Advertisement

Invasive Species and Their Impact on Tropical Forests of Central India: A Review

  • Javid Ahmad Dar
  • K Subashree
  • Somaiah Sundarapandian
  • Purabi Saikia
  • Amit Kumar
  • P. K. Khare
  • S. Dayanandan
  • Mohammed Latif KhanEmail author
Chapter

Abstract

Tropical forests are the richest biodiversity hotspots and are under immense natural and anthropogenic pressures that lead to biodiversity loss. One such cause is alien plant invasion that alters the native forest stand structure and composition and disrupts the vital ecosystem functions. Central India, which mainly spans across the three states, viz. Madhya Pradesh, Chhattisgarh and some parts of Maharashtra, is well-known for its sprawling tropical deciduous forests, which are also no less immune to the present-day pressures, including the plant invasion. Alien invasive plants arrive via several pathways and possess unique traits that help them to surpass the barriers in the new habitats, where many influential factors might operate upon them. Once established, they may profoundly impact the invaded ecosystem. Most of the studies from Central India have been focused on floristics, forest structure, impact of disturbances, etc., and relatively few studies have addressed plant invasion. Overall, there are 179 invasive taxa in Central India, mostly from the Asteraceae (17.3%) and Fabaceae (14.5%) families. Majority of them are from Tropical America (52%), and most are herbs (69%). An outline of the most common top ten Central Indian invaders has been presented. Climate change might influence invasive plants, and constant monitoring and modelling is required to understand invasive species dynamics for effective management. Invasive alien species are to be tended with extreme caution and smart and novel approaches of putting them to use might help in better management for controlling them. This review will also provide a conceptual basis for improving our general understanding on invasive species and their impact on tropical forest ecosystems.

Keywords

Alien species Plant invasion Introduction pathway Native habitats Climate change Management 

Notes

Acknowledgement

We thank the anonymous reviewers for their constructive comments on a previous version of this review. The first author is thankful to Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, for funding under National Post-Doctoral Fellowship Scheme (Ref. No.: PDF/2015/000447).

References

  1. Adams VM, Petty AM, Douglas MM, Buckley YM, Ferdinands KB, Okazaki T, Ko DW, Setterfield SA (2015) Distribution demography and dispersal model of spatial spread of invasive plant populations with limited data. Method Ecol Evol 6(7):782–794CrossRefGoogle Scholar
  2. Adhikari D, Tiwary R, Barik SK (2015) Modelling hotspots for invasive alien plants in India. PLoS One 10(7):pe0134665CrossRefGoogle Scholar
  3. Agarwala M, DeFries RS, Qureshi Q, Jhala YV (2016a) Factors associated with long-term species composition in dry tropical forests of Central India. Environ Res Lett 11(10):p105008CrossRefGoogle Scholar
  4. Agarwala M, DeFries RS, Qureshi Q, Jhala YV (2016b) Changes in the dry tropical forests in Central India with human use. Reg Environ Change 16(1):5–15CrossRefGoogle Scholar
  5. Albrecht M, Padrón B, Bartomeus I, Traveset A (2014) Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. P Roy Soc Lond B Biol 281(1788):p20140773CrossRefGoogle Scholar
  6. Albrecht M, Ramis MR, Traveset A (2016) Pollinator-mediated impacts of alien invasive plants on the pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. Biol Invasions 18(7):1801–1812CrossRefGoogle Scholar
  7. Alemayehu K, Desalegn T (2016) Antibiotic effects of Argemone mexicana (Papaveraceae) against field crops and pathogens causing mastitis in dairy cattle in three districts of Amhara region Ethiopia. J Adv Biol Biotech 5(1):1–9CrossRefGoogle Scholar
  8. Allen JM, Bradley BA (2016) Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. Biol Cons 203:306–312CrossRefGoogle Scholar
  9. Anonymous (2014) MoEF (Ministry of Environment Forests and Climate Change Government of India). Ecosystems Service Improvement Project (GEF Assisted) Environment and Social Management Framework and Tribal Development Plan, p 1–98Google Scholar
  10. Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15(4):263–1272CrossRefGoogle Scholar
  11. Aslan C, Rejmanek M (2012) Native fruit traits may mediate dispersal competition between native and non-native plants. NeoBiota 12:1–24CrossRefGoogle Scholar
  12. Aung T, Koike F (2015) Identification of invasion status using a habitat invasibility assessment model: the case of Prosopis species in the dry zone of Myanmar. J Arid Environ 120:87–94CrossRefGoogle Scholar
  13. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plants: from genes to invasion. Science 301:1377–1380PubMedCrossRefGoogle Scholar
  14. Baker HG (1955) Self-compatibility and establishment after long distance dispersal. Evolution 9:347–349Google Scholar
  15. Banerjee AK, Dewanji A (2017a) Native exotic relationships in plant communities: the role of exotic dominance in framing community composition. Ecol Res 32(5):653–665CrossRefGoogle Scholar
  16. Banerjee AK, Dewanji A (2017b) Role of intraspecific trait plasticity in Mikania micrantha Kunth growth and impact of its abundance on community composition. J Asia-Pac Biodiv 10(2):237–249Google Scholar
  17. Blackburn TM, Lockwood JL, Cassey P (2009) Avian invasions: the ecology and evolution of exotic birds, vol 1. Oxford University Press, OxfordCrossRefGoogle Scholar
  18. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JR, Richardson DM (2011) A proposed unified framework for Biological Invasions. Trends Ecol Evol 26(7):333–339PubMedCrossRefGoogle Scholar
  19. Blumenthal D (2005) Interrelated causes of plant invasion. Science 310(5746):243–244PubMedCrossRefGoogle Scholar
  20. Bongard C (2012) A review of the influence of root-associating fungi and root exudates on the success of invasive plants. NeoBiota 14:21–45CrossRefGoogle Scholar
  21. Bradley BA, Oppenheimer M, Wilcove DS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15(6):1511–1521CrossRefGoogle Scholar
  22. Bradley BA, Wilcove DS, Oppenheimer M (2010) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12(6):1855–1872CrossRefGoogle Scholar
  23. Bruckman D, Campbell DR (2016) Timing of invasive pollen deposition influences pollen tube growth and seed set in a native plant. Biol Invasions 18(6):1701–1711CrossRefGoogle Scholar
  24. Buckley YM (2017) Invasion ecology: Unpredictable arms race in a jam jar. Nature Ecol Evol 1:p0028Google Scholar
  25. Burns JH (2006) Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae. Ecol Appl 16(4):1367–1376PubMedCrossRefGoogle Scholar
  26. Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97(3):449–458CrossRefGoogle Scholar
  27. CABI’s Invasive Species Compendium, http://wwwcabiorg/isc/Google Scholar
  28. Cabra-Rivas I, Saldaña A, Castro-Díez P, Gallien L (2016) A multi-scale approach to identify invasion drivers and invaders’ future dynamics. Biol Invasions 18(2):411–426CrossRefGoogle Scholar
  29. Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290(5491):521–523PubMedCrossRefGoogle Scholar
