Taurine 11 pp 611-626 | Cite as

Antioxidant Activities of Viviparus Contectus Extract Against Tert-Butylhydroperoxide-Induced Oxidative Stress

  • Yon-Suk Kim
  • Eun-Kyung Kim
  • Xin Dong
  • Woen-Bin Shin
  • Jin-Su Park
  • Su-Jin Kim
  • Eun-Ae Go
  • Hee-Guk Byun
  • Pyo-Jam ParkEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1155)


In this study, the antioxidant properties of Viviparus contectus (V. contectus) extract were evaluated for various radical scavenging activities, ferric reducing antioxidant power (FRAP), ABTS radical scavenging activity and oxygen radical absorbance capacity (ORAC). In addition, inhibition effect of the V. contectus extract against DNA scission induced by hydroxyl radical was measured. We also studied the protective effect of V. contectus extract against oxidative damage through measurements of intracellular reactive oxygen species (ROS) in Chang cells and zebrafish embryo. We found that V. contectus extract contains strong radical scavenging activities and antioxidant properties, which prevent tert-butylhydroperoxide (t-BHP)-induced oxidative stress, enhance cell viability, reduce ROS production, inhibit oxidative damage and improve mitochondrial function in Chang cells. Also, we determined that the V. contectus extract reduced ROS production mediated by t-BHP induced oxidative stress on zebrafish embryo.


Antioxidant activity Viviparus contectus Oxidative stress 


Conflict of Interest

The authors declare that there are no conflicts of interest.


