Advertisement

Taurine 11 pp 523-529 | Cite as

Taurine-Conjugated Metabolites in Hearts

  • Takashi ItoEmail author
  • Shigeru Murakami
  • Stephen W. Schaffer
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1155)

Abstract

Mammalian tissues, especially the heart, contain high concentrations of taurine, a beta-amino acid that possesses a variety of physiological functions. While it is well known that taurine reacts with several metabolites, such as bile acids and fatty acids, taurine-conjugated metabolites in the heart have not been specifically studied. Recently, we performed Liquid chromatography-mass spectrometry- (LC-MS-) based metabolome analysis, comparing metabolome profiles of hearts from taurine transporter knockout (TauTKO) mice and wild-type mice to identify differences in taurine-conjugated metabolite content of the two phenotypes. Comparison of the metabolite profiles revealed taurine-containing dipeptides, such as glutamyltaurine, which are present in wild-type but not in TauTKO hearts. These data suggest that taurine functions not only as a free osmolyte but also as a conjugated metabolite within the heart.

Keywords

Taurine transporter-knockout mouse Taurine-depleted cardiomyopathy Metabolomics 

Abbreviations

TauT

taurine transporter

TauTKO

taurine transporter knockout

References

  1. Aichler M, Borgmann D, Krumsiek J et al (2017) N-acyl taurines and acylcarnitines cause an imbalance in insulin synthesis and secretion provoking β cell dysfunction in type 2 diabetes. Cell Metab.  https://doi.org/10.1016/j.cmet.2017.04.012CrossRefGoogle Scholar
  2. Bittner S, Win T, Gupta R (2005) γ-L-glutamyltaurine. Amino Acids 28:343–356.  https://doi.org/10.1007/s00726-005-0196-7CrossRefPubMedGoogle Scholar
  3. Fakruddin M, Wei FY, Suzuki T et al (2018) Defective mitochondrial tRNA taurine modification activates global proteostress and leads to mitochondrial disease. Cell Rep.  https://doi.org/10.1016/j.celrep.2017.12.051CrossRefGoogle Scholar
  4. Häussinger D, Keitel V (2017) Dual role of the bile acid receptor Takeda G-protein-coupled receptor 5 for hepatic lipid metabolism in feast and famine. Hepatology 65(3):767–770CrossRefGoogle Scholar
  5. Ito T, Kimura Y, Uozumi Y et al (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937.  https://doi.org/10.1016/j.yjmcc.2008.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ito T, Schaffer S, Azuma J (2014) The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids 46:111–119CrossRefGoogle Scholar
  7. Ito T, Okazaki K, Nakajima D et al (2018) Mass spectrometry-based metabolomics to identify taurine-modified metabolites in heart. Amino Acids 50:117–124.  https://doi.org/10.1007/s00726-017-2498-yCrossRefPubMedGoogle Scholar
  8. Jong CJ, Ito T, Prentice H, Wu JY, Schaffer SW (2017) Role of mitochondria and endoplasmic reticulum in taurine deficiency-mediated apoptosis. Nutrients 9:pii:E795CrossRefGoogle Scholar
  9. Kawamata Y, Fujii R, Hosoya M et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem.  https://doi.org/10.1074/jbc.M209706200CrossRefGoogle Scholar
  10. Kirino Y, Yasukawa T, Ohta S et al (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.0405173101CrossRefGoogle Scholar
  11. Li YT, Maskos K, Chou CW et al (2003) Presence of an unusual GM2 derivative, taurine-conjugated GM2, in Tay-Sachs brain. J Biol Chem.  https://doi.org/10.1074/jbc.M306126200CrossRefGoogle Scholar
  12. Li YT, Li SC, Kiso M et al (2008) Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility. Biochim Biophys Acta Gen Subj 1780(3):353–361CrossRefGoogle Scholar
  13. Liu A, Patterson AD, Yang Z et al (2009) Fenofibrate metabolism in the cynomolgus monkey using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabolomics. Drug Metab Dispos.  https://doi.org/10.1124/dmd.108.025817CrossRefGoogle Scholar
  14. Long JZ, LaCava M, Jin X, Cravatt BF (2011) An anatomical and temporal portrait of physiological substrates for fatty acid amide hydrolase. J Lipid Res.  https://doi.org/10.1194/jlr.M012153CrossRefGoogle Scholar