  30. Caplat P, Nathan R, Buckley YM (2012) Seed terminal velocity wind turbulence and demography drive the spread of an invasive tree in an analytical model. Ecology 93(2):368–377PubMedCrossRefGoogle Scholar
  31. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers distributions 15(1):22–40CrossRefGoogle Scholar
  32. Catford JA, Baumgartner JB, Vesk PA, White M, Buckley YM, McCarthy MA (2016) Disentangling the four demographic dimensions of species invasiveness. J Ecol 104(6):1745–1758CrossRefGoogle Scholar
  33. Champion SH, Seth SK (1968) A revised survey of the forest types of India. Government of India Publication, New DelhiGoogle Scholar
  34. Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC (2000) Consequences of changing biodiversity. Nature 405(6783):234–242PubMedCrossRefGoogle Scholar
  35. Chatterjee R (2015) Impact of Lantana camara in the Indian society. Int J Environ 4(2):348–354CrossRefGoogle Scholar
  36. Chaubey OP, Sharma A, Krishnamurthy G (2015) Plant diversity edaphic status and population structure in different forest types of Madhya Pradesh and Chhattisgarh states in India. Int J Biosci Biotech 7(2):115–124Google Scholar
  37. Chauhan MS, Sharma A, Phartiyal B, Kumar K (2013) Holocene vegetation and climatic variations in central India: a study based on multiproxy evidences. J Asian Earth Sci 77:45–58CrossRefGoogle Scholar
  38. Chen BM, Li S, Liao HX, Peng SL (2017) Do forest soil microbes have the potential to resist plant invasion? A case study in Dinghushan Biosphere Reserve (South China). Acta Oecol 81:1–9CrossRefGoogle Scholar
  39. Chhattisgarh Forest Department, http://wwwcgforestcom/English/IntroductionhtmGoogle Scholar
  40. Chikuruwo C, Masocha M, Murwira A, Ndaimani H (2017) Predicting the suitable habitat of the invasive Xanthium strumarium L in southeastern Zimbabwe. Appl Ecol Environ Res 15(1):17–32CrossRefGoogle Scholar
  41. Clout MN, Williams PA (2009) Invasive species management: A handbook of principles and techniques. Oxford University Press, OxfordGoogle Scholar
  42. Colautti RI, Bailey SA, Van Overdijk CD, Amundsen K, MacIsaac HJ (2006) Characterised and projected costs of nonindigenous species in Canada. Biol Invasions 8(1):45–59CrossRefGoogle Scholar
  43. Colautti R, Parker JD, Cadotte MW, Pyšek P, Brown CS, Sax D, Richardson D (2014) Quantifying the invasiveness of species. NeoBiota 21:7–27CrossRefGoogle Scholar
  44. Courchamp F, Fournier A, Bellard C, Bertelsmeier C, Bonnaud E, Jeschke JM, Russell JC (2017) Invasion biology: Specific problems and possible solutions. Trends Ecol Evol 32(1):13–22PubMedCrossRefGoogle Scholar
  45. Crooks JA (2005) Lag times and exotic species: the ecology and management of Biological Invasions in slow-motion. Ecoscience 12(3):316–329CrossRefGoogle Scholar
  46. Csecserits A, Botta-Dukát Z, Kröel-Dulay G, Lhotsky B, Ónodi G, Rédei T, Szitár K, Halassy M (2016) Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric Ecosyst Environ 226:88–98CrossRefGoogle Scholar
  47. Daehler CC (1998) The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biol Cons 84(2):167–180CrossRefGoogle Scholar
  48. D’Antonio CM, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10(4):703–713CrossRefGoogle Scholar
  49. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses the grass/fire cycle and global change. Ann Rev Ecol Syst 23(1):63–87CrossRefGoogle Scholar
  50. Darwin C (1859) On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. John Murray LondonGoogle Scholar
  51. Das M, Khanna SK (1997) Clinicoepidemiological, toxicological and safety evaluation studies on argemone oil. Crit Rev Toxicol 27(3):273–297PubMedCrossRefGoogle Scholar
  52. Dawson W, Moser D, van Kleunen M, Kreft H, Pergl J, Pysek P, Weigelt P, Winter M, Lenzner B, Blackburn TM, Dyer EE, Cassey P, Scrivens SL, Economo EP, Guénard B, Capinha C, Seebens H, García-Díaz P, Nentwig W, García-Berthou E, Casal C, Mandrak NE, Fuller P, Meyeer C, Essl F (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecol Evol 1:0186CrossRefGoogle Scholar
  53. Day M (2012) Mikania micrantha Kunth: mile-a-minute Biological Control of weeds in Australia, pp 368–372Google Scholar
  54. Delivering Alien Invasive Species Inventories for Europe (DAISIE), http://wwweurope-aliensorg/Google Scholar
  55. Deshmukh UB, Shende MB, Rathor OS (2015) Invasive Alien angiospermic plants from Chamorshi Tahsil of Gadchiroli District of Maharashtra, India. Int Res J Biol Sci 4(12):40–45Google Scholar
  56. Dhileepan K, Senaratne KADW (2009) How widespread is Parthenium hysterophorus and its biological control agent Zygogramma bicolorata in South Asia? Weed Res 49(6):557–562CrossRefGoogle Scholar
  57. Dickie I, Bennett B, Burrows L, Nuñez M, Peltzer D, Porté A, Richardson DM, Rejmánek M, Rundel P, van Wilgen B (2014) Conflicting values: ecosystem services and invasive tree management. Biol Invasions 16:705–719CrossRefGoogle Scholar
  58. Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20(9):470–474PubMedCrossRefGoogle Scholar
  59. Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol Invasions 14(9):1765–1778CrossRefGoogle Scholar
  60. Dzikiti S, Ntshidi Z, Le Maitre DC, Bugan RDH, Mazvimavi D, Schachtschneider K, Jovanovic NZ, Pienaar HH (2017) Assessing water use by Prosopis invasions and Vachellia karroo trees: Implications for groundwater recovery following alien plant removal in an arid catchment in South Africa. Forest Ecol Manag 398:153–163CrossRefGoogle Scholar
  61. Earth’s CO2 https://wwwco2earth/Google Scholar
  62. Egawa C (2017) Wind dispersal of alien plant species into remnant natural vegetation from adjacent agricultural fields. Global Ecol Cons 11:33–41Google Scholar
  63. Ehler LE (1998) Invasion Biology and Biological Control. Biol Control 13(2):127–133CrossRefGoogle Scholar
  64. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97(13):7043–7050PubMedCrossRefGoogle Scholar
  65. Elton CS (1958) The ecology of invasions by animals and plants. Metheun, LondonCrossRefGoogle Scholar
  66. Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilà M (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci 108(1):203–207PubMedCrossRefGoogle Scholar
  67. Essl F, Bacher S, Blackburn TM, Booy O, Brundu G, Brunel S, Cardoso AC, Eschen R, Gallardo B, Galil B, García-Berthou E (2015) Crossing frontiers in tackling pathways of Biological Invasions. BioScience 65(8):769–782CrossRefGoogle Scholar
  68. European Alien Species Information Network (EASIN), https://easinjrceceuropaeu/Google Scholar
  69. Ewel JJ (1977) Differences between wet and dry successional tropical ecosystems. Geo Eco Trop 1(2):103–117Google Scholar
  70. Feng YL, Fu GL, Zheng YL (2008) Specific leaf area relates to the differences in leaf construction cost photosynthesis nitrogen allocation and use efficiencies between invasive and noninvasive alien congeners. Planta 228(3):383–390PubMedCrossRefGoogle Scholar
  71. Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19(4) pp474-499CrossRefGoogle Scholar
  72. Frehse FDA, Braga RR, Nocera GA, Vitule JRS (2016) Non-native species and invasion biology in a megadiverse country: scientometric analysis and ecological interactions in Brazil. Biol Invasions 18(12):3713–3725CrossRefGoogle Scholar
