Advertisement

Polylactic Acid-Based Nanocomposites: An Important Class of Biodegradable Composites

  • M. Ameer Ali
  • A. ShanavasEmail author
Chapter
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

This chapter discusses the different classes of polylactic acid-based nanocomposites, their structure-property relationships and their wide range of potential applications in the various fields such as biomedical, food packaging, automobiles, agriculture and renewable sources.

Keywords

Polylactic acid Bio-nanocomposites CNT/PLA Biopolymers Nanofillers 

References

  1. 1.
    Abdullah N, Kamarudin SK (2015) Titanium dioxide in fuel cell technology: an overview. J Power Sour 278:109CrossRefGoogle Scholar
  2. 2.
    Alessandro G (2008) Macromolecules 41(24):9491–9950CrossRefGoogle Scholar
  3. 3.
    Alessandro G, Talita ML, Antonio JFC, Eliane T (2016) Chemical reviews 116(3):1637–1669CrossRefGoogle Scholar
  4. 4.
    Auras RA, Harte B, Selke S (2004) Macromol Biosci 4:835–864CrossRefGoogle Scholar
  5. 5.
    Auras RA, Harte B, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plastic Film Sheeting 19(2):123–135CrossRefGoogle Scholar
  6. 6.
    Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci 90:1731–1738CrossRefGoogle Scholar
  7. 7.
    Benali S, Aouadi S, Dechief AL, Murariu M, Dubois P (2015) Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites 1:51–61CrossRefGoogle Scholar
  8. 8.
    Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea Aus Rheol J 19:125–131Google Scholar
  9. 9.
    Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochimica Acta 523:25–45CrossRefGoogle Scholar
  10. 10.
    Buzarovska A, Grozdanov A (2012) Biodegradable poly(L-lactic acid)/TiO2 nanocomposites: thermal properties and degradation. J Appl Polym Sci 123:2187–2193CrossRefGoogle Scholar
  11. 11.
    Chandy T, Das GS, Wilson RF, Rao GHR (2002) J Appl Polym Sci 86:1285CrossRefGoogle Scholar
  12. 12.
    Chang JH, An YU, Sur GS (2003) Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci 41:94–103CrossRefGoogle Scholar
  13. 13.
    Chiellini E, Chiellini F, Cinelli P (2002) Polymers from renewable resources in Geralds Scott, degradable polymers principles and applications. 2nd edn. Kluwer Academic Publishers 163–233Google Scholar
  14. 14.
    Chrissafis K, Pavlidou E, Paraskevopoulos K, Beslikas T, Nianias N, Bikiaris D (2011) Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J Therm Anal Calorim 105:313–323CrossRefGoogle Scholar
  15. 15.
    Clarinval AM (2002) Classification and comparison of thermal and mechanical properties of commercialized polymers’ international congress and trade show. Ind Appl Bioplastics, 3rd, 4th and 5th FebruaryGoogle Scholar
  16. 16.
    Corres MA, Zubitur M, Cortazar M, Mugica A (2013) Thermal decomposition of phenoxy/clay nanocomposites: effect of organoclay microstructure. Polym Degrad Stab 98:818–828CrossRefGoogle Scholar
  17. 17.
    Degee P, Dubois P, Jerome R, Jacobsen S, Fritz H (1999) Macromol Symp 144:289CrossRefGoogle Scholar
  18. 18.
    Doi Y, Steinbu´chel A (2002) Biopolymers, applications and commercial products—polyesters III. Wiley-VCH, Weiheim, p 410Google Scholar
  19. 19.
    Drumright RE, Gruber PR, Henton DE (2002) Polylactide acid technology. Adv Mater 12:1841–1846CrossRefGoogle Scholar
  20. 20.
    Engineer C, Parikh J, Raval A (2011) Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Org 25:79–85Google Scholar
  21. 21.
    Eric DL, Christopher YL (2013) Macromolecules 46(8):2877–2891CrossRefGoogle Scholar
  22. 22.
    Garlotta D (2001) A Literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  23. 23.
    Guo-Qiang C, Martin KP (2012) Chem Rev 112(4):2082–2099CrossRefGoogle Scholar
  24. 24.
    Gupta B, Revagade N, Hilborn J (2007) J. Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482CrossRefGoogle Scholar
  25. 25.
    Harris AM, Lee EC (2006) Injection molded Polylactide composites for automotive applications. SPE ACCE Paper 2006, No. 062906Google Scholar
  26. 26.
    Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J, Chen J, Yang Y (2003) Biomaterials 24:2395CrossRefGoogle Scholar
  27. 27.
    Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRefGoogle Scholar
  28. 28.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571CrossRefGoogle Scholar