  15. Miyazaki T, Ishikura K, Honda A et al (2015) Increased N-Acetyltaurine in serum and urine after endurance exercise in human. Adv Exp Med Biol.  https://doi.org/10.1007/978-3-319-15126-7_5CrossRefGoogle Scholar
  16. Moise NS, Pacioretty LM, Kallfelz FA et al (1991) Dietary taurine deficiency and dilated cardiomyopathy in the fox. Am Heart J 121:541–547.  https://doi.org/10.1016/0002-8703(91)90724-VCrossRefPubMedGoogle Scholar
  17. O’Byrne J, Hunt MC, Rai DK et al (2003) The human bile acid-CoA:amino acid N-Acyltransferase functions in the conjugation of fatty acids to glycine. J Biol Chem.  https://doi.org/10.1074/jbc.M300987200CrossRefGoogle Scholar
  18. Parks DJ, Blanchard SG, Bledsoe RK et al (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science.  https://doi.org/10.1126/science.284.5418.1365CrossRefGoogle Scholar
  19. Pion PD, Kittleson MD, Rogers QR, Morris JG (1987) Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 237:764–768.  https://doi.org/10.1126/science.3616607CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rani S, Sreenivasaiah PK, Kim JO et al (2017) Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress. PLoS One.  https://doi.org/10.1371/journal.pone.0176071CrossRefGoogle Scholar
  21. Reilly S-J, O’Shea EM, Andersson U et al (2007) A peroxisomal acyltransferase in mouse identifies a novel pathway for taurine conjugation of fatty acids. FASEB J.  https://doi.org/10.1096/fj.06-6919comCrossRefGoogle Scholar
  22. Saghatelian A, Trauger SA, Want EJ et al (2004) Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43:14332–14339.  https://doi.org/10.1021/bi0480335CrossRefPubMedGoogle Scholar
  23. Saghatelian A, McKinney MK, Bandell M et al (2006) A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry 45:9007–9015.  https://doi.org/10.1021/bi0608008CrossRefPubMedGoogle Scholar
  24. Sakurai N, Ara T, Enomoto M et al (2014) Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data. Biomed Res Int.  https://doi.org/10.1155/2014/194812CrossRefGoogle Scholar
  25. Schaffer S, Takahashi K, Azuma J (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546.  https://doi.org/10.1007/s007260070004CrossRefPubMedPubMedCentralGoogle Scholar
  26. Schaffer SW, Jong CJ, Ito T, Azuma J (2014a) Role of taurine in the pathologies of MELAS and MERRF. Amino Acids 46:47–56CrossRefGoogle Scholar
  27. Schaffer SW, Jong CJ, Ito T, Azuma J (2014b) Effect of taurine on ischemia-reperfusion injury. Amino Acids 46:21–30CrossRefGoogle Scholar
  28. Schaffer SW, Shimada-Takaura K, Jong CJ, Ito T, Takahashi K (2016, Feb) Impaired energy metabolism of the taurine‑deficient heart. Amino Acids 48(2):549–58Google Scholar
  29. Shi X, Yao D, Chen C (2012) Identification of N-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. J Biol Chem 287:6336–6349.  https://doi.org/10.1074/jbc.M111.312199CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shirley MA, Guan X, Kaiser DG et al (1994) Taurine conjugation of ibuprofen in humans and in rat liver in vitro. Relationship to metabolic chiral inversion. J Pharmacol Exp Ther 269(3):1166-1175Google Scholar
  31. Suzuki T, Suzuki T, Wada T et al (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J.  https://doi.org/10.1093/emboj/cdf656CrossRefGoogle Scholar
  32. Waluk DP, Vielfort K, Derakhshan S et al (2013) N-acyl taurines trigger insulin secretion by increasing calcium flux in pancreatic β-cells. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2012.11.026CrossRefGoogle Scholar
  33. Xie Q, Khaoustov VI, Chung CC et al (2002) Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology.  https://doi.org/10.1053/jhep.2002.35441CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Takashi Ito
    • 1
    Email author
  • Shigeru Murakami
    • 1
  • Stephen W. Schaffer
    • 2
  1. 1.College of BioscienceFukui Prefectural UniversityEiheijiJapan
  2. 2.Department of Pharmacology, College of MedicineUniversity of South AlabamaMobileUSA

Personalised recommendations