  1. Ambigaipalan P, Shahidi F (2015) Antioxidant potential of date (Phoenix dactylifera L.) seed protein hydrolysates and carnosine in food and biological systems. J Agric Food Chem 63:864–871CrossRefGoogle Scholar
  2. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  3. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19CrossRefGoogle Scholar
  4. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol 28:25–30CrossRefGoogle Scholar
  5. Cao M, Yao X (2005) Study on extraction technology of taurine from Cipangopaludina chinensis. J Yang Univ 2:84–87Google Scholar
  6. Chen J, Lindmark-Mansson H, Gorton L, Akesson B (2003) Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int Dairy J 13:927–935CrossRefGoogle Scholar
  7. Chiu YW, Chen HC, Lee SC, Chen CA (2002) Morphometric analysis of shell and operculum variations in the viviparid snail, Cipangopaludina chinensis (Mollusca: Gastropoda), in Taiwan. Zool Stud 41(3):321–331Google Scholar
  8. Cui R, Zhao C (1989) Preliminary study on the pharmacological functions of polysaccharides from three mollusca species. J Yunnan Univ 3:172–174Google Scholar
  9. Flohé L (1988) Glutathione peroxidase. Basic Life Sci 49:663–668PubMedGoogle Scholar
  10. Fu JF, Zhang RB (2010) Study on inhibitive effect of polysaccharide from Cipangopaludina chinensis gray on Hela cells in vitro. Chin J Prim Med Pharm 22:3057–3058Google Scholar
  11. Gülçin İ (2010) Antioxidant properties of resveratrol: a structure–activity insight. Innov Food Sci Emerg Technol 11:210–218CrossRefGoogle Scholar
  12. Guo H, Saravanakumar K, Wang MH (2018) Total phenolic, flavonoid contents and free radical scavenging capacity of extracts from tubers of Stachys affinis. Bio-catal Agric Biotechnol 15:235–239CrossRefGoogle Scholar
  13. Hussein MA (2011) A convenient mechanism for the free radical scavenging activity of resveratrol. Inter J Phytomed 3:459–469Google Scholar
  14. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S36CrossRefGoogle Scholar
  15. Jiang C, Jiao Y, Chen X, Li X, Yan W, Yu B, Xiong Q (2013) Preliminary characterization and potential hepatoprotective effect of polysaccharides from Cipangopaludina chinensis. Food Chem Toxicol 59:18–25CrossRefGoogle Scholar
  16. Kašparova S, Brezová V, Valko M, Horecký J, Mlynárik V, Liptaj T, Vančová O, Uličná O, Dobrota D (2005) Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem Int 46:601–611CrossRefGoogle Scholar
  17. Kerr S, Brosnan MJ, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33:1353–1358CrossRefGoogle Scholar
  18. Kim YS, Lee SJ, Hwang JW, Kim EK, Kim SE, Kim EH, Moon SH, Jeon BT, Park PJ (2012) In vitro protective effects of Thymus quinquecostatus Celak extracts on t-BHP-induced cell damage through antioxidant activity. Food Chem Toxicol 50:4191–4198CrossRefGoogle Scholar
  19. Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274:13908–13914CrossRefGoogle Scholar
  20. Lu HF, Du LN, Li ZQ, Chen XY, Yang JX (2014) Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda: Viviparidae). Zool Res 35(6):510–527PubMedPubMedCentralGoogle Scholar
  21. Meng D, Zhang P, Zhang L, Wang H, Ho CT, Li S, Shahidi F, Zhao H (2017) Detection of cellular redox reactions and antioxidant activity assays. J Funct Foods 37:467–479CrossRefGoogle Scholar
  22. Miller DD (1996) Food chemistry. Marcel Deckker, New York, pp 618–649Google Scholar
  23. Ou B, Huang D, Hampsch WM, Flanagan JA, Deemer EK (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128CrossRefGoogle Scholar
  24. Oyaizu M (1986) Studies on product of browning reaction prepared from glucose amine. Jpn J Nutr 44:307–315CrossRefGoogle Scholar
  25. Patlevič P, Vašková Z, Švorc PJ, Vaško L, Švorc P (2016) Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr Med Res 5:250–258CrossRefGoogle Scholar
  26. Rival SG, Boeriu CG, Wichers HJ (2001) Caseins and casein hydrosylates 2. Antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 49:295–302CrossRefGoogle Scholar
  27. Tachakittirungrod S, Okonogi S, Chowwanapoonpohn S (2007) Study on antioxidant activity of certain plants in Thailand: mechanism of antioxidant action of guava leaf extract. Food Chem 103:381–388CrossRefGoogle Scholar
  28. Toshniwal PK, Zarling EJ (1992) Evidence for increased lipid peroxidation in multiple sclerosis. Neurochem Res 17:205–207CrossRefGoogle Scholar
  29. Wang L, Ding L, Yu Z, Zhang T, Ma S, Liu J (2016) Intracellular ROS scavenging and antioxidant enzyme regulating capacities of corn gluten meal-derived antioxidant peptides in HepG2 cells. Food Res Int 90:33–41CrossRefGoogle Scholar
  30. Wijeratne SS, Cuppett SL, Schlegel V (2005) Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. J Agric Food Chem 53(22):8768–8774CrossRefGoogle Scholar
  31. Wu JQ, Kosten TR, Zhang XY (2013) Free radicals, antioxidant defense system, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 46:200–206CrossRefGoogle Scholar
  32. Ye ZW, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta 1850(8):1607–1621CrossRefGoogle Scholar
  33. Zhong Y, Shahidi F (2012) Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chem 131(1):22–30CrossRefGoogle Scholar
  34. Zhou D, Shao L, Spitz DR (2014) Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res 122:1–67CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yon-Suk Kim
    • 1
    • 2
  • Eun-Kyung Kim
    • 3
  • Xin Dong
    • 4
  • Woen-Bin Shin
    • 4
  • Jin-Su Park
    • 4
  • Su-Jin Kim
    • 4
  • Eun-Ae Go
    • 4
  • Hee-Guk Byun
    • 5
  • Pyo-Jam Park
    • 4
    • 6
    Email author
  1. 1.BK21plus Glocal Education Program of Nutraceuticals DevelopmentKonkuk UniversityChungjuRepublic of Korea
  2. 2.Medicinal Biological Resources Research InstituteKonkuk UniversityChungjuRepublic of Korea
  3. 3.Division of Food Bio ScienceKonkuk UniversityChungjuRepublic of Korea
  4. 4.Department of Applied Life ScienceKonkuk UniversityChungjuRepublic of Korea
  5. 5.Department of Marine BiotechnologyGangneung-Wonju National UniversityGangneungRepublic of Korea
  6. 6.Department of Integrated BiosciencesKonkuk UniversityChungjuRepublic of Korea

Personalised recommendations