147–153CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Li C, Feng F, Xiong X, Li R, Chen N (2017) Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity. J Sports Sci 35:663–668CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rothermel J, Reinehr T (2016) Metabolic alterations in paediatric GH deficiency. Best Pract Res Clin Endocrinol Metab 30:757–770CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sadowska-Krępa E, Kłapcińska B, Jagsz S, Nowara A, Szołtysek-Bołdys I, Chalimoniuk M, Langfort J, Chrapusta SJ (2017) High-dose testosterone enanthate supplementation boosts oxidative stress, but exerts little effect on the antioxidant barrier in sedentary adolescent male rat liver. Pharmacol Rep 69:673–678CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Patel R, Shah G (2018) High-fat diet exposure from pre-pubertal age induces polycystic ovary syndrome (PCOS) in rats. Reproduction 155:141–151CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Suzuki K, Takahashi M, Li CY, Lin SP, Tomari M, Shing CM, Fang SH (2015) The acute effects of green tea and carbohydrate coingestion on systemic inflammation and oxidative stress during sprint cycling. Appl Physiol Nutr Metab 40:997–1003CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Paltoglou G, Fatouros IG, Valsamakis G, Schoina M, Avloniti A, Chatzinikolaou A, Kambas A, Draganidis D, Mantzou A, Papagianni M, Kanaka-Gantenbein C, Chrousos GP, Mastorakos G (2015) Antioxidation improves in puberty in normal weight and obese boys, in positive association with exercise-stimulated growth hormone secretion. Pediatr Res 78:158–164CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Paltoglou G, Schoina M, Valsamakis G, Salakos N, Avloniti A, Chatzinikolaou A, Margeli A, Skevaki C, Papagianni M, Kanaka-Gantenbein C, Papassotiriou I, Chrousos GP, Fatouros IG, Mastorakos G (2017) Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55:925–933CrossRefGoogle Scholar
  59. 59.
    Deng Y, Chang S (2007) Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Investig 87:1071–1076CrossRefGoogle Scholar
  60. 60.
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868CrossRefGoogle Scholar
  61. 61.
    Gordon-Dseagu VLZ, Shelton N, Mindell JS (2013) Epidemiological evidence of a relationship between Type-1 diabetes mellitus and cancer: a review of the existing literature. Int J Cancer 132:501–508CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Longhese MP (2008) DNA damage response at functional and dysfunctional telomeres. Genes Dev 22:125–140CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kjaer TW, Faurholt-Jepsen D, Mehta KM, Christensen VB, Epel E, Lin J, Blackburn E, Wojcicki JM (2018) Shorter preschool, leukocyte telomere length is associated with obesity at age 9 in Latino children. Clin Obes 8:88–94CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Brouilette SW, Moore JS, AD MM, Thompson JR, Ford I, Shepherd J, Packard CJ, Samani NJ, West of Scotland Coronary Prevention Study Group (2007) Telomere length, risk of coronary heart disease, and statin treatment in the west of Scotland primary prevention study: a nested case-control study. Lancet 369:107–114CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Buxton JL, Walters RG, Visvikis-Siest S, Meyre D, Froguel P, Blakemore JAIF (2011) Childhood obesity is associated with shorter leukocyte telomere length. Clin Endocrinol Metab 96:1500–1505CrossRefGoogle Scholar
  66. 66.
    ChenW GJP, Kimura M, Brimacombe M, Cao X, Srinivasan SR, Berenson GS, Aviv A (2009) Leukocyte telomere length is associated with HDL cholesterol levels: the Bogalusa Heart Study. Atherosclerosis 205:620–625CrossRefGoogle Scholar
  67. 67.
    Walton RT, Mudway IS, Dundas I, Marlin N, Koh LC, Aitlhadj L, Vulliamy T, Jamaludin JB, Wood HE, Barratt BM, Beevers S, Dajnak D, Sheikh A, Kelly FJ, Griffiths CJ, Grigg J (2016) Air pollution, ethnicity and telomere length in east London schoolchildren: an observational study. Environ Int 96:41–47CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zalata A, Yahia S, El-Bakary A, Elsheikha HM (2007) Increased DNA damage in children caused by passive smoking as assessed by comet assay and oxidative stress. Mutat Res 629:140–147CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tice RR, Agurell E, Anderson D, Burlison B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J-C, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and an in vivo genetic toxicological testing. Environ Mol Mutagen 35:206–222CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Francesca Mastorci
    • 1
  • Irene Traghella
    • 2
  • Laura Sabatino
    • 1
  • Alessandro Pingitore
    • 1
  • Rudina Ndreu
    • 1
  • Cristina Vassalle
    • 1
    • 2
    Email author
  1. 1.Istituto di Fisiologia Clinica, CNRPisaItaly
  2. 2.Fondazione CNR-Regione Toscana G. MonasterioPisaItaly

Personalised recommendations