Advertisement

HDACs and Their Distinct Classes

  • Shabir Ahmad Ganai
Chapter

Abstract

Histone deacetylases (HDACs), the erasers of histone deacetylation, favor transcriptional repression. This chapter sheds light on the classification of these transcriptional corepressors based on different criteria. Moreover, the subcellular location of individual HDACs and their other relevant details will be discussed in this chapter.

References

  1. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116(7):1853–1864PubMedPubMedCentralCrossRefGoogle Scholar
  2. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435PubMedCrossRefGoogle Scholar
  3. Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, Kwon SH, Garrido C, Yao TP, Vourc’h C, Matthias P, Khochbin S (2007) HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 21(17):2172–2181PubMedPubMedCentralCrossRefGoogle Scholar
  4. Byun SK, An TH, Son MJ, Lee DS, Kang HS, Lee EW, Han BS, Kim WK, Bae KH, Oh KJ, Lee SC (2017) HDAC11 inhibits myoblast differentiation through repression of MyoD-dependent transcription. Mol Cell 40(9):667–676Google Scholar
  5. Cheng F, Lienlaf M, Perez-Villarroel P, Wang H-W, Lee C, Woan K, Woods D, Knox T, Bergman J, Pinilla-Ibarz J, Kozikowski A, Seto E, Sotomayor EM, Villagra A (2014) Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells. Mol Immunol 60(1):44–53PubMedPubMedCentralCrossRefGoogle Scholar
  6. Colussi C, Mozzetta C, Gurtner A, Illi B, Rosati J, Straino S, Ragone G, Pescatori M, Zaccagnini G, Antonini A, Minetti G, Martelli F, Piaggio G, Gallinari P, Steinkuhler C, Clementi E, Dell’Aversana C, Altucci L, Mai A, Capogrossi MC, Puri PL, Gaetano C (2008) HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 105(49):19183–19187PubMedPubMedCentralCrossRefGoogle Scholar
  7. Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W, Verdin E (1999) A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem 274(17):11713–11720PubMedCrossRefGoogle Scholar
  8. Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277(28):25748–25755PubMedCrossRefGoogle Scholar
  9. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26(7):1913–1923PubMedPubMedCentralCrossRefGoogle Scholar
  10. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23PubMedCrossRefGoogle Scholar
  11. Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A 96(9):4868–4873PubMedPubMedCentralCrossRefGoogle Scholar
  12. Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai L-H (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ha CH, Jhun BS, Kao H-Y, Jin Z-G (2008) VEGF stimulates phosphorylation and cytoplasmic accumulation modulating matrix metalloproteinase expression and angiogenesis. Arterioscler Thromb Vasc Biol 28(10):1782–1788PubMedPubMedCentralCrossRefGoogle Scholar
  14. Joshi P, Greco TM, Guise AJ, Luo Y, Yu F, Nesvizhskii AI, Cristea IM (2013) The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol 9:672PubMedPubMedCentralCrossRefGoogle Scholar
  15. Jung KH, Noh JH, Kim JK, Eun JW, Bae HJ, Xie HJ, Chang YG, Kim MG, Park H, Lee JY, Nam SW (2012) HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins. J Cell Biochem 113(6):2167–2177PubMedCrossRefGoogle Scholar
  16. Keedy KS, Archin NM, Gates AT, Espeseth A, Hazuda DJ, Margolis DM (2009) A limited group of class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression. J Virol 83(10):4749–4756PubMedPubMedCentralCrossRefGoogle Scholar
  17. Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126(2):257–268PubMedCrossRefGoogle Scholar
  18. McClure JJ, Li X, Chou CJ (2018) Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv Cancer Res 138:183–211PubMedCrossRefGoogle Scholar
  19. McKinsey TA, Zhang CL, Olson EN (2001) Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21(18):6312–6321PubMedPubMedCentralCrossRefGoogle Scholar
  20. Morris BJ (2013) Seven sirtuins for seven deadly diseases ofaging. Free Radic Biol Med 56:133–171.  https://doi.org/10.1016/j.freeradbiomed.2012.10.525 PubMedCrossRefGoogle Scholar
  21. Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941PubMedPubMedCentralCrossRefGoogle Scholar
  22. Parra M, Verdin E (2010) Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol 10(4):454–460PubMedCrossRefGoogle Scholar
  23. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1(1):19–25PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ryu H-W, Won H-R, Lee DH, Kwon SH (2017) HDAC6 regulates sensitivity to cell death in response to stress and post-stress recovery. Cell Stress Chaperones 22(2):253–261.  https://doi.org/10.1007/s12192-017-0763-3 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13(4):539–550PubMedPubMedCentralCrossRefGoogle Scholar
  26. Schug TT, Li X (2011) Sirtuin 1 in lipid metabolism and obesity. Ann Med 43(3):198–211PubMedPubMedCentralCrossRefGoogle Scholar
  27. Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang S-W (2010) Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 10(6):935–954PubMedPubMedCentralCrossRefGoogle Scholar
  28. Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272(5260):408–411PubMedCrossRefGoogle Scholar
  29. Villagra A, Cheng F, Wang H-W, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, Pinilla-Ibarz J, Seto E, Sotomayor EM (2008) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100PubMedPubMedCentralCrossRefGoogle Scholar
  30. Yanginlar C, Logie C (2018) HDAC11 is a regulator of diverse immune functions. Biochim Biophys Acta Gene Regul Mech 1861(1):54–59PubMedCrossRefGoogle Scholar
  31. Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22(5):1168–1179PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shabir Ahmad Ganai
    • 1
  1. 1.Division of Basic Sciences and Humanities, Faculty of AgricultureSKUAST-KashmirWadura SoporeIndia

Personalised recommendations