Advertisement

HDAC Inhibitors as Novel Therapeutic Option Against Therapeutically Challenging Neurological Disorders

  • Shabir Ahmad Ganai
Chapter

Abstract

Neuronal disorders are associated with transcriptional deregulation. Histone deacetylase inhibitors (HDACi) have the potential to reinstate this deregulation and as such are emerging as promising therapeutic agents for vanquishing neurological disorders. Here we discuss the marvellous therapeutic effect of various HDACi against neurological disorders including Alzheimer’s disease, Parkinson’s disease, and epilepsy. The underlying molecular players modulated by these inhibitors in bringing therapeutic effect will also be taken into consideration.

References

  1. Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A (2013) Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J Alzheimers Dis 33(1):35–44PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C (2004) Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 12(1):59–65PubMedCrossRefGoogle Scholar
  3. Avila AM, Burnett BG, Taye AA, Gabanella F, Knight MA, Hartenstein P, Cizman Z, Di Prospero NA, Pellizzoni L, Fischbeck KH, Sumner CJ (2007) Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117(3):659–671PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bang SR, Ambavade SD, Jagdale PG, Adkar PP, Waghmare AB, Ambavade PD (2015) Lacosamide reduces HDAC levels in the brain and improves memory: potential for treatment of Alzheimer’s disease. Pharmacol Biochem Behav 134:65–69PubMedCrossRefGoogle Scholar
  5. Bao J, Sharp AH, Wagster MV, Becher M, Schilling G, Ross CA, Dawson VL, Dawson TM (1996) Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci U S A 93(10):5037–5042PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brahe C, Vitali T, Tiziano FD, Angelozzi C, Pinto AM, Borgo F, Moscato U, Bertini E, Mercuri E, Neri G (2005) Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet 13(2):256–259PubMedCrossRefGoogle Scholar
  7. Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12(19):2481–2489PubMedCrossRefGoogle Scholar
  8. Buonvicino D, Felici R, Ranieri G, Caramelli R, Lapucci A, Cavone L, Muzzi M, Di Pietro L, Bernardini C, Zwergel C, Valente S, Mai A, Chiarugi A (2018) Effects of class II-selective histone deacetylase inhibitor on neuromuscular function and disease progression in SOD1-ALS mice. Neuroscience 379:228–238PubMedCrossRefGoogle Scholar
  9. Calder AN, Androphy EJ, Hodgetts KJ (2016) Small molecules in development for the treatment of spinal muscular atrophy. J Med Chem 59(22):10067–10083PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci U S A 98(17):9808–9813PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chang X, Rong C, Chen Y, Yang C, Hu Q, Mo Y, Zhang C, Gu X, Zhang L, He W, Cheng S, Hou X, Su R, Liu S, Dun W, Wang Q, Fang S (2015) (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer’s disease model mice by upregulating neprilysin expression. Exp Cell Res 334(1):136–145PubMedCrossRefGoogle Scholar
  12. Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, Wilson B, Lu RB, Gean PW, Chuang DM, Hong JS (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11(12):1116–1125PubMedCrossRefGoogle Scholar
  13. Chen SH, Wu HM, Ossola B, Schendzielorz N, Wilson BC, Chu CH, Chen SL, Wang Q, Zhang D, Qian L, Li X, Hong JS, Lu RB (2012) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. Br J Pharmacol 165(2):494–505PubMedPubMedCentralCrossRefGoogle Scholar
  14. Citraro R, Leo A, Santoro M, D’Agostino G, Constanti A, Russo E (2017) Role of Histone Deacetylases (HDACs) in epilepsy and epileptogenesis. Curr Pharm Des 23(37):5546–5562PubMedCrossRefGoogle Scholar
  15. Cook C, Carlomagno Y, Gendron TF, Dunmore J, Scheffel K, Stetler C, Davis M, Dickson D, Jarpe M, DeTure M, Petrucelli L (2014) Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum Mol Genet 23(1):104–116PubMedCrossRefGoogle Scholar
  16. Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS, Choudry R, Brown RH Jr, Zhang H, Schoenfeld DA, Shefner J, Matson S, Matson WR, Ferrante RJ (2009) Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler 10(2):99–106PubMedCrossRefGoogle Scholar
  17. Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, Perucca P (2018) Epilepsy. Nat Rev Dis Primers 4:18024PubMedCrossRefGoogle Scholar
  18. Ding H, Dolan PJ, Johnson GV (2008) Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 106(5):2119–2130PubMedPubMedCentralCrossRefGoogle Scholar