  29. 30.
    Ke-Ke Y, Xiu-Li W, Wang YZ (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13:485–500Google Scholar
  30. 31.
    Kowalski A, Duda A, Penczek S (2000) Macromolecules 33:689CrossRefGoogle Scholar
  31. 32.
    Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Maciel R (2012) Biotechnol Adv 30:321–328CrossRefGoogle Scholar
  32. 33.
    Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852CrossRefGoogle Scholar
  33. 34.
    Luckachan GL, Pillai CKS (2011) Biodegradable polymers–a review on recent trends and emerging perspectives. J Polym Environ 19:637–676CrossRefGoogle Scholar
  34. 35.
    Mark JE (2006) Some novel polymeric nanocomposites. Acc Chem Res 39:881–888CrossRefGoogle Scholar
  35. 36.
    Mittal V (2009) Polymer layered silicate nanocomposites: a review. Materials 2:992–1057CrossRefGoogle Scholar
  36. 37.
    Mohammad M, Winey KI (2006) Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  37. 38.
    Moon S, Jin F, Lee C, Tsutsumi S, Hyon S (2005) Novel carbon nanotube/poly(L-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol Symp 224:278–295CrossRefGoogle Scholar
  38. 39.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 10:8493–8501CrossRefGoogle Scholar
  39. 40.
    Nguyen QT, Baird DG (2006) Preparation of polymer–clay nanocomposites and their properties. Adv Polym Tech 25(4):270–285CrossRefGoogle Scholar
  40. 41.
    Ouch T, Saito T, Kontani T, Ohya Y (2004) Macromol Biosci 4:458CrossRefGoogle Scholar
  41. 42.
    Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95:1148CrossRefGoogle Scholar
  42. 43.
    Petersson L, Oksman K, Mathew AP (2006) Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. J Appl Polym Sci 102:1852–1862CrossRefGoogle Scholar
  43. 44.
    Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Program Polym Sci 38:1504–1542CrossRefGoogle Scholar
  44. 45.
    Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  45. 46.
    Ray SS, Okamoto M (2003) Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 24:815–840CrossRefGoogle Scholar
  46. 48.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  47. 29.
    Shameli K, Ahmad MB, Yunus WMZW, Ibrahim NA, Rahman RA, Jokar M, Darroudi M (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomedicine 5:573–579CrossRefGoogle Scholar
  48. 47.
    Shibata M, Someya Y, Orihara M, Miyoshi M (2006) Thermal and mechanical properties of plasticized poly(L-lactide) nanocomposites with organo-modified montmorillonites. J Appl Polym Sci 99:2594–2602CrossRefGoogle Scholar
  49. 49.
    Sorrentino A, Gorrasi G, Vittoria V (2007) Trends Food Sci Technol 18:84–95CrossRefGoogle Scholar
  50. 50.
    Supronowicz PR, Ajayan PM, Ullmann KR, Arulanadam BP, Metzger DW, Bizios R (2002) Novel current-conducting composite substrates for reposing osteoblasts to alternating current simulation. J Biomed Mater Res 59:499–506CrossRefGoogle Scholar
  51. 51.
    Vilgis TA, Heinrich G, Kluppel M (2009) Reinforcement of polymer nano-composites theory, experiments and applications, 1st edn. Cambridge University Press, Cambridge, United of KingdomCrossRefGoogle Scholar
  52. 52.
    Wang RY (2009) Study on toughening modification of Poly (lactic acid). Doctoral dissertation, Shanghai Jiaotong UniversityGoogle Scholar
  53. 53.
    Wang RY, Wan CY, Wang SF, Zhang Y (2009) Morphology, mechanical properties, and durability of poly(lactic acid) plasticized with di(isononyl) cyclohexane-1,2-dicarboxylate. Polym Eng Sci 49(12):2414–2420CrossRefGoogle Scholar
  54. 54.
    Wen X, Zhang K, Wang Y, Han L, Han C, Zhang H (2010) Study of the thermal stabilization mechanism of biodegradable poly(L-lactide)/silica nanocomposites. Polym Int 60:202–210CrossRefGoogle Scholar
  55. 55.
    Wu D, Wu L, Zhou W, Zhang M, Yang T (2010) Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym Eng Sci 50:1721–1733CrossRefGoogle Scholar
  56. 56.
    Yaodong L, Satish K (2014) Polymer/carbon nanotube nano composite fibers–a review. ACS Appl Mater Interface 6(9):6069–6087CrossRefGoogle Scholar
  57. 57.
    Zhang R, Ma PX (2004) Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Macromol Biosci 4:100CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.PG and Research Department of ChemistryThe New CollegeChennaiIndia

Personalised recommendations