  73. Frezina NCA (2013) Assessment and utilization of water hyacinth in the water bodies of Tamil Nadu. Int J Sci Res Rev 2(1):58–77Google Scholar
  74. FSI (2011) India State of Forest Report. Forest Survey of India, DehradunGoogle Scholar
  75. FSI (2015) India State of Forest Report. Forest Survey of India, DehradunGoogle Scholar
  76. Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23(12):695–703PubMedCrossRefGoogle Scholar
  77. Gaertner M, Nottebrock H, Fourie H, Privett SD, Richardson DM (2012) Plant invasions restoration and economics: perspectives from South African fynbos. Perspect Plant Ecol 14(5):341–353CrossRefGoogle Scholar
  78. Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distributions 16(3):331–342CrossRefGoogle Scholar
  79. Ghazoul J, Sheil D (2010) Tropical rain forest ecology diversity and conservation. Oxford University PressGoogle Scholar
  80. Global Invasive Alien Species Information Partnership Gateway, http://giasipartnershipmyspeciesinfo/enGoogle Scholar
  81. Global Invasive Species Database (2017a) Species profile: Lantana camara http://wwwiucngisdorg/gisd/speciesname/Lantana+camaraGoogle Scholar
  82. Global Invasive Species Database (2017b), Species profile: Ageratum conyzoides http://wwwiucngisdorg/gisd/speciesname/Ageratum%20conyzoidesGoogle Scholar
  83. Global Invasive Species Database (GISD), http://wwwiucngisdorg/gisd/Google Scholar
  84. Global Naturalized Alien Flora (GloNAF), https://glonaforg/Google Scholar
  85. Global Register of Introduced and Invasive Species (GRIIS), http://wwwgriisorg/Google Scholar
  86. Golivets M (2014) Ecological and biological determination of invasion success of non-native plant species in urban woodlands with special regard to short-lived monocarps. Urban Ecosyst 17(1):291–303CrossRefGoogle Scholar
  87. Gooden B, French K, Turner PJ (2009) Invasion and management of a woody plant Lantana camara L alters vegetation diversity within wet sclerophyll forest in southeastern Australia. Forest Ecol Manag 257(3):960–967CrossRefGoogle Scholar
  88. Gordon DR (1998) Effects of invasive non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8(4):975–989CrossRefGoogle Scholar
  89. Government of Madhya Pradesh, http://wwwmpgovin/en/web/guest/forestGoogle Scholar
  90. Gray DR (2017) Climate change can reduce the risk of biological invasion by reducing propagule size. Biol Invasions 19(3):913–923CrossRefGoogle Scholar
  91. Gray AJ, Mack RN, Harper JL, Usher MB, Joysey K, Kornberg H (1986) Do invading species have definable genetic characteristics? Philos Trans R Soc Lond B Biol Sci 314(1167):655–674CrossRefGoogle Scholar
  92. Great Britain’s Non-Native Species Information Portal (GBNNSIP), http://wwwnonnativespeciesorg/factsheet/Google Scholar
  93. Groves RH, Lonsdale M, Boden R (2005) Jumping the garden fence: invasive garden plants in Australia and their environmental and agricultural impacts. WWF-Australia UltimoGoogle Scholar
  94. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009CrossRefGoogle Scholar
  95. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2):147–186CrossRefGoogle Scholar
  96. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16(12):1424–1435PubMedPubMedCentralCrossRefGoogle Scholar
  97. Haeuser E, Dawson W, van Kleunen M (2017) The effects of climate warming and disturbance on the colonization potential of ornamental alien plant species. J Eecol https://doi.org/101111/1365-274512798Google Scholar
  98. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Cons Biol 22(3):534–543CrossRefGoogle Scholar
  99. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93(1):5–15CrossRefGoogle Scholar
  100. Hiremath AJ, Sundaram B (2005) The fire-lantana cycle hypothesis in Indian forests. Cons Soc 3(1):26–42Google Scholar
  101. Hiremath AJ, Sundaram B (2013) Invasive plant species in Indian protected areas: conserving biodiversity in cultural landscapes. In: Foxcroft L, Pyšek P, Richardson D, Genovesi P (eds) Plant invasions in protected areas. Invading Nature – Springer series in invasion ecology, vol 7. Springer, Dordrecht, pp 241–266Google Scholar
  102. Hobbs RJ (1989) The nature and effects of disturbance relative to invasions. Biological Invasions: a global perspective. In: Drake JA, Mooney HA, Di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson M (eds) Biological invasions: A global perspective. John Wiley and Sons, New York, pp 389–405Google Scholar
  103. Holm LG, Pancho JV, Herberger JP, Plucknett DL (1979) A geographical atlas of world weeds. Wiley, New YorkGoogle Scholar
  104. Holm LG, Pancho JV, Herberger JP, Plucknett DL (1991) A geographical atlas of world weeds. In: Krieger Publishing Company. Malabar, FloridaGoogle Scholar
  105. Hui C, Richardson DM, Landi P, Minoarivelo HO, Garnas J, Roy HE (2016) Defining invasiveness and invasibility in ecological networks. Biol Invasions 18(4):971–983CrossRefGoogle Scholar
  106. Hulme PE (2008) Contrasting alien and native plant species–area relationships: the importance of spatial grain and extent. Glob Ecol Biogeogr 17(5):641–647CrossRefGoogle Scholar
  107. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P (2008) Grasping at the routes of Biological Invasions: a framework for integrating pathways into policy. J Appl Ecol 45(2):403–414CrossRefGoogle Scholar
  108. Iannone BV, Potter KM, Guo Q, Liebhold AM, Pijanowski BC, Oswalt CM, Fei S (2016) Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns. Ecography 39(10):961–969CrossRefGoogle Scholar
  109. India Biodiversity Portal, Xanthium strumarium L. Species page https://indiabiodiversityorg/species/show/266687Google Scholar
  110. Invasive Alien Plant Species in India (ENVIS Centre on Floral Diversity), http://wwwbsienvisnicin/Database/Invasive_Alien_species_15896aspxGoogle Scholar
  111. Island Biodiversity and Invasive Species Database (IBIS), http://ibisfosaucklandacnz/page/invasive-speciesaspxGoogle Scholar
  112. Ismail BS, Mah LS (1993) Effects of Mikania micrantha HBK on germination and growth of weed species. Plant Soil 157(1):107–113Google Scholar
  113. Janzen DH (1988a) Management of habitat fragments in a tropical dry forest: growth. Ann Mo Bot Gard 75(1):105–116CrossRefGoogle Scholar
  114. Janzen DH (1988b) Tropical dry forests: The most endangered major tropical ecosystem. In: Wilson EO, Peters FM (eds) Biodiversity. National Academy Press, Washington DC, pp 130–144Google Scholar
  115. Jauni M, Hyvönen T (2010) Invasion level of alien plants in semi-natural agricultural habitats in boreal region. Agric Ecosyst Environ 138(1):109–115CrossRefGoogle Scholar
  116. Jeschke J, Aparicio LG, Haider S, Heger T, Lortie C, Pyšek P, Strayer D (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20CrossRefGoogle Scholar
  117. Johnson PT, Olden JD, Solomon CT, Van der Zanden MJ (2009) Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia 159(1):161–170PubMedCrossRefGoogle Scholar
  118. Joshi PK, Kumar M, Paliwal A, Midha N, Dash PP (2009) Assessing impact of industrialization in terms of LULC in a dry tropical region (Chhattisgarh), India using remote sensing data and GIS over a period of 30 years. Environ Monit Assess 149(1):371–376PubMedCrossRefGoogle Scholar
  119. Kamble RB, Hate SD, Chaturvedi A (2013) New additions to the Flora of Nagpur District, Maharashtra. J New Biol Rep 2(1):9–13Google Scholar