  19. Evans MC, Cherry JJ, Androphy EJ (2011) Differential regulation of the SMN2 gene by individual HDAC proteins. Biochem Biophys Res Commun 414(1):25–30PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fan S-J, Huang F-I, Liou J-P, Yang C-R (2018) The novel histone de acetylase 6 inhibitor, MPT0G211, ameliorates tau phosphorylation and cognitive deficits in an Alzheimer’s disease model. Cell Death Dis 9(6):655–655PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23(28):9418–9427PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ganai SA (2017) Small-molecule modulation of HDAC6 activity: the propitious therapeutic strategy to vanquish neurodegenerative disorders. Curr Med Chem 8(81646).  https://doi.org/10.2174/0929867324666170209104030
  23. Ganai SA, Kalladi SM, Mahadevan V (2015) HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn 33(6):1185–1197PubMedCrossRefGoogle Scholar
  24. Ganai SA, Ramadoss M, Mahadevan V (2016) Histone deacetylase (HDAC) inhibitors – emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol 14(1):55–71PubMedCrossRefGoogle Scholar
  25. Garbes L, Riessland M, Holker I, Heller R, Hauke J, Trankle C, Coras R, Blumcke I, Hahnen E, Wirth B (2009) LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate. Hum Mol Genet 18(19):3645–3658PubMedCrossRefGoogle Scholar
  26. Gardian G, Yang L, Cleren C, Calingasan NY, Klivenyi P, Beal MF (2004) Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. NeuroMolecular Med 5(3):235–241PubMedCrossRefGoogle Scholar
  27. Gerstner T, Bell N, König S (2008) Oral valproic acid for epilepsy – long-term experience in therapy and side effects. Expert Opin Pharmacother 9(2):285–292PubMedCrossRefGoogle Scholar
  28. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978PubMedPubMedCentralCrossRefGoogle Scholar
  29. Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai L-H (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60PubMedPubMedCentralCrossRefGoogle Scholar
  30. Guo W, Naujock M, Fumagalli L, Vandoorne T, Baatsen P, Boon R, Ordovás L, Patel A, Welters M, Vanwelden T, Geens N, Tricot T, Benoy V, Steyaert J, Lefebvre-Omar C, Boesmans W, Jarpe M, Sterneckert J, Wegner F, Petri S, Bohl D, Vanden Berghe P, Robberecht W, Van Damme P, Verfaillie C, Van Den Bosch L (2017) HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 8(1):861PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hahnen E, Eyupoglu IY, Brichta L, Haastert K, Trankle C, Siebzehnrubl FA, Riessland M, Holker I, Claus P, Romstock J, Buslei R, Wirth B, Blumcke I (2006) In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem 98(1):193–202PubMedCrossRefGoogle Scholar
  32. Hardy J (2006) A hundred years of Alzheimer’s disease research. Neuron 52(1):3–13PubMedCrossRefGoogle Scholar
  33. Harrison IF, Smith AD, Dexter DT (2018) Pathological histone acetylation in Parkinson’s disease: neuroprotection and inhibition of microglial activation through SIRT 2 inhibition. Neurosci Lett 666:48–57PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hauke J, Riessland M, Lunke S, Eyupoglu IY, Blumcke I, El-Osta A, Wirth B, Hahnen E (2009) Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Hum Mol Genet 18(2):304–317PubMedCrossRefGoogle Scholar
  35. Hegarty S, Sullivan A, O’Keeffe G (2016) The epigenome as a therapeutic target for Parkinson’s disease. Neural Regen Res 11(11):1735–1738PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8(4):382–397PubMedCrossRefGoogle Scholar
  37. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 100(4):2041–2046PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hu Q-P, Mao D-A (2016) Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation. BMC Neurosci 17(1):22.  https://doi.org/10.1186/s12868-016-0264-9 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Janssen C, Schmalbach S, Boeselt S, Sarlette A, Dengler R, Petri S (2010) Differential histone deacetylase mRNA expression patterns in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 69(6):573–581PubMedCrossRefGoogle Scholar
  40. Jeong H, Then F, Melia TJ Jr, Mazzulli JR, Cui L, Savas JN, Voisine C, Paganetti P, Tanese N, Hart AC, Yamamoto A, Krainc D (2009) Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137(1):60–72PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jia H, Morris CD, Williams RM, Loring JF, Thomas EA (2015) HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 112(1):22CrossRefGoogle Scholar
