Synthesis of Polymeric Biomaterial for Medicine and Surgery

  • Nnamdi C. IheaturuEmail author
  • Ihuoma V. Diwe
  • Alma Tamunonengiofori Banigo
  • Oluyemi O. Daramola
  • Emmanuel Rotimi Sadiku
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)


New polymer materials for medical applications are the reason for some successes recorded in medicine and surgery. Current research and development (R&D) efforts are geared toward the upgrading of techniques and devices for more compelling and productive processing and application of biomaterials in medicine and surgery. The application of outcomes of such R&D efforts has led to recorded successes in the treatment of nagging health-related issues, wherein polymeric biomaterials are technically deployed in today’s healthcare technology. For wound healing, for instance, three-dimensional (3D) scaffolds may be designed to have a wide scope of properties which incorporate suitable surface science, porosity with pore measurements from large-scale to submicron and interconnectivity systems, which enable cell-to-cell communication and migration, cell multiplication, and separation, lastly to keep up the biocompatibility and basic honesty all through the tissue recovery process. Fabrication procedures of biocompatible 3D scaffolds and hydrogels with suitable architectures may be achieved via the conventional method of synthesis or rapid prototyping. On account of hydrogels, chemical cross-linking prompts the development of permanent junction-type networks, while physical cross-linking permits the arrangement of transient junction-type networks. These possibilities give credences to the relentless efforts of R&D in the synthesis of more stable polymeric biomaterials for medical applications.


Biomaterials Medicine Surgery Wound healing Biocompatibility Hydrogels 


  1. 1.
    Shi D (2006) Introduction to biomaterials. World Scientific, Tsinghua University PressGoogle Scholar
  2. 2.
    Hoffman AS (2002) Adv Drug Deliv Rev 43:3Google Scholar
  3. 3.
    Eljarrat-Binstock E, Orucov F, Frucht-Pery J, Pe’er J, Domb AJ (2008) J Ocul Pharmacol Ther 24:344Google Scholar
  4. 4.
    Liu KH, Liu TY, Chen SY, Liu DM (2008) Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045Google Scholar
  5. 5.
    Liu W, Griffith M, Li F (2008) J Mater Sci Mater Med 19:3365Google Scholar
  6. 6.
    Yang F, Wang Y, Zhang Z, Hsu B, Jabs EW, Elisseeff JH (2008) Bone 43:55Google Scholar
  7. 7.
    Khan F, Tare RS, Oreffo ROC, Bradley M (2009) Angew Chem Int Ed 48:978Google Scholar
  8. 8.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) Nat Mater 6:997Google Scholar
  9. 9.
    Hollister SJ (2005) Nat Mater 4:518Google Scholar
  10. 10.
    Curtis ASG, Wilkinson CDW (1997) Biomaterials 18:1573Google Scholar
  11. 11.
    Balowski JJ, Wang Y, Allbritton NL (2013) Adv Mater 25:4107Google Scholar
  12. 12.
    Liebschner M, Wettergreen M (2012) Methods Mol Biol 868:71Google Scholar
  13. 13.
    Lu Y, Chen S (2012) Methods Mol Biol 868:289Google Scholar
  14. 14.
    Revzin A, Tompkins RG, Toner M (2003) Langmuir 19:9855Google Scholar
  15. 15.
    Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T (2002) Biomaterials 23:561Google Scholar
  16. 16.
    Karp JM, Yeo Y, Geng W, Cannizarro C, Yan K, Kohane DS, Vunjak-Novakovic G, Langer RS, Radisic M (2006) Biomaterials 27:4755Google Scholar
  17. 17.
    Ishihata H, Tanaka M, Iwama N, Ara M, Shimonishi M, Nagamine M, Murakami N, Kanaya S, Nemoto E, Shimauchi H, Shimomura M (2010) J Biomech Sci Eng 5:252 (Special issue on Micro Nanobiotech for cells)Google Scholar
  18. 18.
    Sato T, Tanaka M, Yamamoto S, Ito E, Shimizu K, Igarashi Y, Shimomura M, Inokuchi J (2010) J Biomater Sci Polym Ed 21:1947Google Scholar
  19. 19.
    Shimomura M, Nishikawa T, Mochizuki A, Tanaka M (2001) JP 2001/157574Google Scholar
  20. 20.
    Tanaka M, Takayama A, Ito E, Sunami H, Yamamoto S, Shimomura M (2007) J Nanosci Nanotechnol 7:763Google Scholar
  21. 21.
    Tsuruma A, Tanaka M, Yamamoto S, Shimomura M (2008) Colloids Surf A 313–314:536Google Scholar
  22. 22.
    Yamamoto S, Tanaka M, Sunami H, Yamashita S, Morita Y, Shimomura M (2007) Langmuir 23:8114Google Scholar
  23. 23.
    Zhao X, Shuguang Z (2007) Macromol Biosci 7:13Google Scholar
  24. 24.