  120. Kannan R, Shackleton CM, Shaanker RU (2013) Playing with the forest: invasive alien plants policy and protected areas in India. Curr Sci 104(9):1159–1165Google Scholar
  121. Karlsson LM, Tamado T, Milberg P (2003) Seed dormancy pattern of the annuals Argemone ochroleuca and A. mexicana (Papaveraceae). Flora Morph Distrib Funct Ecol Plants 198(4):329–339CrossRefGoogle Scholar
  122. Katz DS, Ibáñez I (2016) Biotic interactions with natural enemies do not affect potential range expansion of three invasive plants in response to climate change. Biol Invasions 18(11):3351–3363CrossRefGoogle Scholar
  123. Kaur B, Bhatia S, Sharma KK (2014) Diversity and impact of invasive alien plant species of family Asteraceae in Jammu district (Jammu and Kashmir India). Int J Interdis Multidis Stud 1(8):51–62Google Scholar
  124. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17(4):164–170CrossRefGoogle Scholar
  125. Kgope BS, Bond WJ, Midgley GF (2010) Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecol 35(4):451–463CrossRefGoogle Scholar
  126. Khuroo AA, Rashid I, Reshi Z, Dar GH, Wafai BA (2007) The alien flora of Kashmir Himalaya. Biol Invasions 9(3):269–292CrossRefGoogle Scholar
  127. Khuroo AA, Reshi ZA, Malik AH, Weber E, Rashid I, Dar GH (2012) Alien flora of India: taxonomic composition invasion status and biogeographic affiliations. Biol Invasions 14(1):99–113CrossRefGoogle Scholar
  128. Kim CG, Kil J (2016) Alien flora of the Korean Peninsula. Biol Invasions 18(7):1843–1852CrossRefGoogle Scholar
  129. van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cardenas D Cardenas-Toro J, Castano N, Chacon E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Froom QJ, Henderson L, Inderjit, Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu WS, Thomas J, Velayos M, Wieringa JJ, Pysek P (2015) Global exchange and accumulation of non-native plants. Nature 525(7567):100-103PubMedCrossRefGoogle Scholar
  130. Knox J, Jaggi D, Paul MS (2011) Population dynamics of Parthenium hysterophorus (Asteraceae) and its biological suppression through Cassia occidentalis (Caesalpiniaceae). Turk J Bot 35(2):111–119Google Scholar
  131. Kohli RK, Batish DR, Singh HP, Dogra KS (2006) Status invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L Ageratum conyzoides L Lantana camara L) in India. Biol Invasions 8(7):1501–1510CrossRefGoogle Scholar
  132. Kohli RK, Batish DR, Singh JS, Singh HP, Bhatt JR, Singh SP, Tripathi RS (2012) Plant invasion in India: An overview. In: Bhatt JR, Singh JS, Singh SP, Tripathi RS, Kohli RK (eds) Invasive alien plants: An ecological appraisal for the Indian subcontinent. CAB International, pp p1–p9Google Scholar
  133. Kuebbing SE, Nuñez MA (2016) Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nature plants 2:p16134CrossRefGoogle Scholar
  134. Kuebbing SE, Nuñez MA, Simberloff D (2013) Current mismatch between research and conservation efforts: the need to study co-occurring invasive plant species. Biol Cons 160:121–129CrossRefGoogle Scholar
  135. Kueffer C, Kull CA (2017) Non-native species and the aesthetics of nature. In: Vilà M, Hulme P (eds) Impact of biological invasions on ecosystem services. Invading Nature - Springer series in invasion ecology, vol 12. Springer, Cham, pp 311–324Google Scholar
  136. Kueppers LM, Snyder MA, Sloan LC, Zavaleta ES, Fulfrost B (2005) Modeled regional climate change and California endemic oak ranges. Proc Natl Acad Sci USA 102:16281–16286PubMedCrossRefGoogle Scholar
  137. Kull CA, Shackleton CM, Cunningham PJ, Ducatillon C, Dufour-Dror JM, Esler KJ, Friday JB, Gouveia AC, Griffin AR, Marchante E, Midgley SJ, Pauchard A, Rangan H, Richardson DM, Rinaudo T, Tassin J, Urgenson LS, von Maltitz GP, Zenni RD, Zylstra MJ (2011) Adoption use and perception of Australian acacias around the world. Divers distributions 17(5):822–836CrossRefGoogle Scholar
  138. Kumari P, Choudhary AK (2016) Exotic species invasion threats to forests: A case study from the Betla national park, Palamu, Jharkhand, India. Trop Plant Res 3(3):592–599CrossRefGoogle Scholar
  139. Kumari P, Sahu PK, Soni MY, Awasthi P (2014) Impact of Parthenium hysterophorus L invasion on species diversity of cultivated fields of Bilaspur (CG). India. Agric Sci 5(8):754–764Google Scholar
  140. Kushwah RBS, Kumar V (2002) Status of flora in protected areas: the case studies of eight Pas of Madhya Pradesh (India). Ind For 128(3):271–288Google Scholar
  141. Küster EC, Kühn I, Bruelheide H, Klotz S (2008) Trait interactions help explain plant invasion success in the German flora. J Ecol 96(5):860–868CrossRefGoogle Scholar
  142. Lal C, Singh L, Attri V, Sarvade S (2015) Tree species diversity distribution and population structure in a tropical dry deciduous forests of Chhatisgarh India. J Appl Nat Sci 7(2):681–685CrossRefGoogle Scholar
  143. Larson DL, Anderson PJ, Newton W (2001) Alien plant invasion in mixed-grass prairie: effects of vegetation type and anthropogenic disturbance. Ecol Appl 11(1):128–141CrossRefGoogle Scholar
  144. Lerdau M, Whitbeck J, Holbrook NM (1991) Tropical deciduous forest: death of a biome. Trends Ecol Evol 6(7):201–202PubMedCrossRefGoogle Scholar
  145. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26CrossRefGoogle Scholar
  146. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7(10):975–989CrossRefGoogle Scholar
  147. Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519(7542):171–180PubMedCrossRefGoogle Scholar
  148. Li B, Xu B, Chen J (2001) Perspectives on general trends of plant invasions with special reference to alien weed flora of Shanghai. Biodiv Sci 9(4):446–457Google Scholar
  149. Lindemann-Matthies P (2016) Beasts or beauties? Laypersons’ perception of invasive alien plant species in Switzerland and attitudes towards their management. NeoBiota 29:15–33CrossRefGoogle Scholar
  150. Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate Change and the Future of California’s. Endemic Flora PLoS One 3(6):e2502. https://doi.org/101371/journalpone0002502PubMedCrossRefGoogle Scholar
  151. Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers distributions 15(5):904–910CrossRefGoogle Scholar
  152. Lockwood JL, Hoopes MF, Marchetti MP (2013) Invasion ecology. Wiley-Blackwell, West SussexGoogle Scholar
  153. Loo SE, Mac Nally R, O’Dowd DJ, Lake PS (2009) Secondary invasions: implications of riparian restoration for in-stream invasion by an aquatic grass. Restor Ecol 17(3):378–385CrossRefGoogle Scholar
  154. Louman B, DeClerck F, Ellatifi M, Finegan B, Thompson I (2010) Forest biodiversity and ecosystem services: drivers of change responses and challenges. IUFRO (International Union of Forestry Research Organizations) Secretariat 25:95–112Google Scholar
  155. Lugo AE (2013) Novel tropical forests: Nature’s response to global change. Trop Cons Sci Spl Issue 6(3):325–337Google Scholar
  156. MacArthur R (1970) Species packing and competitive equilibrium for many species. Theor Popul Biol 1(1):1–11PubMedCrossRefPubMedCentralGoogle Scholar
  157. MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86(1):42–55CrossRefGoogle Scholar
  158. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes epidemiology global consequences and control. Ecol Appl 10(3):689–710CrossRefGoogle Scholar
