Taurine 11 pp 787-799 | Cite as

Anti-apoptotic Effect of Taurine on Schwann Cells Exposed to High Glucose In Vitro

  • Kaixin Li
  • Inam-u-llah
  • Xiaoxia Shi
  • Mengren Zhang
  • Pingan Wu
  • Shuangyue Li
  • Raheel Suleman
  • Azhar Nisar
  • Fengyuan Piao
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1155)


It was reported that apoptosis of Schwann cells could increase in the diabetic rats. The studies showed that taurine inhibited apoptosis in a variety of cells. However, there were few reports on studying the protection of taurine against apoptosis of Schwann cells induced by high glucose (HG) and the underlying mechanism. In our study, the cells were divided into five groups: Control: the normal medium; HG group: 50 mM high glucose; T1: 50 mM high glucose+Taurine (10 mM) group; T2: 50 mM high glucose+Taurine (20 mM) group; T3: 50 mM high glucose+Taurine (40 mM) group. We used MTT and Tunel assays to measure the cell viability and apoptosis, respectively. Then, we also used western blotting to detect the protein levels of apoptosis-related protein. The results demonstrate that taurine promoted cell viability and decreased apoptosis in RSC96 cells exposed to HG. Furthermore, taurine markedly improved imbalance of Bax and Bcl-2, inhibited the translocation of Cytochrome C (Cyt C) from mitochondria to cytosol and reduced caspase-3 activity in HG-induced RSC96 cells. Our results indicate that taurine protect against apoptosis of Schwann cells induced by HG via inhibiting mitochondria-dependent caspase-3 pathway.


High glucose Apoptosis Schwann cells Schwann cells Anti-apoptotic effect 



Diabetes mellitus


High glucose


4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide


In situ TdT-mediated dUTP nick end labeling


Conflict of Interest

It is declared that there is no conflict of interest among the authors.

Research Subjects

It is declared that there is no animal was harmed or hurt except according to ethics.

Informed Consent

It is declared that this manuscript is submitting after consent from all authors are aware of this submission.