  42. Johnston TH, Huot P, Damude S, Fox SH, Jones SW, Rusche JR, Brotchie JM (2013) RGFP109, a histone deacetylase inhibitor attenuates L-DOPA-induced dyskinesia in the MPTP-lesioned marmoset: a proof-of-concept study. Parkinsonism Relat Disord 19(2):260–264PubMedCrossRefGoogle Scholar
  43. Kellinghaus C (2009) Lacosamide as treatment for partial epilepsy: mechanisms of action, pharmacology, effects, and safety. Ther Clin Risk Manag 5:757–766PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kidd SK, Schneider JS (2010) Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Res 1:172–178CrossRefGoogle Scholar
  45. Kidd SK, Schneider JS (2011) Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 194:189–194PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35(4):870–880PubMedCrossRefGoogle Scholar
  47. Kusaczuk M, Krętowski R, Bartoszewicz M, Cechowska-Pasko M (2015) Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line. Tumour Biol 37(1):931–942.  https://doi.org/10.1007/s13277-015-3781-8 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lazo-Gómez R, Ramírez-Jarquín UN, Tovar-y-Romo LB, Tapia R (2013) Histone deacetylases and their role in motor neuron degeneration. Front Cell Neurosci 7:243PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lei P, Ayton S, Bush AI, Adlard PA (2011) GSK-3 in neurodegenerative diseases. Int J Alzheimers Dis 2011:189246PubMedPubMedCentralGoogle Scholar
  50. Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33(1):43–55PubMedCrossRefGoogle Scholar
  51. Liu H, Yazdani A, Murray LM, Beauvais A, Kothary R (2014) The Smn-independent beneficial effects of trichostatin A on an intermediate mouse model of spinal muscular atrophy. PLoS One 9(7):e101225PubMedPubMedCentralCrossRefGoogle Scholar
  52. Martin HL, Teismann P (2009) Glutathione–a review on its role and significance in Parkinson’s disease. FASEB J 23(10):3263–3272PubMedCrossRefGoogle Scholar
  53. Monti B, Mercatelli D, Contestabile A (2012) Valproic acid neuroprotection in 6-OHDA lesioned rat, a model for parkinson’s disease. HOAJ Biol 1(1):4.  https://doi.org/10.7243/2050-0874-1-4 CrossRefGoogle Scholar
  54. Narver HL, Kong L, Burnett BG, Choe DW, Bosch-Marce M, Taye AA, Eckhaus MA, Sumner CJ (2008) Sustained improvement of spinal muscular atrophy mice treated with trichostatin A plus nutrition. Ann Neurol 64(4):465–470PubMedCrossRefGoogle Scholar
  55. Piepers S, Veldink JH, de Jong SW, van der Tweel I, van der Pol WL, Uijtendaal EV, Schelhaas HJ, Scheffer H, de Visser M, de Jong JM, Wokke JH, Groeneveld GJ, van den Berg LH (2009) Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis. Ann Neurol 66(2):227–234PubMedCrossRefGoogle Scholar
  56. Price PA, Parkes JD, Marsden CD (1978) Sodium valproate in the treatment of levodopa-induced dyskinesia. J Neurol Neurosurg Psychiatry 41(8):702–706PubMedPubMedCentralCrossRefGoogle Scholar
  57. Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen CH, Zhou W, Wang K, Song W (2008) Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205(12):2781–2789PubMedPubMedCentralCrossRefGoogle Scholar
  58. Rane P, Shields J, Heffernan M, Guo Y, Akbarian S, King JA (2012) The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD. Neuropharmacology 62(7):2409–2412PubMedCrossRefGoogle Scholar
  59. Reddy SD, Clossen BL, Reddy DS (2018) Epigenetic histone deacetylation inhibition prevents the development and persistence of temporal lobe epilepsy. J Pharmacol Exp Ther 364(1):97–109PubMedCrossRefGoogle Scholar
  60. Ricobaraza A, Cuadrado-Tejedor M, Marco S, Perez-Otano I, Garcia-Osta A (2012) Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus 22(5):1040–1050PubMedCrossRefGoogle Scholar
  61. Riessland M, Ackermann B, Forster A, Jakubik M, Hauke J, Garbes L, Fritzsche I, Mende Y, Blumcke I, Hahnen E, Wirth B (2010) SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 19(8):1492–1506PubMedCrossRefGoogle Scholar
  62. Rouaux C, Panteleeva I, Rene F, Gonzalez de Aguilar JL, Echaniz-Laguna A, Dupuis L, Menger Y, Boutillier AL, Loeffler JP (2007) Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci 27(21):5535–5545PubMedPubMedCentralCrossRefGoogle Scholar
  63. Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, Pahan K (2012) Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLoS One 7(6):18Google Scholar
  64. Rumbaugh G, Sillivan SE, Ozkan ED, Rojas CS, Hubbs CR, Aceti M, Kilgore M, Kudugunti S, Puthanveettil SV, Sweatt JD, Rusche J, Miller CA (2015) Pharmacological selectivity within class I histone deacetylases predicts effects on synaptic function and memory rescue. Neuropsychopharmacology 40:2307PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, Dangond F, Cormier KA, Cudkowicz ME, Brown RH Jr, Ferrante RJ (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 93(5):1087–1098PubMedCrossRefGoogle Scholar
  66. Sau D, De Biasi S, Vitellaro-Zuccarello L, Riso P, Guarnieri S, Porrini M, Simeoni S, Crippa V, Onesto E, Palazzolo I, Rusmini P, Bolzoni E, Bendotti C, Poletti A (2007) Mutation of SOD1 in ALS: a gain of a loss of function. Hum Mol Genet 16(13):1604–1618PubMedCrossRefGoogle Scholar
  67. Sharma S, Taliyan R (2015) Targeting histone deacetylases: a novel approach in Parkinson’s disease. Park Dis 2015:11Google Scholar
  68. Siebzehnrubl FA, Raber KA, Urbach YK, Schulze-Krebs A, Canneva F, Moceri S, Habermeyer J, Achoui D, Gupta B, Steindler DA, Stephan M, Nguyen HP, Bonin M, Riess O, Bauer A, Aigner L, Couillard-Despres S, Paucar MA, Svenningsson P, Osmand A, Andreew A, Zabel C, Weiss A, Kuhn R, Moussaoui S, Blockx I, Van der Linden A, Cheong RY, Roybon L, Petersen A, von Horsten S (2018) Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc Natl Acad Sci U S A 115(37):E8765–E8774PubMedPubMedCentralCrossRefGoogle Scholar
  69. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413(6857):739–743PubMedCrossRefGoogle Scholar
  70. Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, Brune K, Paul S, Zhou Y, Liu F, Ni B (2004) Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry 43(22):6899–6908PubMedCrossRefGoogle Scholar
  71. Suelves N, Kirkham-McCarthy L, Lahue RS, Ginés S (2017) A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington’s disease mice. Sci Rep 7(1):6082.  https://doi.org/10.1038/s41598-017-05125-2 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19(5):233–238PubMedCrossRefGoogle Scholar
  73. Suo H, Wang P, Tong J, Cai L, Liu J, Huang D, Huang L, Wang Z, Huang Y, Xu J, Ma Y, Yu M, Fei J, Huang F (2015) NRSF is an essential mediator for the neuroprotection of trichostatin A in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 99:67–78PubMedCrossRefGoogle Scholar
  74. Valle C, Salvatori I, Gerbino V, Rossi S, Palamiuc L, René F, Carrì MT (2014) Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death Dis 5:e1296PubMedPubMedCentralCrossRefGoogle Scholar
  75. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228PubMedCrossRefGoogle Scholar
  76. Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, Chang H, Qian W, Shi J, Iqbal K, Gong CX, Cheng C, Liu F (2015) Cross talk between PI3K-AKT-GSK-3beta and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging 36(1):188–200PubMedCrossRefGoogle Scholar
  77. Weihl CC, Connolly AM, Pestronk A (2006) Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy. Neurology 67(3):500–501PubMedCrossRefGoogle Scholar
  78. Wu JY, Niu FN, Huang R, Xu Y (2008) Enhancement of glutamate uptake in 1-methyl-4-phenylpyridinium-treated astrocytes by trichostatin A. Neuroreport 19(12):1209–1212PubMedCrossRefGoogle Scholar
  79. Yokoi N, Fukata Y, Kase D, Miyazaki T, Jaegle M, Ohkawa T, Takahashi N, Iwanari H, Mochizuki Y, Hamakubo T, Imoto K, Meijer D, Watanabe M, Fukata M (2014) Chemical corrector treatment ameliorates increased seizure susceptibility in a mouse model of familial epilepsy. Nat Med 21:19PubMedCrossRefGoogle Scholar
  80. Zaitone SA, Abo-Elmatty DM, Elshazly SM (2012) Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats. Indian J Pharmacol 44(6):774–779PubMedPubMedCentralCrossRefGoogle Scholar
  81. Zhang L, Liu C, Wu J, Tao JJ, Sui XL, Yao ZG, Xu YF, Huang L, Zhu H, Sheng SL, Qin C (2014) Tubastatin A/ACY-1215 improves cognition in Alzheimer’s disease transgenic mice. J Alzheimers Dis 41(4):1193–1205PubMedCrossRefGoogle Scholar
  82. Zhu X, Wang S, Yu L, Jin J, Ye X, Liu Y, Xu Y (2017) HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer’s disease. Aging Cell 16(5):1073–1082PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shabir Ahmad Ganai
    • 1
  1. 1.Division of Basic Sciences and Humanities, Faculty of AgricultureSKUAST-KashmirWadura SoporeIndia

Personalised recommendations