  159. Madhya Pradesh Forest Department, http://wwwmpforestorg/foresthtmlGoogle Scholar
  160. Marchante E, Kjøller A, Struwe S, Freitas H (2009) Soil recovery after removal of the N2-fixing invasive Acacia longifolia: consequences for ecosystem restoration. Biol Invasions 11(4):813–823CrossRefGoogle Scholar
  161. Martínez OJA (2009) Ecology of novel forests dominated by the African tulip tree (Spathodea campanulata Beauv) in northcentral Puerto Rico. Masters thesis, University of Puerto Rico, Río Piedras, Puerto Rico.Google Scholar
  162. Martínez OJA (2010) Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico. Plant Ecol 211:49–64CrossRefGoogle Scholar
  163. Martínez OJA, Lugo AE (2008) Post sugar cane succession in moist alluvial sites in Puerto Rico. In: Myster RW (ed) Post-agricultural succession in the Neotropics. Springer, New York, pp 73–92CrossRefGoogle Scholar
  164. Martínez OJA, Rodríguez MA, Rosario I, Soto N, López A, Lugo AE (2010) Structure and species composition of novel forests dominated by an introduced species in northcentral Puerto Rico. New Forest 39:1–18CrossRefGoogle Scholar
  165. Maskell LC, Firbank LG, Thompson K, Bullock JM, Smart SM (2006) Interactions between non-native plant species and the floristic composition of common habitats. J Ecol 94(6):1052–1060CrossRefGoogle Scholar
  166. Mazzolari AC, Marrero HJ, Vázquez DP (2017) Potential contribution to the invasion process of different reproductive strategies of two invasive roses. Biol Invasions 19(2):615–623CrossRefGoogle Scholar
  167. McDougall KL, Khuroo AA, Loope LL, Parks CG, Pauchard A, Reshi ZA, Rushworth I, Kueffer C (2011) Plant invasions in mountains: global lessons for better management. Mountain Res Develop 31(4):380–387CrossRefGoogle Scholar
  168. McGeoch MA, Genovesi P, Bellingham PJ, Costello MJ, McGrannachan C, Sheppard A (2016) Prioritizing species pathways and sites to achieve conservation targets for biological invasion. Biol Invasions 18(2):299–314CrossRefGoogle Scholar
  169. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington DCGoogle Scholar
  170. Misra SS, Sushi SN, Rajak DC (2012) Biocontrol strategy for major invasive weeds of neotropical origin in India. Bioherald: Int J Biodiv Environ 2(2):134–142Google Scholar
  171. Mittermeier RA, Myers N, Mittermeier CG, Robles G (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Conservation International. The University of Chicago Press, Chicago, p 392Google Scholar
  172. Monty A, Bizoux JP, Escarré J, Mahy G (2013) Rapid plant invasion in distinct climates involves different sources of phenotypic variation. PLoS One 8(1):pe55627CrossRefGoogle Scholar
  173. Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc Lond B Biol Sci 365(1558):3709–3718PubMedPubMedCentralCrossRefGoogle Scholar
  174. Motloung R, Robertson M, Rouget M, Wilson J (2014) Forestry trial data can be used to evaluate climate-based species distribution models in predicting tree invasions. NeoBiota 20:31–48CrossRefGoogle Scholar
  175. Mudgal V, Khanna KK, Hazra PK (1997) Flora of Madhya Pradesh II. Botanical Survey of India, pp 403-404Google Scholar
  176. Mujaffar S, Shukla SK, Mishra S (2013) Some angiospermic plants new to Central India. Sci Res Rep 3(2):102–105Google Scholar
  177. Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Evol Syst 17(1):67–88CrossRefGoogle Scholar
  178. Murray B, Phillips M (2012) Temporal introduction patterns of invasive alien plant species to Australia. NeoBiota 13:1–14CrossRefGoogle Scholar
  179. Murray BR, Martin LJ, Phillips ML, Pyšek P (2017) Taxonomic perils and pitfalls of dataset assembly in ecology: a case study of the naturalized Asteraceae in Australia. NeoBiota 34:1–20CrossRefGoogle Scholar
  180. Myers RL (1983) Site susceptibility to invasion by the exotic tree Melaleuca quinquenervia in southern Florida. J Appl Ecol 20(2):645–658CrossRefGoogle Scholar
  181. Nagel JM, Huxman TE, Griffin KL, Smith SD (2004) CO2 enrichment reduces the energetic cost of biomass construction in an invasive desert grass. Ecology 85(1):100–106CrossRefGoogle Scholar
  182. Namkeleja HS, Tarimo MT, Ndakidemi PA (2014) Allelopathic effects of Argemone mexicana to growth of native plant species. Am J Plant Sci 5:1336–1344CrossRefGoogle Scholar
  183. Nayar MP (1977) Changing patterns of the Indian flora. Nelumbo 19(1-4):145–155Google Scholar
  184. Ning L, Yu FH, van Kleunen M (2016) Allelopathy of a native grassland community as a potential mechanism of resistance against invasion by introduced plants. Biol Invasions 18(12):3481–3493CrossRefGoogle Scholar
  185. Oduor AM, Leimu R, Kleunen M (2016) Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. J Ecol 104(4):957–968CrossRefGoogle Scholar
  186. Ööpik M, Bunce RGB, Tischler M (2013) Horticultural markets promote alien species invasions: an Estonian case study of herbaceous perennials. NeoBiota 17:19–37CrossRefGoogle Scholar
  187. Padalia H, Bahuguna U (2017) Spatial modelling of congruence of native biodiversity and potential hotspots of forest invasive species (FIS) in central Indian landscape. J Nat Cons 36:29–37CrossRefGoogle Scholar
  188. Padalia H, Kudrat M, Sharma KP (2013) Mapping sub-pixel occurrence of an alien invasive Hyptis suaveolens (L.) Poit using spectral unmixing technique. Int J Remote Sens 34(1):325–340CrossRefGoogle Scholar
  189. Padalia H, Srivastava V, Kushwaha SPS (2014) Modeling potential invasion range of alien invasive species Hyptis suaveolens (L) Poit in India: Comparison of MaxEnt and GARP. Ecol Inform 22:36–43CrossRefGoogle Scholar
  190. Pande PK (2001) Structures of the tropical dry deciduous teak (Tectona grandis) forests of Satpura plateau (India) with special emphasis on regeneration and disturbance. J Trop For Sci 13(2):329–343Google Scholar
  191. Pande PK (2005) Biomass and productivity in some disturbed tropical dry deciduous teak forests of Satpura plateau, Madhya Pradesh. Trop Ecol 46(2):229–240Google Scholar
  192. Pandey DS (2000) Exotics–introduced and natural immigrants weeds cultivated etc. In: Singh NP, Singh DK, Hajra PK, Sharma BD (eds) Flora of India (introductory volume Part II). Botanical Survey of India, Kolkata, pp 266–301Google Scholar
  193. Pandey HP, Chauhan SK (2012) Lantana camara: a journey from eradication to adaptive management. Bioherald: Int J Biodiv Environ 2(2):99–109Google Scholar
  194. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42PubMedCrossRefGoogle Scholar
  195. Pasiecznik NM, Felker P, Harris PJ, Harsh L, Cruz G, Tewari JC, Cadoret K, Maldonado LJ (2001) The ‘Prosopis Juliflora’-‘Prosopis Pallida’ Complex: A Monograph. (Vol 172), Coventry UKGoogle Scholar
  196. Patel DK (2012) Vegetation structure and composition in Guru Ghasidas Vishwavidyalaya in Central India. Int J Biodiv Cons 4(15):621–632Google Scholar
  197. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371CrossRefGoogle Scholar
  198. Pearson DE, Ortega YK, Runyon JB, Butler JL (2016) Secondary invasion: the bane of weed management. Biol Cons 197:8–17CrossRefGoogle Scholar
  199. Peerzada N (1997) Chemical composition of the essential oil of Hyptis suaveolens. Molecules 2(11):165–168CrossRefGoogle Scholar