    Dinca V, Kasotakis E, Catherine J, Mourka A, Ranella A, Ovsianikov A, Chichkov BN, Farsari M, Mitraki A, Fotakis C (2007) Nano Lett 8:538Google Scholar
  25. 25.
    Gazit E (2007) Chem Soc Rev 36:1263Google Scholar
  26. 26.
    Scanlon S, Aggeli A (2008) Nano Today 3:22Google Scholar
  27. 27.
    Zhang S (2003) Mater Today 6:20Google Scholar
  28. 28.
    Gelain F, Bottai D, Vescovi A, Zhang S (2006) PLoS One 1:e119Google Scholar
  29. 29.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Proc Natl Acad Sci U S A 99:9996Google Scholar
  30. 30.
    Ellis-Behnke RG, Liang YX, You S-W, Tay DKC, Zhang S, So K-F, Schneider GE (2006) Proc Natl Acad Sci U S A 103:5054Google Scholar
  31. 31.
    Zhang S, Gelain F, Zhao X (2005) Semin Cancer Biol 15:413Google Scholar
  32. 32.
    Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S (2000) Proc Natl Acad Sci U S A 97:6728Google Scholar
  33. 33.
    Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS (2008) Prog Polym Sci 33:167Google Scholar
  34. 34.
    Kim SY, Lee YM (1999) Drug release behavior of electrical responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus. J Appl Polym Sci 74:1752–1761Google Scholar
  35. 35.
    Kwon IC, Bae YH, Kim SW (1994) Heparin release from polymer complex. J Control Rel 30:155–159Google Scholar
  36. 36.
    Liu Y, Servant A, Guy OJ, Al-Jamal KT, Williams PR (2012) Sens Actuators B: Chem 175:100–105Google Scholar
  37. 37.
    Tomer R, Dimitrijevic D, Florence AT (1995) Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels. J Control Rel 33:405–413Google Scholar
  38. 38.
    Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320Google Scholar
  39. 39.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY, USAGoogle Scholar
  40. 40.
    Kim SJ, Shin SR, Lee JH, Lee SH, Kim SI (2003) Electrical response characterization of chitosan/polyacrylonitrile hydrogel in NaCl solutions. J Appl Polym Sci 90:91–96Google Scholar
  41. 41.
    Xiang Y, Liu G, Zhang C, Liao J (2013) Sulfoacetic acid modifying poly(vinyl alcohol) hydrogel and its electroresponsive behavior under DC electric field. Smart Mater Struct 22:014009Google Scholar
  42. 42.
    Amarasekara AS, Razzaq A, Bonham P (2013) Synthesis and characterization of all renewable resources based branched polyester: poly(2,5-furandicarboxylic acid-co-glycerol). ISRN Polym Sci 1–4Google Scholar
  43. 43.
    Wilsens CHRM (2015) Exploring the application of 2,5-furandicarboxylic acid as a monomer in high performance polymers: synthesis, characterization and properties. Technishe Universiteit Eindhoven, p 3.
  44. 44.
    De Jong E, Dam MA, Sipos L (2012) Furandicarboxylic acid (FDCA), a versatile building block for a very. In: Smith PB, Richard GA (eds) Biobased monomers, polymers, and materials. American Chemical Society, Washinton DC, pp 1–13Google Scholar
  45. 45.
    Gandini A (2011) Furan monomers and their polymers: synthesis, properties and applications, In: BiopolymersGoogle Scholar
  46. 46.
    Hong S, Min K-D, Nam B-U, Park OO (2016) High molecular weight bio furan-based copolyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chem 18(19):5142–5150Google Scholar
  47. 47.
    Doi Y, Steinbüchel A (2002) Biopolymers, applications and commercial products—polyesters III. Wiley-VCH, Weinheim, Germany, p 410Google Scholar
  48. 48.
    Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N (2013) Bio-based furan polymers with self-healing ability. Macromolecules 46(5):1794–1802Google Scholar
  49. 49.
    Liu YL, Chuo T-W (2013) Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym Chem 4(7)Google Scholar
  50. 50.
    Gomes M, Gandini A, Silvestre AJD, Reis B (2011) Synthesis and characterization of poly (2,5furan dicarboxylate)s based on a variety of diols. J Polym Sci, Part A: Polym Chem 49(17):3759–3768Google Scholar
  51. 51.
    Gandini A, Coelho D, Gomes M, Reis B, Silvestre A (2009) Materials from renewable resources based on furan monomers and furan chemistry: work in progress. J Mater ChemGoogle Scholar
  52. 52.
    Zhou SB, Deng XM, Li XH, Jia WX, Liu L (2004) Synthesis and characterization of biodegradable low molecular weight aliphatic polyesters and their use in protein-delivery systems. J Appl Polym Sci 91:1848–1856. Scholar
  53. 53.
    Duval C, Nouvel C, Six J-L (2014) Is bismuth subsalicylate an effective nontoxic catalyst for plga synthesis? J Polym Sci Part A. Scholar
  54. 54.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176Google Scholar
  55. 55.
    Li J, Stayshich RM, Meyer TY (2011) Exploiting sequence to control the hydrolysis behavior of biodegradable plga copolymers. J Am Chem Soc 133:6910–6913Google Scholar
  56. 56.
    Avgoustatis K (2005) Polylactic-co-glycolic acid (PLGA). In: Encyclopedia of biomaterials and biomedical engineering. Taylor & Francis, pp 1–11.
  57. 57.
    Baino F (2011) Biomaterials and implants for orbital floor repair. Acta Biomater 7:3248–3266Google Scholar
  58. 58.
    You Y, Lee SW, Youk JH, Min BM, Lee SJ, Park WH (2005) In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(L-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym Degrad Stab 90:441–448Google Scholar
  59. 59.
    You Y, Min BM, Lee SJ, Lee TS, Park WH (2005) In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J Appl Polym Sci 95:193–200Google Scholar
  60. 60.
    Avérous L, Pollet E (2012) Biodegradable polymers. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Green Energy and Tech., Springer, London. Scholar
  61. 61.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864Google Scholar
  62. 62.
    Garlotta D (2002) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84Google Scholar
  63. 63.
    Hartmann H (1998) High molecular weight polylactic acid polymers. In: Kaplan DL (ed) Biopolymers from renewable resources, 1st edn. Springer, Berlin, pp 367–411Google Scholar
  64. 64.
    Mehta R, Kumar V, Bhunia H, Upahyay SN (2005) Synthesis of poly(lactic acid): a review. J Macromol Sci Polym Rev 45:325–349Google Scholar
  65. 65.
    Sodergard A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163Google Scholar
  66. 66.
    Averous L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources (Chapter 21). Elsevier BV, Netherlands, pp 433–450Google Scholar
  67. 67.
    Lee C, Hong S (2014) An overview of the synthesis and synthetic mechanism of poly (lactic acid). Mod Chem Appl 2:144. Scholar
  68. 68.
    Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature‘s arts. J Mater Sci 35(2):261–270Google Scholar
  69. 69.
    Khan F, Dahman Y (2012) Novel approach for the utilization of biocellulose nanofibres in polyurethane nanocomposites for potential applications in bone tissue implants. J Des Monomers Polym 15(1):1–29Google Scholar
  70. 70.
    Sani A, Dahman Y (2010) Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. J Chem Technol Biotechnol 85(2):151–164Google Scholar
  71. 71.
    Dahman Y (2009) Nanostructured Biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol 9(9):5105–5122Google Scholar
  72. 72.
    Geyer U, Heinze TH, Stein A, Klemm D (1994) Formation, derivatization and applications of bacterial cellulose. Int J Biol Macromol 16(6):343–347Google Scholar
  73. 73.
    Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68(3):345–352Google Scholar
  74. 74.
    Colvin JR, Leppard GG (1997) The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus. Can J Microbiol 23(6):701–709Google Scholar
  75. 75.
    Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107(2):576–583Google Scholar
  76. 76.
    Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20(5):1366–1371Google Scholar
  77. 77.
    Dahman Y, Jayasuriya KE, Kalis M (2010) Potential of biocellulose nanofibers production from agricultural renewable resources: preliminary study. Appl Biochem Biotechnol 162(6):1647–1659Google Scholar
  78. 78.
    Hong F, Qiu KY (2004) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Biotechnol Prog 20(3):1366–1371Google Scholar
  79. 79.
    Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010) Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Biores Technol 101(10):3602–3608Google Scholar
  80. 80.
    Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd Polym 76(2):333–335Google Scholar
  81. 81.
    Noro N, Sugano Y, Shoda M (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl Microbiol Biotechnol 64(2):199–205Google Scholar
  82. 82.
    Brown RM (1979) Biogenesis of natural polymer systems with special reference to cellulose assembly and deposition. In: Proceedings of the third Phillip Morris U.S.A. Operations Center, pp 52–123Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nnamdi C. Iheaturu
    • 1
    Email author
  • Ihuoma V. Diwe
    • 1
  • Alma Tamunonengiofori Banigo
    • 2
  • Oluyemi O. Daramola
    • 3
    • 4
  • Emmanuel Rotimi Sadiku
    • 4
  1. 1.Department of Polymer and Textile EngineeringFederal University of TechnologyIhiagwa, OwerriNigeria
  2. 2.Department of Biomedical TechnologyFederal University of TechnologyOwerriNigeria
  3. 3.Department of Metallurgical and Materials EngineeringFederal University of TechnologyAkureNigeria
  4. 4.Department of Chemical, Metallurgical and Materials Engineering, Polymer DivisionInstitute of NanoEngineering Research (INER), Tshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations