Advertisement

Other Chemical Hazards

  • Lijuan Du
  • Guoren Huang
  • Puyu Yang
  • Zhongfei Zhang
  • Lu Yu
  • Yaqiong Zhang
  • Boyan GaoEmail author
Chapter

Abstract

This chapter reviews five groups of chemical hazards, including 5-HMF, trans-fatty acids, MCPDs and their esters, glycidol and its esters, and acrolein and other alkenals. Their analytical methods, formation mechanisms, and mitigation strategies are discussed. Understanding these chemical hazards may improve our knowledge about the whole thermal-processing-induced hazards, then improving food safety and quality in food industry.

References

  1. 1.
    Zhang XM et al (1993) Initiation and promotion of colonic aberrant crypt foci in rats by 5-hydroxymethy1-2-furaldehyde in thermolyzed sucrose. Carcinogenesis 14(4):773–775PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Surh YJ et al (1994) 5-Sulfooxymethylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the Maillard reaction product, 5-hydroxymethylfurfural. Carcinogenesis 15(10):2375–2377PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Husøy T et al (2008) Dietary exposure to 5-hydroxymethylfurfural from Norwegian food and correlations with urine metabolites of short-term exposure. Food Chem Toxicol 46(12):3697–3702PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    SHINOHARA K (1986) Furans as the mutagens formed by amino-carbonyl reactions. Dev Food Sci 13:353–362Google Scholar
  5. 5.
    Janzowski C et al (2000) 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem Toxicol 38(9):801–809PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Program NT (2010) NTP toxicology and carcinogenesis studies of 5-(Hydroxymethyl)-2-furfural (CAS No. 67-47-0) in F344/N rats and B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser (554):7–13Google Scholar
  7. 7.
    Bauer-Marinovic M et al (2012) Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2. Arch Toxicol 86(5):701–711PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Pastoriza de la Cueva S et al (2017) Relationship between HMF intake and SMF formation in vivo: An animal and human study. Mol Nutr Food Res 61(3):1600773-n/aCrossRefGoogle Scholar
  9. 9.
    Jöbstl D et al (2010) Analysis of 5-hydroxymethyl-2-furoic acid (HMFA) the main metabolite of alimentary 5-hydroxymethyl-2-furfural (HMF) with HPLC and GC in urine. Food Chem 123(3):814–818CrossRefGoogle Scholar
  10. 10.
    Kocadağlı T et al (2012) In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation. Food Funct 3(9):970–975PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lo C-Y et al (2008) Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chem 107(3):1099–1105CrossRefGoogle Scholar
  12. 12.
    Oliviero T et al (2009) Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. J Agric Food Chem 57(1):147–152PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Rada-Mendoza M et al (2002) Determination of hydroxymethylfurfural in commercial jams and in fruit-based infant foods. Food Chem 79(4):513–516CrossRefGoogle Scholar
  14. 14.
    Akpınar K et al (2011) Determination of HMF in roasted flour/oil mixtures and effect of solvent used in the extraction procedure. Food Chem 128(3):790–794CrossRefGoogle Scholar
  15. 15.
    Durmaz G, Gökmen V (2010) Determination of 5-hydroxymethyl-2-furfural and 2-furfural in oils as indicators of heat pre-treatment. Food Chem 123(3):912–916CrossRefGoogle Scholar
  16. 16.
    Arribas-Lorenzo G, Morales FJ (2010) Estimation of dietary intake of 5-hydroxymethylfurfural and related substances from coffee to Spanish population. Food Chem Toxicol 48(2):644–649PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chen Z, Yan X (2009) Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection. J Agric Food Chem 57(19):8742–8747PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    del Campo G et al (2010) Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry. Talanta 81(1):367–371PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rajchl A et al (2013) Rapid determination of 5-hydroxymethylfurfural by DART ionization with time-of-flight mass spectrometry. Anal Bioanal Chem 405(14):4737–4745PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    de Andrade JK et al (2016) In house validation from direct determination of 5-hydroxymethyl-2-furfural (HMF) in Brazilian corn and cane syrups samples by HPLC–UV. Food Chem 190:481–486PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Terra LR et al (2017) MCR-ALS applied to the quantification of the 5-Hydroxymethylfurfural using UV spectra: Study of catalytic process employing experimental design. Chemom Intel Lab Syst 167:132CrossRefGoogle Scholar
  22. 22.