  200. Peh KSH, Balmford A, Birch JC, Brown C, Butchart SH, Daley J, Dawson J, Gray G, Hughes FM, Mendes S, Millett J, Stattersfield AJ, Thomas DHL, Walpole M, Bradbury RB (2015) Potential impact of invasive alien species on ecosystem services provided by a tropical forested ecosystem: a case study from Montserrat. Biol Invasions 17(1):461–475CrossRefGoogle Scholar
  201. Penk MR, Jeschke JM, Minchin D, Donohue I (2016) Warming can enhance invasion success through asymmetries in energetic performance. J Anim Ecol 85(2):419–426PubMedCrossRefGoogle Scholar
  202. Pergl J, Pyšek P, Bacher S, Essl F, Genovesi P, Harrower CA, Hulme PE, Jeschke JE, Kenis M, Kühn I, Perglová I (2017) Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways? NeoBiota 32:1–20CrossRefGoogle Scholar
  203. Perrings C, Mooney H, Williamson M (2010) Bio-invasions and globalization: ecology economics management and policy. Oxford University Press, Oxford, p 288Google Scholar
  204. Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285(5431):1265–1267PubMedCrossRefGoogle Scholar
  205. Pimentel D (2002) Biological invasions: Economic and environmental costs of alien plant animal and microbe species. CRC Press, Boca Raton, p 384. https://doi.org/101201/9781420041668CrossRefGoogle Scholar
  206. Powell KI, Chase JM, Knight TM (2011) A synthesis of plant invasion effects on biodiversity across spatial scales. Am J Bot 98(3):539–548PubMedCrossRefGoogle Scholar
  207. Priya ES, Selvan PS (2017) Water hyacinth (Eichhornia crassipes)–An efficient and economic adsorbent for textile effluent treatment–A review. Arab J Chem 10:S3548–S3558CrossRefGoogle Scholar
  208. Pyšek P (1998) Is there a taxonomic pattern to plant invasions? Oikos 82:282–294CrossRefGoogle Scholar
  209. Pyšek P, Richardson D (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological Invasions. Ecological Studies (Analysis and Synthesis), vol 193. Springer, Berlin/Heidelberg, pp 97–125Google Scholar
  210. Pyšek P, Richardson DM (2008) Invasive plants. In: Jorgensen SE, Brian DF (eds) Ecological engineering. Vol [3] of Encyclopedia of ecology, vol 5, pp 2011–2020CrossRefGoogle Scholar
  211. Quamar MF, Chauhan MS (2011) Late holocene vegetation climate change and human impact in southwestern Madhya Pradesh. India. Palaeobotanist 60(2):281–289Google Scholar
  212. Raghubanshi AS, Tripathi A (2009) Effect of disturbance habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: a review. Trop Ecol 50(1):57–69Google Scholar
  213. Raizada P, Singh A, Raghubanshi AS (2009) Comparative response of seedlings of selected native dry tropical and alien invasive species to CO2 enrichment. J Plant Ecol 2(2):69–75CrossRefGoogle Scholar
  214. Rajashekar Y, Ravindra KV, Bakthavatsalam N (2014) Leaves of Lantana camara Linn (Verbenaceae) as a potential insecticide for the management of three species of stored grain insect pests. J Food Sci Tech 51(11):3494–3499CrossRefGoogle Scholar
  215. Ramaswami G, Sukumar R (2013) Long-term environmental correlates of invasion by Lantana camara (Verbenaceae) in a seasonally dry tropical forest. PLoS One 8(10):pe76995PubMedPubMedCentralCrossRefGoogle Scholar
  216. Rao RR, Murugan R (2006) Impact of exotic adventives weeds on native biodiversity in India: implications for conservation. In: Rai LC, Gaur JP (eds) Invasive alien species and biodiversity in India. Banaras Hindu University, Varanasi, pp 93–109Google Scholar
  217. Rao RR, Sagar K, Sathyanarayana N (2012) Resource utilization and beneficial aspects of invasive alien weeds with special reference to the Western Ghats, India. In: Bhatt JR, Singh JS, Singh SP, Tripathi RS, Kohli RK (eds) Invasive alien plants: An ecological appraisal for the Indian subcontinent. CAB International, Wallingford, pp 271–281Google Scholar
  218. Ray S, Sainkhediya J (2014) Some new record for the flora of Madhya Pradesh. Biosci Discov 5(2):187–192Google Scholar
  219. Razanajatovo M, Maurel N, Dawson W, Essl F, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, van Kleunen M (2016) Plants capable of selfing are more likely to become naturalized. Nat Commun 7:p13313CrossRefGoogle Scholar
  220. Reddy CS (2012) Assessment of plant invasions across different habitats of India. Bioherald: Int J Biodiv Environ 2(2):110–125Google Scholar
  221. Reichard S (2011) Horticulture. In: Simberloff D, Rejmanek M (eds) Encyclopedia of Biological Invasions. University of California Press, Berkeley, pp 336–342Google Scholar
  222. Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661CrossRefGoogle Scholar
  223. Reshi MI, Chadhar BL, Khare PK (2017) Alien invasive plants of Central Indian tropical dry deciduous forests of Sagar district, Madhya Pradesh, India. Indian For 143(2):157–164Google Scholar
  224. Richardson DM (1998) Forestry trees as invasive aliens. Cons Biol 12(1):18–26CrossRefGoogle Scholar
  225. Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196(2):383–396PubMedCrossRefGoogle Scholar
  226. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species–a global review. Divers Distributions 17(5):788–809CrossRefGoogle Scholar
  227. Richardson DM, Pyšek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distributions 6(2):93–107CrossRefGoogle Scholar
  228. Rinawati F, Stein K, Lindner A (2013) Climate change impacts on biodiversity – the setting of a lingering global crisis. Diversity 5(1):114–123CrossRefGoogle Scholar
  229. Rodger JG, Johnson SD (2013) Self-pollination and inbreeding depression in Acacia dealbata: Can selfing promote invasion in trees? S Afr J Bot 88:252–259CrossRefGoogle Scholar
  230. Sagar R, Singh JS (2005) Structure, diversity and regeneration of tropical dry deciduous forest of northern India. Biodiversity Conserv 14(4):935–959CrossRefGoogle Scholar
  231. Saha S (2002) Anthropogenic fire regime in a deciduous forest of central India. Curr Sci 82(9):1144–1147Google Scholar
  232. Sahu PK, Gupta S (2014) Medicinal plants of morning glory: Convolvulaceae Juss of Central India (Madhya Pradesh and Chhattisgarh). Biolife 2(2):463–469Google Scholar
  233. Sahu PK, Singh JS (2008) Structural attributes of lantana-invaded forest plots in Achanakmar–Amarkantak Biosphere Reserve, Central India. Curr Sci 94(4):494–500Google Scholar
  234. Sahu PK, Sagar R, Singh JS (2008) Tropical forest structure and diversity in relation to altitude and disturbance in a Biosphere Reserve in central India. Appl Veg Sci 11(4):461–470CrossRefGoogle Scholar
  235. Sahu KP, Urmalia R, Mashi SK, Tiwari V (2012) Contribution to the flora of Umaria district of MP. J Eco Tax Bot 36:261–274Google Scholar
  236. Saikia P, Kumar A, Khan ML (2016) Biodiversity status and climate change scenario in Northeast India. In: Nautiyal S, Schaldach R, Raju K, Kaechele H, Pritchard B, Rao K (eds) Climate change challenge (3C) and social-economic-ecological interface-building. Environmental science and engineering. Springer, ChamGoogle Scholar
  237. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32(1):305–332CrossRefGoogle Scholar
  238. Salunkhe O, Khare PK, Sahu TR, Singh S (2016) Estimation of tree biomass reserves in tropical deciduous forests of Central India by non-destructive approach. Trop Ecol 57(2):153–161Google Scholar
  239. Sanderson LA, Antunes PM (2013) The exotic invasive plant Vincetoxicum rossicum is a strong competitor even outside its current realized climatic temperature range. NeoBiota 16:1–15CrossRefGoogle Scholar
  240. Sandilyan S, van’t Klooster CI (2016) The other sides of invasive alien plants of India—With special reference to medicinal values. J Nat Cons 31:16–21CrossRefGoogle Scholar
  241. Sandya GS, Ahirwar RK (2015) Ethnobotanical studies of some wild food plants of District Umaria, Central India. Int J Sci Res 4(4):432–435Google Scholar
  242. Saul WC, Roy HE, Booy O, Carnevali L, Chen HJ, Genovesi P, Harrower CA, Hulme PE, Pagad S, Pergl J, Jeschke JM (2017) Assessing patterns in introduction pathways of alien species by linking major invasion data bases. J Appl Ecol 54(2):657–669CrossRefGoogle Scholar
  243. Seebens H, Gastner MT, Blasius B (2013) The risk of marine bioinvasion caused by global shipping. Ecol Lett 16(6):782–790PubMedCrossRefGoogle Scholar
  244. Seebens H, Essl F, Dawson W, Fuentes N, Moser D, Pergl J, Pyšek P, Kleunen M, Weber E, Winter M, Blasius B (2015) Global trade will accelerate plant invasions in emerging economies under climate change. Glob Change Biol 21(11):4128–4140CrossRefGoogle Scholar
  245. Seebens H, Essl F, Blasius B (2017a) The intermediate distance hypothesis of Biological Invasions. Ecol Lett 20(2):158–165PubMedCrossRefGoogle Scholar
  246. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S (2017b) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435PubMedPubMedCentralCrossRefGoogle Scholar
  247. Seifu A, Seboka N, Misganaw M, Bekele T, Merawi E, Ayenew A, Faris G (2017) Impact of invasive alien plant Xanthium strumarium on species diversity and composition of invaded plant communities in Borena Zone. Ethiopia. Biodiv Int J 1(1):00004Google Scholar
  248. Sekar KC (2012) Invasive alien plants of Indian Himalayan region – diversity and implication. Am J Plant Sci 3(2):177–184CrossRefGoogle Scholar
  249. Shabbir A, Bajwa R (2007) Parthenium invasion in Pakistan – A threat still unrecognized. Pak J Bot 39(7):2519–2526Google Scholar
  250. Shackleton RT, Le Maitre DC, Pasiecznik NM, Richardson DM (2014) Prosopis: a global assessment of the biogeography benefits impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 6:plu027PubMedPubMedCentralCrossRefGoogle Scholar
  251. Shackleton RT, Le Maitre DC, Richardson DM (2015) Prosopis invasions in South Africa: Population structures and impacts on native tree population stability. J Arid Environ 114:70–78CrossRefGoogle Scholar
  252. Shackleton CM, Ruwanza S, Sanni GS, Bennett S, De Lacy P, Modipa R, Mtati N, Sachikonye M, Thondhlana G (2016) Unpacking Pandora’s box: understanding and categorising ecosystem disservices for environmental management and human wellbeing. Ecosystems 19(4):587–600CrossRefGoogle Scholar
  253. Sharma GP, Raghubanshi AS (2006) Tree population structure regeneration and expected future composition at different levels of Lantana camara L. invasion in the Vindhyan tropical dry deciduous forest of India. Lyonia 11(1):27–39Google Scholar
  254. Sharma GP, Singh JS, Raghubanshi AS (2005) Plant invasions: emerging trends and future implications. Curr Sci 88(5):726–734Google Scholar
  255. Sharma GP, Raizada P, Raghubanshi AS (2009) Hyptis suaveolens: an emerging invader of Vindhyan plateau India. Weed Biol Manag 9(3):185–191CrossRefGoogle Scholar
  256. Sharma A, Batish DR, Singh HP, Jaryan V, Kohli RK (2017) The impact of invasive Hyptis suaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India. Flora 233:156–162CrossRefGoogle Scholar
  257. Shen XY, Peng SL, Chen BM, Pang JX, Chen LY, Xu HM, Hou YP (2011) Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biol Invasions 13(4):869–881CrossRefGoogle Scholar
  258. Shiferaw H, Teketay D, Nemomissa S, Assefa F (2004) Some biological characteristics that foster the invasion of Prosopis juliflora (Sw) DC at Middle Awash Rift Valley Area, north-eastern Ethiopia. J Arid Environ 58(2):135–154CrossRefGoogle Scholar
  259. Shmueli G (2010) To explain or to predict? Stat Sci 25(3):289–310CrossRefGoogle Scholar
  260. Shukla BK, Sinha GP (2012) An inventory of invasive alien species of Chhattisgarh India. Bioherald: Int J Biodiv Environ 2(2):126–133Google Scholar
  261. Shukla AN, Singh KP, Singh JS (2009) Invasive alien species of Achanakmar-Amarkantak Biosphere Reserve Central India. Proc Natl Acad Sci India B Biol 79(4):384–392Google Scholar
  262. Simberloff D, Rejmánek M (eds) (2011) Encyclopedia of Biological Invasions. University of California Press, BerkeleyGoogle Scholar
  263. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1(1):21–32CrossRefGoogle Scholar
  264. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66PubMedCrossRefGoogle Scholar
  265. Singh KP, Singh JS (1988) Certain structural and functional aspects of dry tropical forest and savanna. Int J Ecol Environ Sci 14:31–45Google Scholar
  266. Singh BP, Upadhyay R (2014) Medicinal pteridophytes of Madhya Pradesh. J Pharmacogn Phytochem 3(3):173–176Google Scholar
  267. Singh JP, Singh SP, Gupta SR (2006) Ecology environment and resource conservation. Anamaya Publishers, New DelhiGoogle Scholar
  268. Singh KP, Shukla AN, Singh JS (2010) State-level inventory of invasive alien plants their source regions and use potential. Curr Sci 99(1):107–114Google Scholar
  269. Sinha MK, Sinha D (2013) Composition of forest vegetation of Koria district Chhattisgarh (India). Glob J Biol Agric Health Sci 2(4):160–168Google Scholar
  270. Sitzia T, Campagnaro T, Kowarik I, Trentanovi G (2016) Using forest management to control invasive alien species: helping implement the new European regulation on invasive alien species. Biol Invasions 18(1):1–7CrossRefGoogle Scholar
  271. Sol D, Maspons J, Vall-llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337:580–583PubMedCrossRefGoogle Scholar
  272. Soni MY, Sahu PK, Kumari P, Somi I, Awasthi P (2014) Impact of Lantana camara invasion on species diversity and regeneration status of tropical forest in Bilaspur (CG). Int J Biol Sci 1(3):42–52Google Scholar
  273. Southern African Plant Invaders Atlas (SAPIA), http://wwwinvasivesorgza/Google Scholar
  274. Srivastava S, Dvivedi A, Shukla RP (2014) Invasive alien species of terrestrial vegetation of north-eastern Uttar Pradesh. Int J Forest Res 2014Google Scholar
  275. Steffen W, Grinevald J, Crutzen P, McNeill J (2011) The Anthropocene: conceptual and historical perspectives. Philos Trans A Math Phys Eng Sci 369(1938):842–867PubMedCrossRefGoogle Scholar
  276. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4(5):140CrossRefGoogle Scholar
  277. Stout JC, Tiedeken EJ (2017) Direct interactions between invasive plants and native pollinators: evidence impacts and approaches. Funct Ecol 31:38–46CrossRefGoogle Scholar
  278. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21(11):645–651PubMedCrossRefPubMedCentralGoogle Scholar
  279. Sullivan RG, Clark M (2007) Can biodiversity survive global warming? Chicago Wilderness Journal 5(1):2–13Google Scholar
  280. Suman NR, Khare PK, Salunkhe O, Chadhar B (2017) Alien angiospermic plants of Panna tiger reserve, Madhya Pradesh, India. Indian For 143(1):19–24Google Scholar
  281. Sundaram B, Hiremath AJ (2012) Lantana camara invasion in a heterogeneous landscape: patterns of spread and correlation with changes in native vegetation. Biol Invasions 14(6):1127–1141CrossRefGoogle Scholar
  282. Sundarapandian SM, Subashree K (2017) Status of invasive plants in Tamil Nadu India: their impact and significance. In: Ansari AA, Gill SS, Abbas ZK, Naeem M (eds) Plant biodiversity: monitoring assessment and conservation. CAB International, Wallingford, pp 371–387CrossRefGoogle Scholar
  283. Sundarapandian SM, Muthumperumal C, Subashree K (2015) Biological invasion of vines their impacts and management. In: Parthasarathy N (ed) Biodiversity of Lianas. Springer, Cham, pp 211–253CrossRefGoogle Scholar
  284. Swamy PS, Ramakrishnan PS (1987) Effect of fire on population dynamics of Mikania micrantha HBK during early succession after slash-and-burn agriculture (jhum) in northeastern India. Weed Res 27(6):397–403CrossRefGoogle Scholar
  285. Téllez TR, López EMDR, Granado GL, Pérez EA, López RM, Guzmán JMS (2008) The water hyacinth Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquat Invasions 3(1):42–53CrossRefGoogle Scholar
  286. Thakur AS (2015a) Phytosociological analysis of Gopalpura forest in Sagar district, MP. Scholars Impact 1(2):8–15Google Scholar
  287. Thakur AS (2015b) Floristic composition life-forms and biological spectrum of tropical dry deciduous forest in Sagar District, Madhya Pradesh, India. Trop Plant Res 2(2):112–119Google Scholar
  288. Thakur AS, Khare PK (2006) Species diversity and dominance in tropical dry deciduous forest ecosystem. J Environ Res Develop 1(1):26–31Google Scholar
  289. The Directorate of Plant Protection Quarantine and Storage, http://ppqsgovin/Google Scholar
  290. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176(2):256–273PubMedCrossRefGoogle Scholar
  291. Tireman H (1916) Lantana in the forests of Coorg. Indian For 42:384–392Google Scholar
  292. Traveset A, Richardson DM (2006) Biological Invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21(4):208–216PubMedCrossRefGoogle Scholar
  293. Tripathi RS, Khan ML, Yadav AS (2012) Biology of Mikania micrantha HBK: a Review. In: Bhatt JR, Singh JS, Singh SP, Tripathi RS, Kohli RK (eds) Invasive alien plants: An ecological appraisal for the Indian subcontinent. CAB International, Wallingford, pp 99–107Google Scholar
  294. TRY Plant Trait Database, https://wwwtry-dborg/TryWeb/HomephpGoogle Scholar
  295. Uyi OO, Ekhator F, Ikuenobe CE, Borokini TI, Aigbokhan EI, Egbon IN, Adebayo AR, Igbinosa IB, Okeke CO, Igbinosa EO, Omokhua GA (2014) Chromolaena odorata invasion in Nigeria: A case for coordinated biological control. Manag Biol Invasion 5(4):377–393CrossRefGoogle Scholar
  296. van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13(2):235–245PubMedCrossRefGoogle Scholar
  297. Vaz AS, Kueffer C, Kull CA, Richardson DM, Vicente JR, Kühn I, Schröter M, Hauck J, Bonn A, Honrado JP (2017) Integrating ecosystem services and disservices: insights from plant invasions. Ecosyst Services 23:94–107CrossRefGoogle Scholar
  298. Venette R (2013) Incorporating climate change into pest risk models for forest pathogens: a role for cold stress in an era of global warming? NeoBiota 18:131–150CrossRefGoogle Scholar
  299. Vicente J, Alves P, Randin C, Guisan A, Honrado J (2010) What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in northern Portugal. Ecography 33(6):1081–1092CrossRefGoogle Scholar
  300. Vicente J, Randin CF, Gonçalves J, Metzger MJ, Lomba Â, Honrado J, Guisan A (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13(5):1209–1227CrossRefGoogle Scholar
  301. Vicente JR, Fernandes RF, Randin CF, Broennimann O, Gonçalves J, Marcos B, Pôças I, Alves P, Guisan A, Honrado JP (2013) Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. J Environ Manag 131:185–195CrossRefGoogle Scholar
  302. Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S, Nentwig W, Olenin S, Roques A, Roy D, Hulme PE (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European cross-taxa assessment. Front Ecol Environ 8(3):135–144CrossRefGoogle Scholar
  303. Vinodia S, Dixit AK (2017) Habenaria diphylla (Nimmo) Dalzell: a new addition to the Orchid flora of Bilaspur district (CG), Central India. Curr Bot 8:60–65Google Scholar
  304. Vitousek PM, Antonio CM, Loope LL, Westbrooks R (1996) Biological Invasions as global environmental change. Am Sci 84(5):468Google Scholar
  305. Wagh VV, Jain AK (2015) Invasive alien flora of Jhabua district, Madhya Pradesh, India. Int J Biodivers Conserv 7(4):227–237CrossRefGoogle Scholar
  306. Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czucz B (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24(12):686–693PubMedCrossRefGoogle Scholar
  307. Wang S, Niu S (2016) Do Biological Invasions by Eupatorium adenophorum increase forest fire severity? Biol Invasions 18(3):717–729CrossRefGoogle Scholar
  308. Weber EF (1997) The alien flora of Europe: a taxonomic and biogeographic review. J Veg Sci 8(4):565–572CrossRefGoogle Scholar
  309. Weber E, Sun SG, Li B (2008) Invasive alien plants in China: diversity and ecological insights. Biol Invasions 10(8):1411–1429CrossRefGoogle Scholar
  310. Whitmore TC (1990) An introduction to tropical rain forests. Clarendon Press, Oxford, p 226Google Scholar
  311. Williams JR (1954) The biological control of weeds. Report of the Sixth Commonwealth Entomological Congress London United Kingdom, pp 95–98Google Scholar
  312. Williamson M (1996) Biological Invasions. Chapman and Hall LondonGoogle Scholar
  313. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77(6):1661–1666CrossRefGoogle Scholar
  314. Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24(3):136–144PubMedCrossRefGoogle Scholar
  315. Xu H, Qiang S, Han Z, Guo J, Huang Z, Sun H, He S, Ding H, Wu H, Wan F (2004) The distribution and introduction pathway of alien invasive species in China. Biodiv Sci 12(6):626–638Google Scholar
  316. Yang Q, Carrillo J, Jin H, Shang L, Hovick SM, Nijjer S, Gabler CA, Li B, Siemann E (2013) Plant-soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol Biochem 65:78–85CrossRefGoogle Scholar
  317. Yannelli FA, Hughes P, Kollmann J (2017) Preventing plant invasions at early stages of revegetation: The role of limiting similarity in seed size and seed density. Ecol Eng 100:286–290CrossRefGoogle Scholar
  318. Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16(8):454–459CrossRefGoogle Scholar
  319. Zimmermann TG, Andrade AC, Richardson DM (2017) Abiotic barriers limit tree invasion but do not hamper native shrub recruitment in invaded stands. Biol Invasions 19(1):109–129CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Javid Ahmad Dar
    • 1
    • 2
  • K Subashree
    • 2
  • Somaiah Sundarapandian
    • 2
  • Purabi Saikia
    • 3
  • Amit Kumar
    • 3
  • P. K. Khare
    • 1
  • S. Dayanandan
    • 4
  • Mohammed Latif Khan
    • 1
    Email author
  1. 1.Biodiversity Conservation Lab, Department of BotanyDr. Harisingh Gour Vishwavidyalaya (A Central University)SagarIndia
  2. 2.Department of Ecology and Environmental Sciences, School of Life SciencesPondicherry UniversityPuducherryIndia
  3. 3.School of Natural Resource Management, Central University of JharkhandRanchiIndia
  4. 4.Department of Biology, Centre for Structural and Functional GenomicsConcordia UniversityMontrealCanada

Personalised recommendations