Green Polymer Composites Based on Polylactic Acid (PLA) and Fibers

  • Mokgaotsa Jonas MochaneEmail author
  • Teboho Clement Mokhena
  • Emmanuel Rotimi SadikuEmail author
  • S. S. Ray
  • T. G. Mofokeng
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)


The increasing demand for environmental and waste management policies globally has motivated researchers to focus on the development of biocomposites from renewable resources such as lignocellulosic materials and biopolymers in order to protect the environment. The release of polymers as waste materials generated a significant problem to the environment after service life. Authorities globally are encouraging people to employ more green materials from renewable resources. Biodegradable polymers from natural resources provide with an excellent opportunity to reduce the reliance on petroleum-derived polymers such as polyethylene and polypropylene. Among the well-known biodegradable polymers, polylactic acid (PLA) has a huge commercial potential because of its good biocompatibility, aesthetics, and easy processability in different mixing techniques. Polylactic acid is a biodegradable from renewable resources such as starch and corn. Currently, attention has been paid to the use of bio-reinforced composites which are applied in automotive, construction, and packaging applications. This chapter discusses the current research efforts, challenges, different preparation methods, and applications of polylactic acid (PLA)/fiber composites.


Polylactic acid Biodegradable Biopolymers Lignocellulosic Renewable resources 


  1. 1.
    Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24CrossRefGoogle Scholar
  2. 2.
    Araújo A, Botelho G, Oliveira M, Machado A (2014) Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl Clay Sci 88–89:144–150CrossRefGoogle Scholar
  3. 3.
    Ashik KP, Sharma RS (2015) A review of mechanical properties of natural fiber reinforced hybrid polymer composites. J Miner Mater Charact Eng 3:420–426Google Scholar
  4. 4.
    Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A (2009) Eco-challenges of bio-based polymer composites. Materials 2:911–925CrossRefGoogle Scholar
  5. 5.
    Baillie C (2005) Green composites: polymer composites and the environment. CRC Press, Boca RatonCrossRefGoogle Scholar
  6. 6.
    Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A Appl Sci Manuf 39(6):979–988CrossRefGoogle Scholar
  7. 7.
    Birnin-Yauri AU, Ibrahim NA, Zainuddin N, Abdan K, Then YY, Chieng BW (2017) Effect of maleic anhydride-modified poly (lactic acid) on the properties of its hybrid fiber biocomposites. Polymers 9(5):165CrossRefGoogle Scholar
  8. 8.
    Bongarde US, Shinde VD (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innovative Technol 3(2):431–436Google Scholar
  9. 9.
    Bos HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37(8):1683–1692CrossRefGoogle Scholar
  10. 10.
    Brahim SB, Cheikh RB (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67(1):140–147CrossRefGoogle Scholar
  11. 11.
    Carr DJ, Cruthers NM, Laing RM, Niven BE (2005) Fibers from three cultivars of New Zealand flax (Phormium tenax). Text Res J 75(2):93–98CrossRefGoogle Scholar
  12. 12.
    Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Processing of poly (lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125CrossRefGoogle Scholar
  13. 13.
    Cheng S, Lau K-T, Liu T, Zhao Y, Lam P-M, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos B Eng 40(7):650–654CrossRefGoogle Scholar
  14. 14.
    Cheung H-Y, Ho M-P, Lau K-T, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng 40(7):655–663CrossRefGoogle Scholar
  15. 15.
    Cho D, Kim JM, Song IS, Hong I (2011) Effect of alkali pre-treatment of jute on the formation of jute-based carbon fibers. Mater Lett 65(10):1492–1494CrossRefGoogle Scholar
  16. 16.
    Couture A, Lebrun G, Laperrière L (2016) Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Compos Struct 154:286–295CrossRefGoogle Scholar
  17. 17.
    Debeli DK, Zhang Z, Jiao F, Guo J (2018) Diammonium phosphate-modified ramie fiber reinforced polylactic acid composite and its performances on interfacial, thermal, and mechanical properties. J Nat Fibers 1–15Google Scholar
  18. 18.
    Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429CrossRefGoogle Scholar
  19. 19.
    Efendy MGA, Pickering KL (2014) Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Compos A Appl Sci Manuf 67:259–267CrossRefGoogle Scholar
  20. 20.
    Gashti MP, Gashti MP (2013) Effect of colloidal dispersion of clay on some properties of wool fiber. J Dispersion Sci Technol 34(6):853–858CrossRefGoogle Scholar
  21. 21.
    Gunti R, Ratna Prasad AV, Gupta AVSSKS (2016) Mechanical and degradation properties of natural fiber reinforced PLA composites: jute, sisal, and elephant grass. Polym Compos 39(4):1125–1136CrossRefGoogle Scholar
  22. 22.
    Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25CrossRefGoogle Scholar
  23. 23.
    Heidi P, Bo M, Roberts J, Kalle N (2011) The influence of biocomposite processing and composition on natural fiber length, dispersion and orientation. J Mater Sci Eng A 1(2A):190Google Scholar
  24. 24.
    Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86CrossRefGoogle Scholar
  25. 25.
    Huson MG, Bedson JB, Phair NL, Turner PS (2000) Intrinsic strength of wool fibres. Asian-Australas J Anim Sci 13:267Google Scholar
  26. 26.
    Jandas PJ, Mohanty S, Nayak SK, Srivastava H (2011) Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polym Compos 32(11):1689–1700CrossRefGoogle Scholar
  27. 27.
    Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos A Appl Sci Manuf 34(3):253–266CrossRefGoogle Scholar
  28. 28.
    Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35(3):371–376CrossRefGoogle Scholar
  29. 29.
    Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892CrossRefGoogle Scholar
  30. 30.
    Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272CrossRefGoogle Scholar
  31. 31.
    Khalil HPSA, Fazita MRN, Bhat AH, Jawaid M, Fuad NAN (2010) Development and material properties of new hybrid plywood from oil palm biomass. Mater Des 31(1):417–424CrossRefGoogle Scholar
  32. 32.
    Khalil HPSA, Suraya NL (2011) Anhydride modification of cultivated kenaf bast fibers: morphological, spectroscopic and thermal studies. BioResources 6(2):1122–1135Google Scholar
  33. 33.
    Kim H-H, Kim C-S, Jeon J-H, Park C-G (2016) Effects on the physical and mechanical properties of porous concrete for plant growth of blast furnace slag, natural jute fiber, and styrene butadiene latex using a dry mixing manufacturing process. Materials 9(2):84CrossRefGoogle Scholar
  34. 34.
    Kiruthika AV (2017) A review on physico-mechanical properties of bast fibre reinforced polymer composites. J Build Eng 9:91–99CrossRefGoogle Scholar
  35. 35.
    Kopinke F-D, Remmler M, Mackenzie K (1996a) Thermal decomposition of biodegradable polyesters-I: Poly (β-hydroxybutyric acid). Polym Degrad Stab 52(1):25–38CrossRefGoogle Scholar
  36. 36.
    Kopinke F-D, Remmler M, Mackenzie K, Möder M, Wachsen O (1996b) Thermal decomposition of biodegradable polyesters-II. Poly (lactic acid). Polym Degrad Stab 53(3):329–342CrossRefGoogle Scholar
  37. 37.
    Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873CrossRefGoogle Scholar
  38. 38.
    Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313CrossRefGoogle Scholar
  39. 39.
    Kuang T-R, Mi H-Y, Fu D-J, Jing X, Chen B-Y, Mou W-J, Peng X-F (2015) Fabrication of poly (lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind Eng Chem Res 54(2):758–768CrossRefGoogle Scholar
  40. 40.
    Le TM, Pickering KL (2015) The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Compos A Appl Sci Manuf 76:44–53CrossRefGoogle Scholar
  41. 41.
    Lee CH, Salit MS, Hassan MR (2014) A review of the flammability factors of kenaf and allied fibre reinforced polymer composites. Adv Mater Sci Eng 2014:1–8Google Scholar
  42. 42.
    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRefGoogle Scholar
  43. 43.
    Li Z, Zhou X, Pei C (2011) Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. Int J Polym Sci 2011:1–7CrossRefGoogle Scholar
  44. 44.
    Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly (L-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105(1):255–268CrossRefGoogle Scholar
  45. 45.
    Mohanty AK, Misra M (1995) Studies on jute composites—a literature review. Polym Plast Technol Eng 34(5):729–792CrossRefGoogle Scholar
  46. 46.
    Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24CrossRefGoogle Scholar
  47. 47.
    Mustafa A, Abdollah MFB, Shuhimi FF, Ismail N, Amiruddin H, Umehara N (2015) Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Mater Des 67:577–582CrossRefGoogle Scholar
  48. 48.
    Niu M, Liu X, Dai J, Hou W, Wei L, Xu B (2012) Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials. Spectrochim Acta Part A Mol Biomol Spectrosc 86:289–293CrossRefGoogle Scholar
  49. 49.
    Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40(4–5):446–452CrossRefGoogle Scholar
  50. 50.
    Ochi S (2015) Flexural properties of long bamboo fiber/PLA composites. Open J Compos Mater 5(03):70–78CrossRefGoogle Scholar
  51. 51.
    Orue A, Eceiza A, Arbelaiz A (2018) Preparation and characterization of poly (lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind Crops Prod 112:170–180CrossRefGoogle Scholar
  52. 52.
    Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos B Eng 73:132–138CrossRefGoogle Scholar
  53. 53.
    Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos A Appl Sci Manuf 84:186–195CrossRefGoogle Scholar
  54. 54.
    Panda H (2011) Bamboo plantation and utilization handbook. Asia Pacific Business Press Inc.Google Scholar
  55. 55.
    Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Biodegradation and thermal decomposition of poly (lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95(9):1704–1707CrossRefGoogle Scholar
  56. 56.
    Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos A Appl Sci Manuf 38(2):461–468CrossRefGoogle Scholar
  57. 57.
    Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112CrossRefGoogle Scholar
  58. 58.
    Pickering KL, Li Y, Farrell RL, Lay M (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bioenergy 1(1):109–117Google Scholar
  59. 59.
    Pickering K (2008) Properties and performance of natural-fibre composites. ElsevierGoogle Scholar
  60. 60.
    Pozo Morales A, Güemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Bamboo-polylactic acid (PLA) composite material for structural applications. Materials 10(11):1286CrossRefGoogle Scholar
  61. 61.
    Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem Eng J 166(2):772–778CrossRefGoogle Scholar
  62. 62.
    Rajesh G, Prasad AVR (2014) Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Procedia Mater Sci 5:2188–2196CrossRefGoogle Scholar
  63. 63.
    Reddy N, Jiang Q, Yang Y (2012) Biocompatible natural silk fibers from Argema mittrei. J Biobased Mater Bioenergy 6(5):558–563CrossRefGoogle Scholar
  64. 64.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRefGoogle Scholar
  65. 65.
    De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Tensile behavior of New Zealand flax (Phormium tenax) fibers. J Reinf Plast Compos 29(23):3450–3454CrossRefGoogle Scholar
  66. 66.
    Sajna VP, Mohanty S, Nayak SK (2016) Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites. Polym Adv Technol 27(4):515–524CrossRefGoogle Scholar
  67. 67.
    Salmeia KA, Jovic M, Ragaisiene A, Rukuiziene Z, Milasius R, Mikucioniene D, Gaan S (2016) Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8(8):293CrossRefGoogle Scholar
  68. 68.
    Sanadi AR, Caulfield DF, Jacobson RE (1997) Agro-fiber thermoplastic composites. CRC Lewis Publishers, Boca RatonGoogle Scholar
  69. 69.
    Sha L, Chen Z, Chen Z, Zhang A, Yang Z (2016) Polylactic acid based nanocomposites: promising safe and biodegradable materials in biomedical field. Int J Polym Sci 2016:1–11CrossRefGoogle Scholar
  70. 70.
    Shah DU, Porter D, Vollrath F (2014) Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol 101:173–183CrossRefGoogle Scholar
  71. 71.
    Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 1980–2015(54):425–429CrossRefGoogle Scholar
  72. 72.
    Suardana NPG, Ku MS, Lim JK (2011) Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Des 32(4):1990–1999CrossRefGoogle Scholar
  73. 73.
    Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 34:664–672CrossRefGoogle Scholar
  74. 74.
    Sun Z, Zhang L, Liang D, Xiao W, Lin J (2017) Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. Int J Polym Sci 2017:1–8Google Scholar
  75. 75.
    Tan BK, Ching YC, Poh SC, Abdullah LC, Gan SN (2015) A review of natural fiber reinforced poly (vinyl alcohol) based composites: application and opportunity. Polymers 7(11):2205–2222CrossRefGoogle Scholar
  76. 76.
    Tawakkal ISMA, Cran MJ, Bigger SW (2014) Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Ind Crops Prod 61:74–83CrossRefGoogle Scholar
  77. 77.
    Thongpin C, Srimuk J, Wachirapong P (2015) Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: tensile properties and rate of fire propagation. In: IOP conference series: materials science and engineering vol 87, p 012078CrossRefGoogle Scholar
  78. 78.
    Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344CrossRefGoogle Scholar
  79. 79.
    Wang Y-N, Weng Y-X, Wang L (2014) Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym Testing 36:119–125CrossRefGoogle Scholar
  80. 80.
    Wu Z-H, Yang S-l, Yang W, Yang M-B (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Testing 27(8):957–963Google Scholar
  81. 81.
    Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819CrossRefGoogle Scholar
  82. 82.
    Yang M-H, Lin Y-H (2009) Measurement and simulation of thermal stability of poly (lactic acid) by thermogravimetric analysis. J Test Eval 37(4):364–370Google Scholar
  83. 83.
    Yu T, Ding D, Sheng C, Tuerhongjiang T, Li Y (2017) Enhanced mechanical properties and flame retardancy of short jute fiber/poly (lactic acid) composites with phosphorus-based compound. Sci China Technol Sci 60(11):1716–1723CrossRefGoogle Scholar
  84. 84.
    Yu T, Li Y, Wang Y (2014) Flammability and mechanical properties of ramie reinforced poly (lactic acid) composites by using DOPO. J Eng Sci 10:9–18Google Scholar
  85. 85.
    Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos A Appl Sci Manuf 41(4):499–505CrossRefGoogle Scholar
  86. 86.
    Yusoff RB, Takagi H, Nakagaito AN (2016) Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind Crops Prod 94:562–573CrossRefGoogle Scholar
  87. 87.
    Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18(3):422–429CrossRefGoogle Scholar
  88. 88.
    Zhan M, Wool RP (2011) Mechanical properties of chicken feather fibers. Polym Compos 32(6):937–944CrossRefGoogle Scholar
  89. 89.
    Zhang Q, Shi L, Nie J, Wang H, Yang D (2012) Study on poly (lactic acid)/natural fibers composites. J Appl Polym Sci 125(S2):E526–E533CrossRefGoogle Scholar
  90. 90.
    Zhao Y, Qiu J, Feng H, Zhang M, Lei L, Wu X (2011) Improvement of tensile and thermal properties of poly (lactic acid) composites with admicellar-treated rice straw fiber. Chem Eng J 173(2):659–666CrossRefGoogle Scholar
  91. 91.
    Zhou N, Yao L, Liang Y, Yu B, Ye M, Shan Z, Qiu Y (2013) Improvement of mechanical properties of ramie/poly (lactic acid) (PLA) laminated composites using a cyclic load pre-treatment method. Ind Crops Prod 45:94–99CrossRefGoogle Scholar
  92. 92.
    Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mokgaotsa Jonas Mochane
    • 1
    • 5
    Email author
  • Teboho Clement Mokhena
    • 2
    • 3
  • Emmanuel Rotimi Sadiku
    • 1
    Email author
  • S. S. Ray
    • 4
  • T. G. Mofokeng
    • 4
    • 5
  1. 1.Department of Materials Engineering (Polymer Section)Institute for Nano-Engineering Research (INER), Tshwane University of TechnologyPretoriaSouth Africa
  2. 2.Department of ChemistryNelson Mandela UniversityPort ElizabethSouth Africa
  3. 3.CSIR Materials Science and Manufacturing, Polymers and CompositesPort ElizabethSouth Africa
  4. 4.DST, CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial ResearchPretoriaSouth Africa
  5. 5.Department of Life SciencesCentral University of TechnologyBloemfonteinSouth Africa

Personalised recommendations