    Monien BH et al (2009) Conversion of the common food constituent 5-hydroxymethylfurfural into a mutagenic and carcinogenic sulfuric acid ester in the mouse in vivo. Chem Res Toxicol 22(6):1123PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kowalski S et al (2013) 5-Hydroxymethyl-2-furfural (HMF) – heat-induced formation, occurrence in food and biotransformation – a review. Pol J Food Nutr Sci 63(4):207–225CrossRefGoogle Scholar
  24. 24.
    Antal MJ et al (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr Res 199(1):91–109PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Locas CP, Yaylayan VA (2008) Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. J Agric Food Chem 56(15):6717CrossRefGoogle Scholar
  26. 26.
    Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci Technol 44(4):793–810CrossRefGoogle Scholar
  27. 27.
    Brands CMJ, van Boekel MAJS (2003) Kinetic modelling of reactions in heated disaccharide–casein systems. Food Chem 83(1):13–26CrossRefGoogle Scholar
  28. 28.
    Yaylayan VA, Huyghuesdespointes A (1994) Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit Rev Food Sci Nutr 34(4):321PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wu S (2014) Glutathione suppresses the enzymatic and non-enzymatic browning in grape juice. Food Chem 160:8–10PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Favreau-Farhadi N et al (2015) The inhibition of Maillard browning by different concentrations of Rosmarinic acid and epigallocatechin-3-gallate in model, bakery, and fruit systems. J Food Sci 80(10):C2140–C21C6PubMedCrossRefGoogle Scholar
  31. 31.
    Oral RA et al (2014) Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage. Food Chem 142(1):423–429PubMedCrossRefGoogle Scholar
  32. 32.
    Ameur LA et al (2006) Accumulation of 5-hydroxymethyl-2-furfural in cookies during the backing process: validation of an extraction method. Food Chem 98(4):790–796CrossRefGoogle Scholar
  33. 33.
    Gökmen V et al (2007) Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem 104(3):1136–1142CrossRefGoogle Scholar
  34. 34.
    Taş NG, Gökmen V (2016) Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Res Int 89:930–936CrossRefGoogle Scholar
  35. 35.
    Ameur LA et al (2007) Comparison of the effects of sucrose and hexose on furfural formation and browning in cookies baked at different temperatures. Food Chem 101(4):1407–1416CrossRefGoogle Scholar
  36. 36.
    O’Brien J (1996) Stability of trehalose, sucrose and glucose to nonenzymatic browning in model systems. J Food Sci 61(4):679–682CrossRefGoogle Scholar
  37. 37.
    Silvafernandes T et al (2017) Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries. Bioresour Technol 243:384CrossRefGoogle Scholar
  38. 38.
    Doyle E (1997) Trans fatty acids. J Chem Educ 74(9):1030CrossRefGoogle Scholar
  39. 39.
    Bansal G et al (2009) Analysis of trans fatty acids in deep frying oils by three different approaches. Food Chem 116(2):535–541CrossRefGoogle Scholar
  40. 40.
    Khor GL, Esa NM (2008) trans Fatty acids intake: epidemiology and health implications. In: Trans fatty acids. Blackwell Publishing, Oxford, pp 25–45CrossRefGoogle Scholar
  41. 41.
    Mensink RP, Katan MB (1990) Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med 323(7):439–445PubMedCrossRefGoogle Scholar
  42. 42.
    Zock PL, Katan MB (1992) Hydrogenation alternatives: effects of trans fatty acids and stearic acid versus linoleic acid on serum lipids and lipoproteins in humans. J Lipid Res 33(3):399–410PubMedGoogle Scholar
  43. 43.
    Nestel PJ et al (1992) Plasma cholesterol-lowering potential of edible-oil blends suitable for commercial use. Am J Clin Nutr 55(1):46–50PubMedCrossRefGoogle Scholar
  44. 44.
    Judd JT et al (1994) Dietary trans fatty acids: effects on plasma lipids and lipoproteins of healthy men and women. Am J Clin Nutr 59(4):861–868PubMedCrossRefGoogle Scholar
  45. 45.
    Willett WC et al (1993) Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341(8845):581–585PubMedCrossRefGoogle Scholar
  46. 46.
    Ascherio A et al (1996) Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States. BMJ 313(7049):84–90PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Seppänen-Laakso T et al (2002) Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal Chim Acta 465(1):39–62CrossRefGoogle Scholar
  48. 48.