  1. Alam U, Asghar O, Azmi S, Malik RA (2014) General aspects of diabetes mellitus: Elsevier Health SciencesGoogle Scholar
  2. Bondan EF, Lallo MA, Trigueiro AH, Ribeiro CP, Sinhorini IL, Graça DL (2006) Delayed Schwann cell and oligodendrocyte remyelination after ethidium bromide injection in the brainstem of Wistar rats submitted to streptozotocin diabetogenic treatment. Braz J Med Biol Res 39(5):637–646PubMedCrossRefGoogle Scholar
  3. Concannon CG, Orrenius S, Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 9(4–5):195–201PubMedCrossRefGoogle Scholar
  4. Das J, Vasan V, Sil PC (2012) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258(2):296–308CrossRefGoogle Scholar
  5. Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120(1):1–34PubMedPubMedCentralCrossRefGoogle Scholar
  6. Fan X, Xi H, Zhang Z, Liang Y, Li Q, He J (2017) Germ cell apoptosis and expression of Bcl-2 and Bax in porcine testis under normal and heat stress conditions. Acta Histochem 119(3):198–204PubMedCrossRefGoogle Scholar
  7. Han J, Tan P, Li Z, Wu Y, Li C, Wang Y, Liu Y (2014) Fuzi attenuates diabetic neuropathy in rats and protects schwann cells from apoptosis induced by high glucose. PLoS One 9(1):e86539PubMedPubMedCentralCrossRefGoogle Scholar
  8. Lee HJ, Lee EK, Seo YE, Shin YH, Kim HS, Chun YH, Kim CK (2015) Roles of Bcl-2 and caspase-9 and -3 in CD30-induced human eosinophil apoptosis. J Microbiol Immunol Infect 50(2)CrossRefGoogle Scholar
  9. Li D, Fang Y, Wang P, Shan W, Zuo Z, Xie L (2012a) Autologous transplantation of adipose-derived mesenchymal stem cells attenuates cerebral ischemia and reperfusion injury through suppressing apoptosis and inducible nitric oxide synthase. Int J Mol Med 29(5):848PubMedGoogle Scholar
  10. Li Y, Hu Z, Chen B, Bu Q, Lu W, Deng Y, Cen X (2012b) Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett 215(1):1–7PubMedPubMedCentralCrossRefGoogle Scholar
  11. Li R, Ma J, Wu Y, Nangle M, Zou S, Li Y et al (2017) Dual delivery of NGF and BFGF coacervater ameliorates diabetic peripheral neuropathy via inhibiting schwann cells apoptosis. Int J Biol Sci 13(5):640PubMedPubMedCentralCrossRefGoogle Scholar
  12. Liu D, Liang X, Zhang H (2016) Effects of high glucose on cell viability and differentiation in primary cultured Schwann cells: potential role of ERK signaling pathway. Neurochem Res 41(6):1281–1290PubMedCrossRefGoogle Scholar
  13. Luca AD, Pierno S, Camerino DC (2015) Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med 13(1):243PubMedPubMedCentralCrossRefGoogle Scholar
  14. Maiese K, Chong ZZ, Shang YC, Wang S (2012) Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 16(12):1203–1214PubMedPubMedCentralCrossRefGoogle Scholar
  15. Matsushita K, Mizushima T, Shirahige A, Tanioka H, Sawa K, Ochi K, Koide N et al (2012) Effect of taurine on acinar cell apoptosis and pancreatic fibrosis in dibutyltin dichloride-induced chronic pancreatitis. Acta Med Okayama 66(4):329PubMedGoogle Scholar
  16. Russell JW, Zilliox LA (2014) Diabetic neuropathies. Continuum 20(1):1226–1240PubMedGoogle Scholar
  17. Said G (2007) Diabetic neuropathy--a review. Nat Clin Pract Neurol 3(6):331PubMedCrossRefGoogle Scholar
  18. Sun J, Shi X, Li S, Piao F (2018) 2,5-hexanedione induces bone marrow mesenchymal stem cell apoptosis via inhibition of Akt/Bad signal pathway. J Cell Biochem 119(4):3732–3743PubMedCrossRefGoogle Scholar
  19. Takayama C, Mukaizawa F, Fujita T, Ogawara K, Higaki K, Kimura T (2009) Amino acids suppress apoptosis induced by sodium laurate, an absorption enhancer. J Pharm Sci 98(12):4629–4638PubMedCrossRefGoogle Scholar
  20. Tesfaye S, Selvarajah D (2012) Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes 28(Suppl 1):8Google Scholar
  21. Trudeau K, Muto T, Roy S (2012) Downregulation of mitochondrial connexin 43 by high glucose triggers mitochondrial shape change and cytochrome C release in retinal endothelial cells. Invest Ophthalmol Vis Sci 53(10):6675PubMedPubMedCentralCrossRefGoogle Scholar
  22. Tu S, Zhang XL, Wan HF, Xia YQ, Liu ZQ, Yang XH, Wan FS (2018) Effect of taurine on cell proliferation and apoptosis human lung cancer A549 cells. Oncol Lett 15(4):5473–5480PubMedPubMedCentralGoogle Scholar
  23. Wang Y, Wu Y, Luo K, Liu Y, Zhou M, Yan S, Cai Y et al (2013) The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol 58(6):61–67PubMedPubMedCentralCrossRefGoogle Scholar
  24. Wang Q, Huang H, Huang Z (2015) Taurine inhibited the apoptosis of glial cells induced by hypoxia. J Hyg Res 44(2):284Google Scholar
  25. Yagihashi S, Yamagishi S, Wada R (2007) Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. Diabetes Res Clin Pract 77(3):S184–S189PubMedCrossRefGoogle Scholar
  26. Yu Y, Ma X, Yang T, Li B, Xie K, Liu D, Wang G, Yu Y (2015) Protective effect of hydrogen-rich medium against high glucose-induced apoptosis of schwann cells in vitro. Mol Med Rep 12(3):3986–3992PubMedCrossRefGoogle Scholar
  27. Zeng KH, Xu HX, Mi MT, Chen K, Zhu JD, Long Y, Yu XP (2010) Effects of taurine on glial cells apoptosis and taurine transporter expression in retina under diabetic conditions. Neurochem Res 35(10):1566–1574PubMedCrossRefGoogle Scholar
  28. Zhang Y, Ren S, Liu Y, Gao K, Liu Z, Zhang Z (2017) Inhibition of starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by taurine through modulating the expression of calpain-1 and calpain-2. Int J Mol Sci 18(10):2146PubMedCentralCrossRefGoogle Scholar
  29. Zhongmin Alex Ma ZZ, Turk J (2014) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012(2012):703538Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kaixin Li
    • 1
  • Inam-u-llah
    • 1
  • Xiaoxia Shi
    • 1
  • Mengren Zhang
    • 1
  • Pingan Wu
    • 1
  • Shuangyue Li
    • 1
  • Raheel Suleman
    • 2
  • Azhar Nisar
    • 3
  • Fengyuan Piao
    • 1
  1. 1.Department of Occupational and Environmental HealthDalian Medical UniversityDalianChina
  2. 2.Institute of Food Science and Technology, Graduate School of Chinese Academy of Agriculture ScienceBeijingChina
  3. 3.Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina

Personalised recommendations