    Sherazi S et al (2009) Application of transmission FT-IR spectroscopy for the trans fat determination in the industrially processed edible oils. Food Chem 114(1):323–327CrossRefGoogle Scholar
  49. 49.
    de Oliveira MA et al (2003) Method development for the analysis of trans-fatty acids in hydrogenated oils by capillary electrophoresis. Electrophoresis 24(10):1641–1647PubMedCrossRefGoogle Scholar
  50. 50.
    Dobson G et al (1995) Silver ion chromatography of lipids and fatty acids. J Chromatogr B Biomed Sci Appl 671(1–2):197–222CrossRefGoogle Scholar
  51. 51.
    Delmonte P, Rader JI (2007) Evaluation of gas chromatographic methods for the determination of trans fat. Anal Bioanal Chem 389(1):77–85PubMedCrossRefGoogle Scholar
  52. 52.
    Ratnayake W et al (2002) Temperature-sensitive resolution of cis-and trans-fatty acid isomers of partially hydrogenated vegetable oils on SP-2560 and CP-Sil 88 capillary columns. J AOAC Int 85(5):1112–1118PubMedGoogle Scholar
  53. 53.
    Romero A et al (2000) Trans fatty acid production in deep fat frying of frozen foods with different oils and frying modalities. Nutr Res 20(4):599–608CrossRefGoogle Scholar
  54. 54.
    Huang Z et al (2006) A simple method for the analysis of trans fatty acid with GC–MS and AT™-Silar-90 capillary column. Food Chem 98(4):593–598CrossRefGoogle Scholar
  55. 55.
    de Oliveira MAL et al (2014) 20 years of fatty acid analysis by capillary electrophoresis. Molecules 19(9):14094–14113PubMedCrossRefGoogle Scholar
  56. 56.
    Mossoba M et al (2007) Determination of total trans fats and oils by infrared spectroscopy for regulatory compliance. Anal Bioanal Chem 389(1):87–92PubMedCrossRefGoogle Scholar
  57. 57.
    de Castro Barra PM et al (2013) An alternative method for rapid quantitative analysis of majority cis–trans fatty acids by CZE. Food Res Int 52(1):33–41CrossRefGoogle Scholar
  58. 58.
    Porto BLS et al (2015) Fast screening method for the analysis of trans fatty acids in processed food by CZE-UV with direct detection. Food Control 55:230–235CrossRefGoogle Scholar
  59. 59.
    Kim Y et al (2007) ATR-Fourier transform mid-infrared spectroscopy for determination of trans fatty acids in ground cereal products without oil extraction. J Agric Food Chem 55(11):4327–4333PubMedCrossRefGoogle Scholar
  60. 60.
    Mahesar S et al (2010) Determination of total trans fat content in Pakistani cereal-based foods by SB-HATR FT-IR spectroscopy coupled with partial least square regression. Food Chem 123(4):1289–1293CrossRefGoogle Scholar
  61. 61.
    Juanéda P (2002) Utilisation of reversed-phase high-performance liquid chromatography as an alternative to silver-ion chromatography for the separation of cis-and trans-C18: 1 fatty acid isomers. J Chromatogr A 954(1):285–289PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Momchilova S et al (1998) Silver ion high-performance liquid chromatography of isomeric cis-and trans-octadecenoic acids: Effect of the ester moiety and mobile phase composition. J Chromatogr A 793(2):275–282CrossRefGoogle Scholar
  63. 63.
    Destaillats F et al (2007) Comparison of available analytical methods to measure trans-octadecenoic acid isomeric profile and content by gas–liquid chromatography in milk fat. J Chromatogr A 1145(1):222–228PubMedCrossRefGoogle Scholar
  64. 64.
    Adlof RO (1994) Separation of cis and trans unsaturated fatty acid methyl esters by silver ion high-performance liquid chromatography. J Chromatogr A 659(1):95–99CrossRefGoogle Scholar
  65. 65.
    Adlof R, Lamm T (1998) Fractionation of cis-and trans-oleic, linoleic, and conjugated linoleic fatty acid methyl esters by silver ion high-performance liquid chromatography. J Chromatogr A 799(1):329–332CrossRefGoogle Scholar
  66. 66.
    Kromer G (1975) Trends and patterns in soybean oil use for food and industrial products [World production, trade, consumption, statistics]. In: World Soybean Research conference, Champaign, Ill(USA), 3–8 Aug 1975; 1976: Interstate Printers and Publishers, DanvilleGoogle Scholar
  67. 67.
    Harfoot C, Hazlewood G (1997) Lipid metabolism in the rumen. The rumen microbial ecosystem, 2nd edn. Blackie Academic & Professional, London, pp 382–426CrossRefGoogle Scholar
  68. 68.
    Kemp P et al (1975) The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. Microbiology 90(1):100–114Google Scholar
  69. 69.
    Kemp P, White R (1968) The biohydrogenation of linolenic and linoleic acids by bacteria isolated from an ovine rumen. Biochem J 106:55Google Scholar
  70. 70.
    Chen J et al (2001) Effects of conjugated linoleic acid on the degradation and oxidation stability of model lipids during heating and illumination. Food Chem 72(2):199–206CrossRefGoogle Scholar
  71. 71.
    Balakos MW, Hernandez EE (1997) Catalyst characteristics and performance in edible oil hydrogenation. Catal Today 35(4):415–425CrossRefGoogle Scholar
  72. 72.
    Allen RR, Kiess AA (1955) Isomerization during hydrogenation. I. Oleic acid. J Am Oil Chem Soc 32(7):400–405CrossRefGoogle Scholar
  73. 73.
    Eckel RH et al (2007) Understanding the complexity of trans fatty acid reduction in the American diet. Circulation 115(16):2231–2246PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Korver O, Katan MB (2006) The elimination of trans fats from spreads: how science helped to turn an industry around. Nutr Rev 64(6):275–279PubMedPubMedCentralGoogle Scholar
  75. 75.
    Tarrago-Trani MT et al (2006) New and existing oils and fats used in products with reduced trans-fatty acid content. J Am Diet Assoc 106(6):867–880PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Nishida C et al (2004) The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr 7(1a):245–250PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Leth T et al (2006) The effect of the regulation on trans fatty acid content in Danish food. Atheroscler Suppl 7(2):53–56PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Astrup A (2006) The trans fatty acid story in Denmark. Atheroscler Suppl 7(2):43–46PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Tan AS (2009) A case study of the New York City trans-fat story for international application. J Public Health Policy 30(1):3–16PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Pérez-Ferrer C et al (2009) Learning from international policies on trans fatty acids to reduce cardiovascular disease in low-and middle-income countries, using Mexico as a case study. Health Policy Plan 25(1):39–49PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Z Z et al (2006) Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit Contam 23(12):1290–1298CrossRefGoogle Scholar
  82. 82.
    Baer I et al (2010) 3-MCPD in food other than soy sauce or hydrolysed vegetable protein (HVP). Anal Bioanal Chem 396(1):443–456PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Z Z et al (2008) Occurrence of 3-MCPD fatty acid esters in human breast milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(6):669–676CrossRefGoogle Scholar
  84. 84.
    Seefelder W et al (2008) Esters of 3-chloro-1, 2-propanediol (3-MCPD) in vegetable oils: significance in the formation of 3-MCPD. Food Addit Contam 25(4):391–400CrossRefGoogle Scholar
  85. 85.
    Weißhaar R (2010) Determination of total 3-chloropropane-1,2-diol (3-MCPD) in edible oils by cleavage of MCPD esters with sodium methoxide. Eur J Lipid Sci Technol 110(2):183–186CrossRefGoogle Scholar
  86. 86.
    Liu Q et al (2013) Simultaneous determination of total fatty acid esters of chloropropanols in edible oils by gas chromatography–mass spectrometry with solid-supported liquid–liquid extraction. J Chromatogr A 1314(11):208–215PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ermacora A, Hrncirik K (2013) A novel method for simultaneous monitoring of 2-MCPD, 3-MCPD and glycidyl esters in oils and fats. J Am Oil Chem Soc 90(1):1–8CrossRefGoogle Scholar
  88. 88.
    Küsters M et al (2010) Rapid and simple micromethod for the simultaneous determination of 3-MCPD and 3-MCPD esters in different foodstuffs. J Agric Food Chem 58(11):6570–6577PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Küsters M et al (2011) Simultaneous determination and differentiation of glycidyl esters and 3-monochloropropane-1,2-diol (MCPD) esters in different foodstuffs by GC-MS. J Agric Food Chem 59(11):6263–6270PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Samaras VG et al (2016) Analytical method for the trace determination of esterified 3- and 2-monochloropropanediol and glycidyl fatty acid esters in various food matrices. J Chromatogr A 1466:136–147PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Koyama K et al (2015) Collaborative study of an indirect enzymatic method for the simultaneous analysis of 3-MCPD, 2-MCPD, and glycidyl esters in edible oils. J Oleo Sci 64(10):557–568CrossRefGoogle Scholar
  92. 92.
    Dubois M et al (2012) Comparison of indirect and direct quantification of esters of monochloropropanediol in vegetable oil. J Chromatogr A 1236(9):189–201PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Andreoli R et al (2015) Quantification of 3-MCPD and its mercapturic metabolite in human urine: validation of an LC-MS-MS method and its application in the general population. Anal Bioanal Chem 407(16):4823–4827PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Li H et al (2015) Direct determination of fatty acid esters of 3-chloro-1, 2-propanediol in edible vegetable oils by isotope dilution - ultra high performance liquid chromatography - triple quadrupole mass spectrometry. J Chromatogr A 1410:99–109PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Macmahon S et al (2013) Analysis of processing contaminants in edible oils. Part 2. Liquid chromatography-tandem mass spectrometry method for the direct detection of 3-monochloropropanediol and 2-monochloropropanediol diesters. J Agric Food Chem 61(20):4748–4757PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    MacMahon S et al (2014) Liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the direct detection of 2-monochloropropanediol (2-MCPD) esters in edible oils. J Agric Food Chem 62(48):11647PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Velisek J et al (2003) 3-chloropropane-1,2-diol in models simulating processed foods: precursors and agents causing its decomposition. Czech J Food Sci 21(5):153–161CrossRefGoogle Scholar
  98. 98.
    Rahn AKK, Yaylayan VA (2015) What do we know about the molecular mechanism of 3-MCPD ester formation? Eur J Lipid Sci Technol 113(3):323–329CrossRefGoogle Scholar
  99. 99.
    Zhang X et al (2013) Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters. J Agric Food Chem 61(10):2548–2555PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Zhang Z et al (2015) Formation of 3-monochloro-1,2-propanediol (3-MCPD) di- and monoesters from tristearoylglycerol (TSG) and the potential catalytic effect of Fe2+ and Fe3+. J Agric Food Chem 63(6):1839PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Zhao Y et al (2016) Formation of 3-MCPD fatty acid esters from monostearoyl glycerol and the thermal stability of 3-MCPD monoesters. J Agric Food Chem 64(46):8918PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Weißhaar R (2010) 3-MCPD-esters in edible fats and oils – a new and worldwide problem. Eur J Lipid Sci Technol 110(8):671–672CrossRefGoogle Scholar
  103. 103.
    Hrncirik K, Van Duijn G (2015) An initial study on the formation of 3-MCPD esters during oil refining. Eur J Lipid Sci Technol 113(3):374–379CrossRefGoogle Scholar
  104. 104.
    Matthäus B et al (2015) Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur J Lipid Sci Technol 113(3):380–386CrossRefGoogle Scholar
  105. 105.
    Pudel F et al (2015) On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. Eur J Lipid Sci Technol 113(3):368–373CrossRefGoogle Scholar
  106. 106.
    Haines TD et al (2011) Direct determination of MCPD fatty acid esters and glycidyl fatty acid esters in vegetable oils by LC–TOFMS. J Am Oil Chem Soc 88(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Freudenstein A et al (2013) Influence of precursors on the formation of 3-MCPD and glycidyl esters in a model oil under simulated deodorization conditions. Eur J Lipid Sci Technol 115(3):286–294CrossRefGoogle Scholar
  108. 108.
    Sciences HDoP. NIOSH, manual of analytical methods: US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Physical Sciences and Engineering; 1994Google Scholar
  109. 109.
    Miyazaki K et al (2012) Indirect method for simultaneous determinations of 3-chloro-1,2-propanediol fatty acid esters and glycidyl fatty acid esters. J Am Oil Chem Soc 89(8):1403–1407Google Scholar
  110. 110.
    AOCS J. Determination of bound monochloropropanediol-(MCPD-) and bound 2, 3-epoxy-1-propanol (glycidol-) by gas chromatography/mass spectrometry (GC/MS). Official Methods and Recommended Practices of the AOCS: AOCS Urbana (IL); 2013Google Scholar
  111. 111.
    AOCS J. JOCS Official Method Cd 29a-13: 2-and 3-MCPD fatty acid esters and glycidol fatty acid esters in edible oils and fats by acid transesterification. Official methods and recommended practices of the AOCS, 3rd printing. 2013; 2014Google Scholar
  112. 112.
    AOCS J. JOCS Official Method Cd 29c-13: Fatty-acidbound 3-chloropropane-1, 2, diol (3-MCPD) and 2, 3-epoxi-propane-1-ol (glycidol), Determination in oils and fats by gc/ms (differential measurement). Official methods and recommended practices of the AOCS, 3rd printing. 2013; 2014Google Scholar
  113. 113.
    Kuhlmann J (2015) Determination of bound 2,3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. Eur J Lipid Sci Technol 113(3):335–344CrossRefGoogle Scholar
  114. 114.
    Koyama K et al (2015) Optimization of an indirect enzymatic method for the simultaneous analysis of 3-MCPD, 2-MCPD, and glycidyl esters in edible oils. J Oleo Sci 64(10):1057–1064PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Shi R et al (2011) Acrolein-mediated injury in nervous system trauma and diseases. Mol Nutr Food Res 55(9):1320–1331PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Leigh JK, Macmahon S (2016) Extraction and liquid chromatography-tandem mass spectrometry detection of 3-monochloropropanediol esters and glycidyl esters in infant formula. J Agric Food Chem 64(49):9442PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Hori K et al (2012) Simultaneous determination of 3-MCPD fatty acid esters and glycidol fatty acid esters in edible oils using liquid chromatography time-of-flight mass spectrometry. LWT Food Sci Technol 48(2):204–208CrossRefGoogle Scholar
  118. 118.
    Dubois M et al (2011) Determination of seven glycidyl esters in edible oils by gel permeation chromatography extraction and liquid chromatography coupled to mass spectrometry detection. J Agric Food Chem 59(23):12291–12301PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Masukawa Y et al (2010) A new analytical method for the quantification of glycidol fatty acid esters in edible oils. J Oleo Sci 59(2):81–88PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Steenbergen H et al (2013) Direct analysis of intact glycidyl fatty acid esters in edible oils using gas chromatography–mass spectrometry. J Chromatogr A 1313:202–211PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Song Z et al (2015) A novel 1H NMR spectroscopic method for determination of glycidyl fatty acid esters coexisting with acylglycerols. Eur J Lipid Sci Technol 117(7):918–925CrossRefGoogle Scholar
  122. 122.
    Destaillats F et al (2012) Formation mechanisms of monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions. Food Addit Contam 29(1):29–37CrossRefGoogle Scholar
  123. 123.
    Weißhaar R, Perz R (2010) Fatty acid esters of glycidol in refined fats and oils. Eur J Lipid Sci Technol 112(2):158–165CrossRefGoogle Scholar
  124. 124.
    Cheng WW et al (2016) Formation of glycidyl fatty acid esters both in real edible oil during laboratory-scale refining and in chemical model during high temperature exposure. J Agric Food Chem 64(29):5919PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Destaillats F et al (2012) Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part I: Formation mechanism. Food Chem 131(4):1391–1398CrossRefGoogle Scholar
  126. 126.
    Kopas PM, Kopas G (2009) Cosmeceutical formulation containing palm oils. Google patentsGoogle Scholar
  127. 127.
    Sambanthamurthi R et al (1995) Factors affecting lipase activity in the oil palm (Elaeis guineensis) mesocarp. In: Plant Lipid Metabolism. Springer, Dordrecht, pp 555–557CrossRefGoogle Scholar
  128. 128.
    Cadena T et al (2013) Lipase activity, mesocarp oil content, and iodine value in oil palm fruits of Elaeis guineensis, Elaeis oleifera, and the interspecific hybrid O × G (E. oleifera × E. guineensis). J Sci Food Agric 93(3):674–680PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Craft BD et al (2012) Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29(3):354–361PubMedPubMedCentralGoogle Scholar
  130. 130.
    Stadler RH (2015) Monochloropropane-1, 2-diol esters (MCPDEs) and glycidyl esters (GEs): an update. Curr Opin Food Sci 6:12–18CrossRefGoogle Scholar
  131. 131.
    Aniołowska MA, Kita AM (2016) The effect of raw materials on thermo-oxidative stability and glycidyl esters content of palm oil during frying. J Sci Food Agric 96(6):2257–2264PubMedCrossRefGoogle Scholar
  132. 132.
    Lin S et al (2001) Recovery of used frying oils with adsorbent combinations: refrying and frequent oil replenishment. Food Res Int 34(2):159–166CrossRefGoogle Scholar
  133. 133.
    Yates RA, Caldwell JD (1993) Regeneration of oils used for deep frying: a comparison of active filter aids. J Am Oil Chem Soc 70(5):507–511CrossRefGoogle Scholar
  134. 134.
    Strijowski U et al (2011) Removal of 3-MCPD esters and related substances after refining by adsorbent material. Eur J Lipid Sci Technol 113(3):387–392CrossRefGoogle Scholar
  135. 135.
    Craft BD, Nagy K (2012) Mitigation of MCPD-ester and glycidyl-ester levels during the production of refined palm oil. Lipid Technol 24(7):155–157CrossRefGoogle Scholar
  136. 136.
    Pudel F et al (2016) 3-MCPD- and glycidyl esters can be mitigated in vegetable oils by use of short path distillation. Eur J Lipid Sci Technol 118(3):396–405CrossRefGoogle Scholar
  137. 137.
    Wong YH et al (2017) Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined, bleached and deodorized palm olein during deep-fat frying of potato chips. Food Chem 219:126–130PubMedCrossRefGoogle Scholar
  138. 138.
    Šmidrkal J et al (2011) Formation of acylglycerol chloro derivatives in vegetable oils and mitigation strategy. Czech J Food Sci 29(4):448–456CrossRefGoogle Scholar
  139. 139.
    Sim CW et al (2004) The optimization of conditions for the production of acid-hydrolysed winged bean and soybean proteins with reduction of 3-monochloropropane-1,2-diol (3-MCPD). Int J Food Sci Technol 39(9):947–958CrossRefGoogle Scholar
  140. 140.
    MR R et al (2015) Other factors to consider in the formation of chloropropandiol fatty esters in oil processes. Food Addit Contam 32(6):817–824CrossRefGoogle Scholar
  141. 141.
    Šmidrkal J et al (2016) Mechanism of formation of 3-chloropropan-1,2-diol (3-MCPD) esters under conditions of the vegetable oil refining. Food Chem 211:124–129PubMedCrossRefGoogle Scholar
  142. 142.
    Zhang H et al (2016) Mitigation of 3-monochloro-1,2-propanediol ester formation by radical scavengers. J Agric Food Chem 64(29):5887–5892PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Craft BD et al (2012) Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part II: Practical recommendations for effective mitigation. Food Chem 132(1):73–79PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Özdikicierler O et al (2016) Effects of process parameters on 3-MCPD and glycidyl ester formation during steam distillation of olive oil and olive pomace oil. Eur Food Res Technol 242(5):805–813CrossRefGoogle Scholar
  145. 145.
    Shimizu M et al (2012) Elimination of glycidyl palmitate in diolein by treatment with activated bleaching earth. J Oleo Sci 61(1):23–28PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Moretto N et al (2012) Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann N Y Acad Sci 1259(1):39–46PubMedCrossRefGoogle Scholar
  147. 147.
    Abraham K et al (2011) Toxicology and risk assessment of acrolein in food. Mol Nutr Food Res 55(9):1277–1290PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Moghe A et al (2015) Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 143(2):242–255PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Umano K, Shibamoto T (1987) Analysis of headspace volatiles from overheated beef fat. J Agric Food Chem 35(1):14–18CrossRefGoogle Scholar
  150. 150.
    Seaman VY (2009) Indoor acrolein emission and decay rates resulting from domestic cooking events. Atmos Environ 43(39):6199–6204CrossRefGoogle Scholar
  151. 151.
    Ewert A et al (2011) Development of two stable isotope dilution assays for the quantitation of acrolein in heat-processed fats. J Agric Food Chem 59(8):3582PubMedCrossRefGoogle Scholar
  152. 152.
    Osório VM, De LCZ (2011) Determination of acrolein in french fries by solid-phase microextraction gas chromatography and mass spectrometry. J Chromatogr A 1218(21):3332–3336PubMedCrossRefGoogle Scholar
  153. 153.
    Lim HH, Shin HS (2012) Simple determination of acrolein in surface and drinking water by headspace SPME GC–MS. Chromatographia 75(15–16):943–948CrossRefGoogle Scholar
  154. 154.
    Deng MJ et al (2012) Fast determination of acrolein and acrylonitrile in water by the portable GC-MS and selected ion monitoring. Environ Monit China 28(5):71–73Google Scholar
  155. 155.
    Osório VM, Cardeal ZL (2013) Using SPME-GC/MS to evaluate acrolein production in cassava and pork sausage fried in different vegetable oils. J Am Oil Chem Soc 90(12):1795–1800CrossRefGoogle Scholar
  156. 156.
    Lago LO et al (2017) Influence of ripeness and maceration of the grapes on levels of furan and carbonyl compounds in wine – simultaneous quantitative determination and assessment of the exposure risk to these compounds. Food Chem 230:594–603PubMedCrossRefGoogle Scholar
  157. 157.
    Casella IG, Contursi M (2004) Quantitative analysis of acrolein in heated vegetable oils by liquid chromatography with pulsed electrochemical detection. J Agric Food Chem 52(19):5816–5821PubMedCrossRefGoogle Scholar
  158. 158.
    Uebori M et al (2008) Determination of acrolein in ambient air as it’s cnet derivative by lc/ms/ms. J Environ Chem 18(1):73–80CrossRefGoogle Scholar
  159. 159.
    Choudhury TK et al (1992) Analysis of acrolein and acrylonitrile in aqueous solution by membrane introduction mass spectrometry. Talanta 39(9):1113PubMedCrossRefGoogle Scholar
  160. 160.
    ZHENG J et al (2016) Determination of acetaldehyde, acrolein, acrylonitrile and pyridine in water with headspace gas chromatography. J Guizhou Norm Univ (Nat Sci) 3:017Google Scholar
  161. 161.
    Barkhordari A et al (2017) Analysis of formaldehyde and acrolein in the aqueous samples using a novel needle trap device containing nanoporous silica aerogel sorbent. Environ Monit Assess 189(4):171PubMedCrossRefGoogle Scholar
  162. 162.
    Azari MR et al (2017) A novel needle trap device with nanoporous silica aerogel packed for sampling and analysis of volatile aldehyde compounds in air. Microchem J 134:270–276CrossRefGoogle Scholar
  163. 163.
    Salway AH (1916) XII.—Studies on the oxidation of unsaturated fatty oils and unsaturated fatty acids. Part I. The formation of acrolein by the oxidation of linseed oil and linolenic acid. J Chem Soc Trans 109:138–145CrossRefGoogle Scholar
  164. 164.
    Alarcon RA (1976) Formation of acrolein from various amino-acids and polyamines under degradation at 100 degrees C. Environ Res 12(3):317–326PubMedCrossRefGoogle Scholar
  165. 165.
    Niyati-Shirkhodaee F, Shibamoto T (1992) Formation of toxic aldehydes in cod liver oil after ultraviolet irradiation. J Am Oil Chem Soc 69(12):1254–1256CrossRefGoogle Scholar
  166. 166.
    Alhanash A et al (2010) Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A Gen 378(1):11–18CrossRefGoogle Scholar
  167. 167.
    Endo Y et al (2013) Linolenic acid as the main source of acrolein formed during heating of vegetable oils. J Am Oil Chem Soc 90(7):959–964CrossRefGoogle Scholar
  168. 168.
    Ewert A et al (2014) Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils. J Agric Food Chem 62(33):8524–8529PubMedCrossRefGoogle Scholar
  169. 169.
    Shibata A et al (2015) Formation of acrolein in the autoxidation of triacylglycerols with different fatty acid compositions. J Am Oil Chem Soc 92(11–12):1661–1670CrossRefGoogle Scholar
  170. 170.
    Kaminskas LM et al (2004) Reactivity of hydrazinophthalazine drugs with the lipid peroxidation products acrolein and crotonaldehyde. Org Biomol Chem 2(18):2578–2584PubMedCrossRefGoogle Scholar
  171. 171.
    Ping LI, et al (2002) Oxidant/catalyst nanoparticles to reduce tobacco smoke constituents such as carbon monoxideGoogle Scholar
  172. 172.
    Kecili R et al (2012) Removal of acrolein from active pharmaceutical ingredients using aldehyde scavengers. Org Process Res Dev 16(6):1225–1229CrossRefGoogle Scholar
  173. 173.
    Tian R, Shi R (2017) Dimercaprol is an acrolein scavenger that mitigates acrolein-mediated PC-12 cells toxicity and reduces acrolein in rat following spinal cord injury. J Neurochem 141(5):708–720PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Gu YP et al (2017) Inhibition of acrolein-induced autophagy and apoptosis by a glycosaminoglycan from Sepia esculenta ink in mouse Leydig cells. Carbohydr Polym 163:270–279PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Lijuan Du
    • 1
  • Guoren Huang
    • 1
  • Puyu Yang
    • 1
  • Zhongfei Zhang
    • 1
  • Lu Yu
    • 2
  • Yaqiong Zhang
    • 1
  • Boyan Gao
    • 1
    • 2
    Email author
  1. 1.Department of Food Science and Engineering, School of Agriculture & BiologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations