Tenderness Intrinsic Character

  • Joseph William Holloway
  • Jianping Wu


For all of recorded history, tenderness has been an important, perhaps the most important, intrinsic character of red meat. This chapter explores the relative importance of tenderness to the array of meat consumers in the world. Although tenderness is considered by many consumers as the most important sensory characteristic of the eating experience, it has not been easily quantified objectively in real time. Thus, this chapter focuses on methods to quantify red meat tenderness. Also, tenderness of red meat is the culmination of an animal’s biological and emotional responses to events experienced by the animal during its lifetime, especially influenced by the stressful experiences. This chapter reviews the scientific literature concerning the nature of these lifetime experiences as to their influence on red meat tenderness. Thus, this text presents a forensic approach to the tenderness of red meat exploring the probable causes of that character and the exploration of production system elements that might alter the outcome in terms of tender red meat.


  1. Aberle, E.D., E.S. Reeves, M.D. Judge, R.E. Hunsley, and T.W. Perry. 1981. Palatability and muscle characteristics of cattle with controlled weight gain: Time on a high energy diet. Journal of Animal Science 52: 757.CrossRefGoogle Scholar
  2. Adams, J.M. 2003. Ways of dying: Multiple pathways to apoptosis. Genes & Development 17: 2481–2495.CrossRefGoogle Scholar
  3. Adams, T.E., and B.M. Adams. 1992. Feedyard performance of steers and bulls actively immunized against gonadotropin-releasing hormone. Journal of Animal Science 70: 1691–1698.PubMedCrossRefGoogle Scholar
  4. Adelstein, R.S., and E. Eisenberg. 1980. Regulation and kinetics of the actin–myosin–ATP interaction. Annual Review of Biochemistry 49: 921–956.PubMedCrossRefGoogle Scholar
  5. Ahn, D.H., K. Shimada, and K. Takahashi. 2003. Relationship between weakening of Z-disks and liberation of phospholipids during postmortem aging of pork and beef. Journal of Food Science 68: 94–98.CrossRefGoogle Scholar
  6. Allais, S., L. Journaux, H. Leveziel, N. Payet-Duprat, P. Raynaud, J.F. Hocquette, J. Lepetit, S. Rousset, C. Denoyelle, C. Bernard-Capel, and G. Renand. 2011. Effects of polymorphisms in the calpastatin and μ-calpain genes on meat tenderness in 3 French beef breeds. Journal of Animal Science 89: 1–11.PubMedCrossRefGoogle Scholar
  7. Allingham, P.G., G.S. Harper, and R.A. Hunter. 1998. Effect of growth path on the tenderness of the semitendinosus muscle of Brahman-cross steers. Meat Science 48: 65–73.PubMedCrossRefGoogle Scholar
  8. Allingham, P.G., W. Barris, A. Reverter, V. Hilsenstein, R. Van de Ven, and D.L. Hopkins. 2009. Sire and growth-path effects on sheep meat production. 3. Fascicular structure of lamb loin muscle (m. longissimus lumborum) and the impact on eating quality. Animal Production Science 49: 239–247.CrossRefGoogle Scholar
  9. Almlie, V.L., L. VanWezemael, W. Verbeke, and O. Ueland. 2013. One technology does not fit all: Profiling consumers of tender and tenderized beef steaks. Meat Science 93: 361–370.CrossRefGoogle Scholar
  10. Alomar, D., C. Gallo, M. Castan, and R. Fuchslocher. 2003. Chemical and discriminant analysis of bovine meat by near infrared reflectance spectroscopy. (NIRS) Meat Science 63: 441–450.PubMedCrossRefGoogle Scholar
  11. Amatayakul-Chantler, S.J.A., J. Jackson, V. Stegner, L.M.S. King, R. Rubio, E. Lopez Howard, and J. Walker. 2012. Immunocastration of Bos indicus × Brown Swiss bulls in feedyard with gonadotropin-releasing hormone vaccine Bopriva provides improved performance and meat quality. Journal of Animal Science 90: 3718–3728.PubMedCrossRefGoogle Scholar
  12. Andersen, H.J., N. Oksbjerg, J.F. Young, and M. Therkildsen. 2005. Review: feeding and meat quality – a future approach. Meat Science 70: 543–554.PubMedCrossRefGoogle Scholar
  13. Anderson, T.J., and F.C. Parrish. 1989. Postmortem degradation of titin and nebulin of beef steaks varying in tenderness. Journal of Food Science 54: 748–749.CrossRefGoogle Scholar
  14. Anderson, O.S., K.E. Sant, and D.C. Dolinoy. 2012a. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. The Journal of Nutritional Biochemistry 8: 853–859.CrossRefGoogle Scholar
  15. Anderson, M.J., S.M. Lonergan, C.A. Fedler, K.J. Prusa, J.M. Binning, and E. Huff-Lonergan. 2012b. Profile of biochemical traits influencing tenderness of muscles from the beef round. Meat Science 91: 247–254.PubMedCrossRefGoogle Scholar
  16. Apple, J.K., M.E. Dikeman, J.E. Minton, R.M. McMurphy, M.R. Fedde, and J.A. Unruh. 1995. Effects of restraint and isolation stress and epidural blockade on endocrine and blood metabolite status, muscle glycogen metabolism, and incidence of dark cutting longissimus muscle of sheep. Journal of Animal Science 73: 2295–2307.PubMedCrossRefGoogle Scholar
  17. Apple, J.K., J.B. Machete, R.J. Stackhouse, T.M. Johnson, C.A. Key, and J.W.S. Yancey. 2014. Color stability and tenderness variations within the gluteus medius from beef top sirloin butts. Meat Science 96: 56–64.PubMedCrossRefGoogle Scholar
  18. Arakwa, N., S. Fujiki, C. Inacaki, and M. Fujimaki. 1967. A catheptic protease active in ultimate pH of muscle. Agricultural and Biological Chemistry 40: 1265–1267.Google Scholar
  19. Archile-Contreras, A., I.B. Mandell, and P.P. Purslow. 2010. Disparity of dietary effects on collagen characteristics and toughness between two beef muscles. Meat Science 86: 491–497.PubMedCrossRefGoogle Scholar
  20. Arnett, E.J., F.L. Fluharty, S.C. Loerch, H.N. Zerby, R.A. Zinn, and P.S. Kuber. 2012. Effects of forage level in feedlot finishing diets on carcass characteristics and palatability of Jersey beef. Journal of Animal Science 90: 960–972.PubMedPubMedCentralGoogle Scholar
  21. Arp, T.S., S.T. Howard, D.R. Woerner, J.A. Scanga, D.R. McKenna, W.H. Kolath, P.L. Chapman, J.D. Tatum, and K.E. Belk. 2013. Effects of ractopamine hydrochloride and zilpaterol hydrochloride supplementation on longissimus muscle shear force and sensory attributes of beef steers. Journal of Animal Science 91: 5989–5997.PubMedCrossRefGoogle Scholar
  22. Arrigo, A.P. 2005. In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. Journal of Cellular Biochemistry 94: 241–246.PubMedCrossRefGoogle Scholar
  23. Arthur, P.F. 1995. Double muscling in cattle: A review. Australian Journal of Agricultural Research 46: 1493–1515.CrossRefGoogle Scholar
  24. Ashkenazi, A., and V.M. Dixit. 1998. Death receptors: Signaling and modulation. Science 281: 1305–1308.PubMedCrossRefGoogle Scholar
  25. ASTM. 2011. Standard specification for tenderness marketing claims associated with meat cuts derived from beef. Accessed 24 Feb 2014.
  26. Atomi, Y., S. Yamada, R. Strohman, and Y. Nonomura. 1991. αB-crystallin in skeletal muscle: Purification and localization. Journal of Biochemistry 110: 812–822.PubMedCrossRefGoogle Scholar
  27. Aubry, L., M.A. Sentandreu, D. Levieux, A. Ouali, and D. Dutaud. 2006. Bovine muscle 20S proteasome. III: Quantification in tissue crude extracts using ELISA and radial immunodiffusion techniques and practical applications. Meat Science 74: 345–353.PubMedCrossRefGoogle Scholar
  28. Bachi, A., and T. Bonaldi. 2011. Quantitative proteomics as a new piece of the systems biology puzzle. Journal of Proteomics 71: 357–367.CrossRefGoogle Scholar
  29. Badalamente, M.A., and A. Stracher. 2000. Delay of muscle degeneration and necrosis in mdx mice by calpain inhibition. Muscle & Nerve 23: 106–111.CrossRefGoogle Scholar
  30. Bailey, A.J. 1972. The basis of meat texture. Journal of the Science of Food and Agriculture 23: 995–1007.CrossRefGoogle Scholar
  31. ———. 1985. The role of collagen in the development of muscle and its relationship to eating quality. Journal of Animal Science 60: 1580.CrossRefGoogle Scholar
  32. ———. 1989. The chemistry of collagen cross-links and their role in meat texture. Reciprocal Meat Conference Proceedings 42: 127–135.Google Scholar
  33. Bailey, A.J., and M.S. Shimokomaki. 1972. Age related changes in the reducible cross-links of collagen. FEBS Letters 16: 86–88.CrossRefGoogle Scholar
  34. Bailey, A.J., and T.J. Sims. 1976. Chemistry of the collagen cross-links. The Biochemical Journal 153: 211–215.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bailey, A.J., M.B. Enser, E. Dransfield, D.J. Restall, and N.C. Avery. 1982. Muscle and adipose tissue from normal and double muscled cattle: collagen types, muscle fiber diameter, fat cell size and fatty acid composition and organoleptic properties. In Muscle hypertrophy of genetic origin and its use to improve beef production, ed. J.W.B. King and F. Menissier, 179–202. The Hague: Martinus Nijhoff Publishers.Google Scholar
  36. Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar. 2008. Biological effects of essential oils–A review. Food and Chemical Toxicology 46: 446–475.PubMedCrossRefGoogle Scholar
  37. Balan, P., H. Yuan, .B. Kim, R. Blijenburg. 2014. Small heat shock protein degradation could be an indicator of the extent of myofibrillar protein degradation. Meat Science 97:220–222.PubMedCrossRefGoogle Scholar
  38. Bolumar, T., M. Enneking, S. Toepfl, and V. Heinz. 2013. New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review. Meat Science 95: 931–939.PubMedCrossRefGoogle Scholar
  39. Banga, C.B., and J. Van der Westhuizen. 2004. Screening of widely used South African indigenous breed sires for the major gene for tenderness. In Proceedings of the South African society of animal science congress, Goudini, South Africa.Google Scholar
  40. Banovic, M., K.G. Grunert, M.M. Barriera, and M.A. Fontes. 2009. Beef quality perception at the point of purchase: A study from Portugal Food Qual. Pref 20: 335–342.Google Scholar
  41. Barendse, W.J. 2002. DNA markers format tenderness. International patent publication W0 02/064820.Google Scholar
  42. Barendse, W., B.E. Harrison, R.J. Hawken, D.M. Ferguson, J.M. Thompson, M.B. Thomas, et al. 2007. Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. GEN 176: 2601–2610.Google Scholar
  43. Barendse, W., B.E. Harrison, R.J. Bunch, and M.B. Thomas. 2008. Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC Genetics 9: 41.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Barham, B.L., J.C. Brooks, J.R. Blanton Jr., A.D. Herring, M.A. Carr, K.R. Kirth, and M.F. Miller. 2003. Effects of growth implants on consumer perceptions of meat tenderness in beef steers. Journal of Animal Science 81: 3052–3056.PubMedCrossRefGoogle Scholar
  45. Barker, D.J. 1995. Intrauterine programming of adult disease. Molecular Medicine Today 1: 418–423.PubMedGoogle Scholar
  46. Barlow, R. 1981. Experimental evidence for interactions between heterosis and environment in animals. Animal Breeding 49: 715–737.Google Scholar
  47. Baron, C.P., S. Jacobsen, and P.P. Purslow. 2004. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B. Meat Science 68: 447–456.PubMedCrossRefGoogle Scholar
  48. Barrett, M.J., D.E. Goll, and V.F. Thompson. 1991. Effect of substrate on Ca2+-concentration required for activity of the Ca2+- dependent proteinases, μ- and m-calpain. Life Science Journal 48: 1659–1669.CrossRefGoogle Scholar
  49. Bass, P.D., T.E. Engle, K.E. Belk, P.L. Chapman, S.L. Archibeque, G.C. Smith, and J.D. Tatum. 2010. Effects of sex and short-term magnesium supplementation on stress responses and longissimus muscle quality characteristics of crossbred cattle. Journal of Animal Science 88: 349–360.PubMedCrossRefGoogle Scholar
  50. Bauchart, C., D. Remond, C. Chambon, P.P. Mirand, I. Savary-Auzeloux, C. Reynes, et al. 2006. Small peptides (<5 kDa) found in ready-to-eat beef meat. Meat Science 74: 658–666.PubMedCrossRefGoogle Scholar
  51. Beall, A.C., K. Kato, J.R. Goldenring, H. Rasmussen, and C.M. Brophy. 1997. Cyclic nucleotide-dependent vasorelaxation is associated with the phosphorylation of a small heat shock-related protein. The Journal of Biological Chemistry 272: 11283–11287.PubMedCrossRefGoogle Scholar
  52. Becila, S., C.H. Herrera-Mendez, G. Coulis, R. Labas, T. Astruc, G. Picard, A. Boudjellal, P. Pelissier, L. Bremaud, and A. Ouali. 2010. Postmortem muscle cells die through apoptosis. European Food Research and Technology 231: 485–493.CrossRefGoogle Scholar
  53. Beckett, J.L., R.J. Delmore, G.C. Duff, D.A. Yates, D.M. Allen, T.E. Lawrence, and N.A. Elam. 2009. Effects of zilpaterol hydrochloride on growth rate, feed conversion, and carcass traits in calf-fed Holstein steers. Journal of Animal Science 87: 4092–4100.PubMedCrossRefGoogle Scholar
  54. Beere, H.M. 2004. ‘The stress of dying’: the role of heat shock proteins in the regulation of apoptosis. Journal of Cell Science 117: 2641–2651.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Behrends, J.M., K.J. Goodson, M. Koohmaraie, S.D. Shackleford, T.L. Wheeler, W.W. Morgan, and J.W. Savell. 2005a. Beef customer satisfaction: USDA quality grade and marination effects on consumer evaluations of top round steaks. Journal of Animal Science 83: 662–670.PubMedPubMedCentralGoogle Scholar
  56. Behrends, J.M., K.J. Goodson, M. Koohmaraie, S.D. Shackleford, T.L. Wheeler, W.W. Morgan, J.O. Reagan, B.L. Gwartney, J.W. Wise, and J.W. Savell. 2005b. Beef customer satisfaction: Factors affecting consumer evaluations of calcium chloride-injected top sirloin steaks when given instructions for preparation. Journal of Animal Science 83: 2869–2875.PubMedPubMedCentralGoogle Scholar
  57. Behrends, S.M., R.K. Miller, F.M. Rouquette Jr., R.D. Randel, B.G. Warrington, T.D.A. Forbes, T.H. Welsh, H. Lippke, J.M. Behrends, G.E. Carstens, and J.W. Holloway. 2009. Relationship of temperament, growth, carcass characteristics, and tenderness in beef steers. Meat Science 81: 433–438.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Bekhit, A.E.D., V. Suwandy, A. Carne, R. van de Ven, and D.L. Hopkins. 2016. Effect of repeated pulsed electric field treatment on the quality of hot-boned beef loins and topsides. Meat Science 111: 139–146.CrossRefGoogle Scholar
  59. Belcastro, A.N., J. Scrubb, and J.S. Gilchrist. 1991. Regulation of ATP-stimulated releasable myofilaments from cardiac and skeletal muscle myofibrils. Molecular and Cellular Biochemistry 103: 113–120.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Belcastro, A.N., L.D. Shewchuk, and D.A. Raj. 1998. Exercise-induced muscle injury: A calpain hypothesis. Molecular and Cellular Biochemistry 179: 135–145.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Belk, K.E., J.A. Scanga, A.M. Wylie, D.M. Wulf, J.D. Tatum, and J.O. Reagan. 2000. The use of video image analysis and instrumentation to predict beef palatability. In Proceedings of 53rd Annual Reciprocal Meat Conference Ohio, USA. 10–15.Google Scholar
  62. Bellinge, R.H.S., D.A. Liberles, S.P.A. Laschi, P.A. O’Brien, and G.K. Kay. 2004. Myostatin and its implications on animal breeding. A review. Animal Genetics 36: 1–6.CrossRefGoogle Scholar
  63. Benchaar, C., S. Calsamiglia, A.V. Chaves, G.R. Fraser, D. Colombatto, T.A. McAllister, et al. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology 145: 209–228.CrossRefGoogle Scholar
  64. Bennardini, F., A. Wrzosek, and M. Chiesi. 1992. Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circulation Research 71: 288–294.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Bennett, G.L. 2008. Experimental selection for calving ease and postnatal growth in seven cattle populations. I. Changes in estimated breeding values. Journal of Animal Sciences 86: 2093–2102.Google Scholar
  66. Berchtold, M.W., H. Brinkmeier, and M. Müntener. 2000. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiological Reviews 80: 1215–1265.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Berg, R.T. and R.M. Butterfield. 1976. New concepts of cattle growth. Sydney University Press, University of Sydney Australia. p 29.Google Scholar
  68. Berge, P., P. Ertbjerg, L.M. Larsen, T. Astruc, X. Vignon, and A.J. Mùller. 2001. Tenderization of beef by lactic acid injected at different times post mortem. Meat Science 57: 347–357.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Bernard, C., I. Cassar-Malek, M. Le Cunff, H. Dubroeucq, G. Renand, and J.F. Hocquette. 2007. New indicators of beef sensory quality revealed by expression of specific genes. Journal of Agricultural and Food Chemistry 55: 5229–5237.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Bertram, H.C., and H.J. Andersen. 2007. NMR and the water-holding issue of pork. Journal of Animal Breeding and Genetics 124: 35–42.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Bertram, H.C., S. Dønstrup, A.H. Karlsson, H.J. Andersen, and H. Stødkilde-Jørgensen. 2001. Post mortem energy metabolism and pH development in porcine M. longissimus dorsi as affected by two different cooling regimes. A (31)P-NMR spectroscopic study. Magnetic Resonance Imaging 19: 993–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Bevilacqua, A.E., and N.E. Zaritzky. 1980. Ice morphology in frozen beef. International Journal of Food Science and Technology 15: 589–597.CrossRefGoogle Scholar
  73. Bevilacqua, A.E., N.E. Zaritzky, and A. Calvelo. 1979. Histological measurements of ice in frozen beef. International Journal of Food Science and Technology 14: 237–251.CrossRefGoogle Scholar
  74. Bickerstaffe, R., A.E.D. Beckit, L.J. Robertson, N. Roberts, and G.H. Gesink. 2001. Impact of introducing specifications on the tenderness of retail meat. Meat Science 59: 303–315.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Bidner, T.D., W.E. Wyatt, P.E. Humes, D.E. Franke, and D.C. Blouin. 2002. Influence of Brahman-derivative breeds and Angus on carcass traits, physical composition, and palatability. Journal of Animal Science 80: 2126–2133.PubMedPubMedCentralGoogle Scholar
  76. Bidner, T.D., P.E. Humes, W.E. Wyatt, D.E. Franke, M.A. Persica III, G.T. Gentry, and D.C. Blouin. 2009. Influence of Angus and Belgian Blue bulls mated to Hereford × Brahman cows on growth, carcass traits, and longissimus steak shear force. Journal of Animal Science 87: 1167–1173.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Bindon, B.M., and N.M. Jones. 2001. Cattle supply, production systems and markets for Australian beef. Australian Journal of Experimental Agriculture 41: 861–877.CrossRefGoogle Scholar
  78. Bjarnadóttir, S.G., K. Hollung, E.M. Faergestad, and E. Veiseth-Kent. 2010. Proteome changes in bovine longissimus thoracis muscle during the first 48 h postmortem: shifts in energy status and myofibrillar stability. Journal of Agriculture Food Chemistry 58: 7408–7414.CrossRefGoogle Scholar
  79. Bloomberg, B.D., G.G. Mafi, B.J. Pye, J.L. Wahrmund, C.J. Richards, J.B. Morgan, and D.L. VanOverbeke. 2013. Impact of health management, health treatments, and zilpaterol hydrochloride supplementation on carcass quality, color, and palatability traits in heifers. Journal of Animal Science 91: 3465–3473.PubMedCrossRefGoogle Scholar
  80. Boccard, R. 1982. Relationship between muscle hypertrophy and the composition of skeletal muscles. In Muscle hypertrophy of genetic origin and its use to improve beef production, ed. J.W.B. King and F. Menissier, 148–161. The Hague: Martinus Nijhoff Publishers.CrossRefGoogle Scholar
  81. Boehm, M.L., T.L. Kendall, V.F. Thompson, and D.E. Goll. 1998. Changes in the calpains and calpastatin during postmortem storage of bovine muscle. Journal of Animal Science 76: 2415–2434.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Bohorov, O., P.J. Buttery, J.H.R.D. Correia, and J.B. Soar. 1987. The effect of the b-2-adrenergic agonist clenbuterol or implantation with oestradiol plus trenbolone acetate on protein metabolism in wether lambs. British Journal of Nutrition 57: 99–107.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Boleman, S.J., R.K. Miller, M.J. Buyck, H.R. Cross, and J.W. Savell. 1996. Influence of realimentation of mature cows on maturity, color stability, and sensory characteristics. Journal of Animal Science 24: 2187–2194.CrossRefGoogle Scholar
  84. Boles, J.A., D.L. Boss, K.I. Neary, K.C. Davis, and M.W. Tess. 2009. Growth implants reduced tenderness of steaks from steers and heifers with different genetic potentials for growth and marbling. Journal of Animal Science 87: 269–274.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Bonneau, M., and W. Enright. 1995. Immunocastration in cattle and pigs. Livestock Production Science 42: 193–200.CrossRefGoogle Scholar
  86. Bonnet, M., I. Cassar-Malek, Y. Chillard, and B. Picard. 2010. Ontogenesis of muscle and adipose tissues and their interaction in ruminants and other species. Animals 4: 1093–1109.Google Scholar
  87. Bosselmann, A., C. Möller, H. Steinhart, M. Kirchgessner, and F.J. Schwarz. 1995. Pyridinoline cross-links in bovine muscle collagen. Journal of Food Science 60: 953–958.CrossRefGoogle Scholar
  88. Boucque, C.V., L.O. Fiems, R.J. Moermans, B.G. Cottyn, and M. Sommer. 1994. Effect of cimaterol on growth, carcass characteristics and meat quality in double-muscled Belgian Whiteblue bulls. Canadian Journal of Animal Science 74: 707–709.CrossRefGoogle Scholar
  89. Bouley, J., C. Chambon, and B. Picard. 2004. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4: 1811–1824.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Bouley, J., B. Meunier, C. Chambon, S. De Smet, J.F. Hocquette, and B. Picard. 2005. Proteomic analysis of bovine skeletal muscle hypertrophy. Proteomics 5: 490–500.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Bouton, P.E., P.V. Harris, and W.R. Shorthose. 1971. Effect of ultimate pH upon the water-holding capacity and tenderness of mutton. Journal of Food Science 36: 435–439.CrossRefGoogle Scholar
  92. Bouton, P.E., A. Fisher, P.V. Harris, and R.I. Baxter. 1973. A comparison of the effects of some post-slaughter treatments on the tenderness of beef. Journal of Food Technology 8: 39–49.CrossRefGoogle Scholar
  93. Bowling, R.A., G.C. Smith, Z.L. Carpenter, T.R. Dutson, and W.M. Oliver. 1977. Comparison of forage finished and grain-finished beef carcasses. Journal of Animal Science 45: 209.Google Scholar
  94. Bowling, R.A., J.K. Riggs, G.C. Smith, Z.L. Carpenter, R.L. Reddish, and O.D. Butler. 1978. Production, carcass and palatability characteristics of steers produced by different management systems. Journal of Animal Science 46: 333–340.Google Scholar
  95. Bowling, M.B., D.J. Vote, K.E. Belk, J.A. Scanga, J.D. Tatum, and G.C. Smith. 2009. Using reflectance spectroscopy to predict beef tenderness. Meat Science 82: 1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Boyer-Berri, C., and M.L. Greaser. 1998. Effect of postmortem storage on the Z-line region of titin in bovine muscle. Journal of Animal Science 76: 1034–1044.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Bramblett, V.D., M.D. Judge, and G.E. Vail. 1963. Stress during growth: II. Effects on palatability and cooking characteristics of lamb meat. Journal of Animal Science 22: 1064–1067.CrossRefGoogle Scholar
  98. Brandão Cônsolo, N.R., V.B. Ferrari, L.G. Mesquita, R.S. Goulart, and L.F. Prada Silva. 2016. Zilpaterol hydrochloride improves beef yield, changes palatability traits, and increases calpain-calpastatin gene expression in Nellore heifers. Meat Science 121: 375–381.CrossRefGoogle Scholar
  99. Brandstetter, A.M., B. Picard, and Y. Geay. 1998. Muscle fiber characteristics in four muscles of growing male cattle II. Effect of castration and feeding level. Livestock Production Science 53: 25–36.CrossRefGoogle Scholar
  100. Bratcher, C.L., D.D. Johnson, R.C. Littell, and B.L. Gwartney. 2005. The effects of quality grade, aging, and location within muscle on Warner–Bratzler shear force in beef muscles of locomotion. Meat Science 70: 279–284.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Bratcher, C.L., K.C. Moore, M.P. Keene, and C.L. Lorenzen. 2006. Assessing the foodservice potential of muscles from the chuck. Journal of Food Service 17: 143–151.Google Scholar
  102. Briguet, A., M. Erb, I. Courdier-Fruh, P. Barzaghi, G. Santos, H. Herzner, C. Lescop, H. Siendt, M. Henneboehle, P. Weyermann, J.P. Magyar, J. Dubach-Powell, G. Metz, and T. Meier. 2008. Effect of calpain and proteasome inhibition on Ca2+-dependent proteolysis and muscle histopathology in the mdx mouse. The FASEB Journal 22: 4190–4200.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Brooks, C. 2007. Marinating of beef for enhancement. Beef facts—Product enhancement: Research Knowledge Management, National Cattlemen Beef Association. Available at: Accessed 21 Jan 2012.
  104. Brooks, J.C., and J.W. Savell. 2004. Perimysium thickness as an indicator of beef tenderness. Meat Science 67: 329–334.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Broom, D.M. 2007. Causes of poor welfare and welfare assessment during handling and transport. In Livestock Handling and Transport, ed. T. Grandin, 30–43. Cambridge, MA: CAB Int.CrossRefGoogle Scholar
  106. Brophy, C.M., M. Dickinson, and D. Woodrum. 1999. Phosphorylation of the small heat shock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. The Journal of Biological Chemistry 274: 6324–6329.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Brown, M.A., A.H. Brown, W.G. Jackson, and J.R. Miesner. 2000. Genotype × environment interactions in Angus, Brahman, and reciprocal-cross cows and their calves grazing common Bermuda grass, endophyte-infected tall fescue pastures, or both forages. Journal of Animal Science 78: 546–551.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Brule, C., E. Dargelos, R. Diallo, A. Listrat, D. Bechet, P. Cottin, and S. Poussard. 2010. Proteomic study of calpain interacting proteins during skeletal muscle aging. Biochimie 92: 1923–1933.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Brunsø, K., L. Bredahl, K.G. Grunert, and J. Scholderer. 2005. Consumer perception of the quality of beef resulting from various fattening regimes. Livestock Production Science 94: 83–93.CrossRefGoogle Scholar
  110. Burnham, D.L., R.W. Purchas, and S.T. Morris. 2005. Relationships between on-farm and pre-slaughter behaviour, and growth and meat quality for bulls and steers. Proceedings of the New Zealand Society of Animal Production 65: 261–265.Google Scholar
  111. Burrow, H.M. 1997. Measurements of temperament and their relationships with performance traits of beef cattle. Animal Breeding Abstracts 65: 477–495.Google Scholar
  112. ———. 2001. Variances and covariances between productive and adaptive traits and temperament in a composite breed of tropical beef cattle. Livestock Production Science 70: 213–233.CrossRefGoogle Scholar
  113. Burrow, H.M., and N.J. Corbet. 2000. Genetic and environmental factors affecting temperament of Zebu and Zebu-derived beef cattle grazed at pasture in the tropics. Australian Journal of Agricultural Research 55: 155–162.CrossRefGoogle Scholar
  114. Burrow, H.M., and R.D. Dillon. 1997. Relationships between temperament and growth in a feedyard and commercial carcass traits of Bos indicus crossbreds. Australian Journal of Experimental Agriculture 37: 407–411.CrossRefGoogle Scholar
  115. Burrow, H.M., G.W. Seifert, and N.J. Corbet. 1998. A new technique for measuring temperament in cattle. Proceedings of Australian Society Animal Production 17: 154–157.Google Scholar
  116. Burrow, H.M., S.S. Moore, D.J. Johnston, W. Barendse, and B.M. Bindon. 2001. Quantitative and molecular genetic influences on properties of beef: A review. Australian Journal of Experimental Agriculture 41: 893–919.CrossRefGoogle Scholar
  117. Busch, W.A., M.H. Stromer, D.E. Goll, and A. Suzuki. 1972. Ca2+- specific removal of z lines from rabbit skeletal muscle. The Journal of Cell Biology 52: 367–381.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Byrne, C.E., G. Downey, D. Troy, and D. Buckley. 1998. Non-destructive prediction of selected quality attributes of beef by near-infrared reflectance spectroscopy. Meat Science 49: 399–409.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Café, L.M., B.L. McIntyre, D.L. Robinson, G.H. Geesink, W. Barendse, and P.L. Greenwood. 2010a. Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 1. Growth, efficiency, temperament, and carcass characteristics. Journal of Animal Science 88: 3047–3058.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Café, L.M., B.L. McIntyre, D.L. Robinson, G.H. Geesink, W. Barendse, D.W. Pethick, J.M. Thompson, and P.L. Greenwood. 2010b. Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 2. Objective meat quality. Journal of Animmal Science 88: 3059–3069.CrossRefGoogle Scholar
  121. Café, L.M., D.L. Robinson, D.M. Ferguson, B.L. McIntyre, G.H. Geesink, and P.L. Greenwood. 2011. Cattle temperament: Persistence of assessments and associations with productivity, efficiency, carcass and meat quality traits. Journal of Animal Science 89: 1452–1465.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Calkins, C.R., and G. Sullivan. 2007. Ranking of beef muscles for tenderness. Org: NCBA. www.Beefresearch.Google Scholar
  123. ———. 2012. Ranking of beef muscles for tenderness. Beef Facts: Product Enhancement. Scholar
  124. Calkins, C.R., T.R. Duston, G.C. Smith, Z.L. Carpenter, and G.W. Davis. 1981. Relationship of fiber type composition to marbling and tenderness of bovine muscle. Journal of Food Science 46: 708–715.Google Scholar
  125. Calkins, C.R., S.C. Seideman, and J.D. Crouse. 1987. Relationships between rate of growth, catheptic enzymes and meat palatability in young bulls. Journal of Animal Science 64: 1448–1457.CrossRefGoogle Scholar
  126. Camou, J.P., J.A. Marchello, V.F. Thompson, S.W. Mares, and D.E. Goll. 2007. Effect of postmortem storage on activity of μ- and m-calpain in five bovine muscles. Journal of Animal Science 85: 2670–2681.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Campbell, R.E., M.C. Hunt, P. Levis, and E. Chambers IV. 2001. Dryaging effect on palatability of beef longissimus muscle. Journal of Food Science 66: 196–199.CrossRefGoogle Scholar
  128. Campo, M.M., P. Santolaria, C. Sanudo, J. Lepetit, J.L. Olleta, B. Panea, and P. Alberti. 2000. Assessment of breed type and aging time effects on beef meat quality using two different texture devices. Meat Science 55: 371–378.PubMedCrossRefGoogle Scholar
  129. Cao, J.-X., C.-R. Ou, Y.-F. Zou, K.-P. Ye, Q.-Q. Zhang, M.A. Khan, D.-D. Pan, and G. Zhou. 2013. Activation of caspase-3 and its correlation with shear force in bovine skeletal muscles during postmortem conditioning. Journal of Animal Science 91: 4547–4552.PubMedCrossRefGoogle Scholar
  130. Carlin, K.M., G.P. Lardy, R.J. Maddock, B.R. Ilse, and V.L. Anderson. 2006. Field pea inclusion in high grain diets for beef heifers improves beef tenderness without altering performance. Jouranl of Animal Science 84: 36. (Abstr.).Google Scholar
  131. Carmack, C.F., C.T. Kastner, M.E. Dikeman, J.R. Schwerke, and C.M. Garcia-Zepeda. 1993. Sensory evaluation of beef flavor intensity, tenderness, and juiciness among major muscles. Meat Science 39: 143–147.CrossRefGoogle Scholar
  132. Carpenter, J.W., A.Z. Palmer, W.G. Kirk, F.M. Peacock, and M. Koger. 1961. Slaughter and carcass characteristics of Brahman anBrahman-Shorthorn crossbred steers. Journal of Animal Science 20: 336.CrossRefGoogle Scholar
  133. Carpenter, C.E., O.D. Rice, N.E. Cockett, and G.D. Snowder. 1996. Histology and composition of muscles from normal and callipyge lambs. Journal of Animal Science 74: 388–393.PubMedCrossRefGoogle Scholar
  134. Carvalho, M.E., G. Gasparin, M.D. Poleti, A.F. Rosa, J.C. Carvalho-Balieiro, C.A. Labate, R.T. Nassu, R.R. Tullio, L.C.A. Regitano, G.B. Mourão, and L.L. Coutinho. 2014. Heat shock and structural proteins associated with meat tenderness in Nellore beef cattle, a Bos indicus breed. Meat Science 96: 1318–1324.PubMedCrossRefGoogle Scholar
  135. Casas, E., J.W. Keele, S.D. Shackleford, M. Koohmaraie, T.S. Sonstegard, T.P. Smith, et al. 1998. Association of the muscle hypertrophy locus with carcass traits in beef cattle. Journal of Animal Science 76: 468–473.PubMedCrossRefGoogle Scholar
  136. Casas, E., S.N. White, T.L. Wheeler, S.D. Shackleford, M. Koohmaraie, D.G. Riley, et al. 2006. Effects of calpastatin and l-calpain markers in beef cattle on tenderness traits. Journal of Animal Science 84: 520–525.PubMedCrossRefGoogle Scholar
  137. Cassar-Malek, I., J.F. Hocquette, C. Jurie, A. Listrat, R. Jailler, D. Bauchart, T. Briand, and B. Picard. 2004. Muscle-specific metabolic, histochemical and biochemical responses to a nutritionally induced discontinuous growth path. Journal of Animal Science 79: 49–59.CrossRefGoogle Scholar
  138. Cecchi, L.A., D.L. Huffman, W.R. Egbert, and W.R. Jones. 1988. Chemical and physical characteristics of beef chuck muscles. Effect of electrical stimulation, hot-boning, and high temperature conditioning. Journal of Food Science 53: 411–415.CrossRefGoogle Scholar
  139. Chambaz, A., M.R.L. Scheeder, M. Kreuzerb, and P.A. Dufey. 2003. Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Science 63: 491–500.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Channon, H.A., A. Payne, and R.D. Warner. 2000. Halothane genotype, pre-slaughter handling and stunning method all influence pork quality. Meat Science 56: 291–299.PubMedCrossRefGoogle Scholar
  141. Chen, L., X.C. Feng, F. Lu, X.L. Xu, G.H. Zhou, G.Y. Li, and X.Y. Guo. 2011. Effects of camptothecin, etoposide and Ca2+ on caspase-3 activity and myofibrillar disruption of chicken during postmortem aging. Meat Science 87: 165–174.PubMedCrossRefGoogle Scholar
  142. Chi, N.C., and J.S. Karliner. 2004. Molecular determinants of responses to myocardial ischemia/reperfusion injury: Focus on hypoxia-inducible and heat shock factors. Cardiovascular Research 61: 437–447.PubMedCrossRefGoogle Scholar
  143. Choat, W.T., J.A. Paterson, B.M. Rainey, M.C. King, G.C. Smith, K.E. Belk, and R.J. Lipsey. 2006. The effects of cattle sex on carcass characteristics and longissimus muscle palatability. Journal of Animal Science 84: 1820–1826.PubMedCrossRefGoogle Scholar
  144. Choe, J.H., Y.M. Choi, S.H. Lee, H.G. Shin, Y.C. Ryu, K.C. Hong, and B.C. Kim. 2008. The relationship between glycogen, lactate content and muscle fiber type composition, and their influence on postmortem glycolytic rate and pork quality. Meat Science 80: 355–362.PubMedCrossRefGoogle Scholar
  145. Choe, S.-H., A. Stewart, and Y.H.B. Kim. 2016. Effect of different aging temperatures prior to freezing on meat quality attributes of frozen/thawed lamb loins. Meat Science 116: 158–164.PubMedCrossRefGoogle Scholar
  146. Choi, Y.M., and B.C. Kim. 2009. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livestock Science 122: 105–118.CrossRefGoogle Scholar
  147. Chriki, S., B. Picard, C. Jurie, M. Reichstadt, D. Micol, J.P. Brun, L. Journaux, and J.F. Hocquette. 2012a. Meta-analysis of the comparison of the metabolic and contractile characteristics of two bovine muscles: Longissimus thoracis and Semitendinosus. Meat Science 91: 423–429.PubMedCrossRefGoogle Scholar
  148. Chriki, S., G.E. Gardner, C. Jurie, B. Picard, D. Micol, J.P. Brun, L. Journaux, and J.F. Hocquette. 2012b. Cluster analysis application in search ofmuscle biochemical determinants for beef tenderness. BMC Biochemistry 13: 29.PubMedPubMedCentralGoogle Scholar
  149. Christensen, S., P.P. Purslow, and L.M. Larsen. 2000. The effect of cooking temperature on mechanical properties of whole meat, single muscle fibers and perimysial connective tissue. Meat Science 55: 301–307.PubMedCrossRefGoogle Scholar
  150. Clarke, F.M., F.D. Shaw, and D.J. Morton. 1980. Effect of electrical stimulation post mortem of bovine muscle on the binding of glycolytic enzymes: Functional and structural implications. The Biochemical Journal 186: 105–109.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Clarke, F.M., P. Stephan, G. Huxham, D. Hamilton, and D.J. Morton. 1984. Metabolic dependence of glycolytic enzyme binding in rat and sheep heart. European Journal of Biochemistry 138: 643–649.PubMedCrossRefGoogle Scholar
  152. Clayton, R.P., J.D. Tatum, and R.A. Bowling. 1981. Effects of carcass maturity and feeding regimen on palatability traiots of beef. Journal of Animal Science.Google Scholar
  153. Cluff, K., N.G. Konda, J. Subbiah, R. Lu, C.R. Calkins, and A. Samal. 2008. Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS–NIR region. Sensing and Instrumentation for Food Quality and Safety 2: 189–196.CrossRefGoogle Scholar
  154. Cluff, K., K.N. Govindarajan, J. Subbiah, A. Samal, and C.R. Calkins. 2013. Optical scattering with hyperspectral imaging to classify longissimus dorsi muscle based on beef tenderness using multivariate modeling. Meat Science 95: 42–50.PubMedCrossRefGoogle Scholar
  155. Cockett, N.E., S.P. Jackson, T.L. Shay, D. Nielsen, S.S. Moore, M.R. Steele, W. Barendse, R.D. Green, and M. Georges. 1994. Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proceedings of the National Academy of Sciences 91: 3019–3123.CrossRefGoogle Scholar
  156. Colle, M.J., R.P. Richard, K.M. Killinger, J.C. Bohlscheid, A.R. Gray, W.I. Loucks, R.N. Day, A.S. Cochran, J.A. Nasados, and M.E. Doumit. 2015. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the gluteus medius and longissimus lumborum. Meat Science 110: 32–39.PubMedPubMedCentralGoogle Scholar
  157. ———. 2016. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the biceps femoris and semimembranosus. Meat Science 119: 110–117.PubMedPubMedCentralGoogle Scholar
  158. Cornforth, D.P., A.M. Pearson, and R.A. Merkel. 1980. Relationship of mitochondria and sarcoplasmic reticulum to cold shortening. Meat Science 4: 103–121.PubMedCrossRefGoogle Scholar
  159. Cranwell, C.D., J.A. Unruh, J.R. Brethour, D.D. Simms, and R.E. Campbell. 1996a. Influence of steroid implants and concentrates feeding on performance and carcass composition of cull beef cows. Journal of Animal Science 74: 1770–1776.PubMedCrossRefGoogle Scholar
  160. Cranwell, C.D., J.A. Unruh, J.R. Brethour, and D.D. Simms. 1996b. Influence of steroid implants and concentrate feeding on carcass and longissimus. Journal of Animal Science 74: 1777–1783.PubMedCrossRefGoogle Scholar
  161. Cross, H.R., Z.L. Carpenter, and G.C. Smith. 1973. Effects of intramuscular collagen and elastin on bovine muscle tenderness. Journal of Food Science 38: 998–1003.CrossRefGoogle Scholar
  162. Cross, H.R., D.A. Gilliland, P.R. Durland, and S. Seideman. 1983. Beef carcass evaluation by use of a video image analysis system. Journal of Animal Science 57: 910–917.CrossRefGoogle Scholar
  163. Crouse, J.D., H.R. Cross, and S.C. Seideman. 1984. Effects of a grass or grain diet on the quality of three beef muscles. Journal of Animal Science 58: 619–625.Google Scholar
  164. ———. 1985. Effects of sex condition, genotype, diet and carcass electrical stimulation on the collagen content and palatability of two bovine muscles. Journal of Animal Science 60: 1228–1234.CrossRefGoogle Scholar
  165. Crouse, J.D., L.V. Cundiff, R.M. Koch, M. Koohmaraie, and Seideman. 1989. Comparison of Bos indicus and Bos taurus inheritance for carcass beef characteristics and meat palatability. Journal of Animal Science 67: 2661–2668.CrossRefGoogle Scholar
  166. Crouse, J.D., M. Koohmaraie, and S.D. Seideman. 1991. The relationship of muscle fiber size to tenderness of beef. Meat Science 30: 295–302.PubMedCrossRefGoogle Scholar
  167. Cruzen, S.M., A.J. Harris, K. Hollinger, R.M. Punt, J.K. Grubbs, J.T. Selsby, J.C.M. Dekkers, N.K. Gabler, S.M. Lonergan, and E. Huff-Lonergan. 2013. Evidence of decreased muscle protein turnover in gilts selected for low residual feed intake. Journal of Animal Science 91: 4007–4016.PubMedCrossRefGoogle Scholar
  168. Curley, K.O., Jr., J.C. Paschal, T.H. Welsh Jr., and R.D. Randel. 2006. Technical note: Exit velocity as a measure of cattle temperament is repeatable and associated with serum concentration of cortisol in Brahman bulls. Journal of Animal Science 84: 3100–3103.PubMedCrossRefGoogle Scholar
  169. D’Alessandro, A., and L. Zolla. 2011. The SODyssey: superoxide dismutases from biochemistry, through proteomics, to oxidative stress, aging and nutraceuticals. Expert Review of Proteomics 8: 405–421.PubMedCrossRefGoogle Scholar
  170. ———. 2013. Review Meat science: From proteomics to integrated omics towards system biology. Journal of Proteomics 78: 558–577.PubMedCrossRefGoogle Scholar
  171. D’Alessandro, A., C. Marrocco, V. Zolla, M. D’Andrea, and L. Zolla. 2011. Meat quality of the longissimus lumborum muscle of Casertana and LargeWhite pigs: Metabolomics and proteomics intertwined. Journal of Proteomics 75: 610–627.PubMedCrossRefGoogle Scholar
  172. D’Alessandro, A., S. Rinalducci, C. Marrocco, V. Zolla, F. Napolitano, and L. Zolla. 2012a. Love me tender: An Omics window on the bovine meat tenderness network. Journal of Proteomics 2: 4360–4380.CrossRefGoogle Scholar
  173. D’Alessandro, A., C. Marrocco, S. Rinalducci, C. Mirasole, S. Failla, and L. Zolla. 2012b. Chianina beef tenderness investigated through integrated Omics. Journal of Proteomics 75: 4381–4398.PubMedCrossRefGoogle Scholar
  174. Dahlmann, B., L. Kuehn, and H. Reinauer. 1986. Identification of two alkaline proteinases from rat skeletal muscle. In Cysteine proteinases and their inhibitors, ed. V. Tur, 133–146. New York: Walter de Guyter.Google Scholar
  175. Damez, J.L., and S. Clerjon. 2013. Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: An overview. Meat Science 95: 879–896.PubMedCrossRefGoogle Scholar
  176. Damon, R.A., Jr., R.M. Crown, C.B. Singletary, and S.E. McCraine. 1960. Carcass characteristics of purebred and crossbred beef steers in the Gulf Coast region. Journal of Animal Science 19: 820.CrossRefGoogle Scholar
  177. Dargelos, E., S. Poussard, C. Brule, L. Daury, and P. Cottin. 2008. Calcium-dependent proteolytic system and muscle dysfunctions: A possible role of calpains in sarcopenia. Biochimie 90: 359–368.PubMedCrossRefGoogle Scholar
  178. Davey, C.L., and K.V. Gilbert. 1969. Studies in meat tenderness. 7. Changes in the fine structure of meat during aging. Journal of Food Science 34: 69–74.CrossRefGoogle Scholar
  179. Dayton, W.R., D.E. Goll, M.G. Zeece, R.M. Robson, and W.J. Reville. 1976. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry 15: 2150–2158.PubMedCrossRefGoogle Scholar
  180. de Barcellos, M.D., J.O. Kugler, K.G. Grunert, L. Van Wezemael, F.J.A. Perez-Cueto, O. Ueland, et al. 2010. European consumers’ acceptance of beef processing technologies: A focus group study. Innovative Food Science & Emerging Technologies 11: 721–732.CrossRefGoogle Scholar
  181. De Smet, S., K. Raes, and D. Demeyer. 2004. Meat fatty acid composition as affected by fatness and genetic factors: A review. Animal Research 53: 81–98.Google Scholar
  182. Dedieu, S., S. Poussard, G. Mazeres, F. Grise, E. Dargelos, P. Cottin, and J.J. Brustis. 2004. Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Experimental Cell Research 292: 187–200.PubMedCrossRefGoogle Scholar
  183. Delgado, E.F., G.H. Geesink, J.A. Marchello, D.E. Goll, and M. Koohmaraie. 2001. Properties of myofibril-bound calpain activity in longissimus muscle of callipyge and normal sheep. Journal of Animal Science 79: 2097–2107.PubMedCrossRefGoogle Scholar
  184. Denhertogmeischke, M.J.A., F.J.M. Smulders, J.G. Vanlogtestijn, and F. Vanknapen. 1997. Effect of electrical stimulation on the water-holding capacity and protein denaturation of two bovine muscles. Journal of Animal Science 75: 118–124.CrossRefGoogle Scholar
  185. Depenbusch, B.E., C.M. Coleman, J.J. Higgins, and J.S. Drouillard. 2009. Effects of increasing levels of dried corn distillers grains with soluble on growth performance, carcass characteristics, and meat quality of yearling heifers. Journal of Animal Science 87: 2653–2663.PubMedCrossRefGoogle Scholar
  186. DeRouen, S.M., D.E. Franke, T.D. Bidner, and D.C. Blouin. 1992. Direct and maternal genetic effects for carcass traits in beef cattle. Journal of Animal Science 70: 3677–3685.PubMedCrossRefGoogle Scholar
  187. Desmond, E. 2006. Reducing salt: A challenge for the meat industry. Meat Science 74: 188–196.PubMedCrossRefGoogle Scholar
  188. Destefanis, G., A. Brugiapaglia, M.T. Barge, and C. Lazzaroni. 2003. Effect of castration on meat quality in Piemontese cattle. Meat Science 64: 215–218.PubMedCrossRefGoogle Scholar
  189. Devine, C.E. 1994. Incidence of high pH beef and lamb I: Implications for meat quality. In Twenty-eighth meat Ind. Res. Conf, 118–123. Hamilton: MIRINZ.Google Scholar
  190. Devine, C.E., S. Ellery, L. Wade, and B.B. Chrystall. 1984. Differential effects of electrical stunning on the early post-mortem glycolysis in sheep. Meat Science 11: 308–309.CrossRefGoogle Scholar
  191. Di Luca, A., A.M. Mullen, G. Elia, G. Davey, and R.M. Hamill. 2011. Centrifugal drip is an accessible source for protein indicators of pork aging and water-holding capacity. Meat Science 88: 261–270.PubMedCrossRefGoogle Scholar
  192. Dickerson, G.E. 1969. Experimental approaches in utilizing breed resources. Animal Breeding 37:191–202. Abstr.Google Scholar
  193. ———. 1973. Inbreeding and heterosis in animals. In Proceedings animal breeding and genetics symposium in honor of Jay L. Lush, ed. L.V. Cundiff, 54–77. Champaign: American Society of Animal Science Dairy Science Assn.Google Scholar
  194. Dikeman, M.E., E.J. Pollak, Z. Zhang, D.W. Moser, C.A. Gill, and E.A. Dressler. 2005. Phenotypic ranges and relationships among carcass and meat palatability traits for fourteen cattle breeds, and heritabilities and expected progeny differences for Warner-Bratzler shear force in three beef cattle breeds. Journal of Animal Science 83: 2461–2467.Google Scholar
  195. Dikeman, M.E., E. Obuz, V. Gök, L. Akkaya, and S. Stroda. 2013. Effects of dry, vacuum, and special bag aging; USDA quality grade; and end-point temperature on yields and eating quality of beef Longissimus lumborum steaks. Meat Science 94: 228–233.PubMedCrossRefGoogle Scholar
  196. Dirks, A., and C. Leeuwenburgh. 2002. Apoptosis in skeletal muscle with aging. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 282: R519–R527.PubMedCrossRefGoogle Scholar
  197. Dixon, C.L., D.R. Woerner, R.J. Tokach, P.L. Chapman, T.E. Engle, J.D. Tatum, and K.E. Belk. 2012. Quantifying the “aging response” and nutrient composition for muscles of the beef round. Journal of Animal Science 90: 996–1007.PubMedCrossRefGoogle Scholar
  198. DOCE. 2005. Reglamento CE N° 1/2005 del Consejo de 22 de diciembre de 2004 relativo a la protección de los animales durante el transporte y las operaciones conexas por el que se modifican las directivas 64/432/CEE y 93/119/CE y el reglamento (CE) n° 1255/97. Diario Oficial de la Unión Europea L3/1–L3/44 (05 Enero 2005).Google Scholar
  199. Dransfield, E. 1977. Intramuscular composition and texture of beef muscles. Journal of the Science of Food and Agriculture 28: 842–844.CrossRefGoogle Scholar
  200. ———. 1992. Modelling post-mortem tenderisation–III: Role of calpain I in conditioning. Meat Science 31: 85–94.PubMedCrossRefPubMedCentralGoogle Scholar
  201. ———. 1993. Modelling post-mortem tenderisation-IV: Role of calpains and calpastatin in conditioning. Meat Science 34: 217–234.PubMedCrossRefPubMedCentralGoogle Scholar
  202. ———. 1994. Modelling post mortem tenderisation—V: Inactivation of calpains. Meat Science 37: 391–409.CrossRefGoogle Scholar
  203. Dransfield, E., and D.N. Rhodes. 1976. Effect of post-rigor muscle length on the texture of meat. Journal of the Science of Food and Agriculture 27: 483–486.CrossRefGoogle Scholar
  204. Dransfield, E., M.A. Francombe, and O.P. Whelehan. 1984. Relationships between sensory attributes in cooked meat. Journal of Texture Studies 15: 33–48.CrossRefGoogle Scholar
  205. Dransfield, E., D.K. Wakefield, and I.D. Parkman. 1992a. Modelling post-mortem tenderisation—I: Texture of electrically stimulated and non-stimulated beef. Meat Science 31: 57–73.PubMedCrossRefGoogle Scholar
  206. Dransfield, E., D.J. Etherington, and M.A.J. Taylor. 1992b. Modelling post-mortem tenderisation—II: Enzyme changes during storage of electrically stimulated and non-stimulated beef. Meat Science 31: 75–84.PubMedCrossRefGoogle Scholar
  207. Dransfield, E., J.F. Martin, D. Bauchart, S. Abouelkaram, J. Lepetit, J. Culioli, C. Jurie, and B. Picard. 2003. Meat quality and composition of three muscles from French cull cows and young bulls. Journal of Animal Science 76: 387–399.CrossRefGoogle Scholar
  208. Du, C.J., and D.W. Sun. 2004. Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science and Technology 15: 230–249.CrossRefGoogle Scholar
  209. Du, M., J. Tong, J.F. Zhao, J. Zhao, K.R. Underwood, M. Zhu, S.P. Ford, and W. Nathanielsz. 2010a. Fetal programming of skeletal muscle development in ruminant animals. Journal of Animal Science 88: E51–E60.Google Scholar
  210. Dubost, A., D. Micol, B. Meunier, C. Lethias, and A. Listrat. 2013a. Relationships between structural characteristics of bovine intramuscular connective tissue assessed by image analysis and collagen and proteoglycan content. Meat Science 93: 378–386.PubMedPubMedCentralGoogle Scholar
  211. Dubost, A., D. Micol, B. Picard, C. Lethias, D. Andueza, D. Bauchart, and A. Listrat. 2013b. Structural and biochemical characteristics of bovine intramuscular connective tissue and beef quality. Meat Science 95: 555–561.CrossRefPubMedPubMedCentralGoogle Scholar
  212. Duckett, S.K., and S.L. Pratt. 2014. Meat science and muscle biology symposium—Anabolic implants and meat quality. Journal of Animal Science 92: 3–9.Google Scholar
  213. Duckett, S.K., F.N. Owens, and J.C. Andrae. 1997. Effects of implants on performance and carcass traits of feedyard stters and heifers. In Impact of implants on performance and carcass value of beef cattle, ed. F.M. Owens, 63–82. Stillwater: Oklahoma State University.Google Scholar
  214. Duckett, S.K., D.G. Wagner, F.N. Owens, H.G. Dolezal, and D.R. Gill. 1999. Effect of anabolic implants on beef intramuscular lipid content. Journal of Animal Science 77: 1100–1104.Google Scholar
  215. Dunshea, F.R., C. Colantoni, K. Howard, I. McCauley, P. Jackson, K.A. Long, S. Lopaticki, E.A. Nugent, J.A. Simons, J. Walker, and D.P. Hennessy. 2001. Vaccination of boars with a GnRH vaccine (Improvac) eliminates boar taint and increases growth performance. Journal of Animal Science 79: 2524–2535.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Dunshea, F.R., D.N. D’Souza, D.W. Pethick, G.S. Harper, and R.D. Warner. 2005. Effects of dietary factors and other metabolic modifiers on quality and nutritional value of meat. Meat Science 71: 8–38.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Dutson, T.R. 1983. The relationship of pH and temperature to disruption of specific muscle proteins and activity of lysosomal proteases. Journal of Food Biochemistry 7: 223–245.CrossRefGoogle Scholar
  218. Eastwood, L.C., A.N. Arnold, R.K. Miller, K.B. Gehring, and J.W. Savell. 2016. Novel approach to aging beef: Vacuum-packaged foodservice steaks versus vacuum-packaged subprimals. Meat Science 116: 230–235.PubMedCrossRefGoogle Scholar
  219. Edmunds, T., P.A. Nagainis, S.K. Sathe, V.F. Thompson, and D.E. Goll. 1991. Comparison of the autolyzed and unautolyzed forms of mu- and m-calpain from bovine skeletal muscle. Biochimica et Biophysica Acta 1077: 197–208.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Eggen, A., and J.F. Hocquette. 2004. Genomic approaches to economic trait loci and tissue expression profiling: Application to muscle biochemistry and beef quality. Meat Science 66: 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  221. Eggen, K.H., W.E. Ekholdt, V. Host, and S.O. Kolset. 1998. Proteoglycans and meat quality—A possible role of chondroitin/dermatan sulfate proteoglycans in post mortem degradation. Basic and Applied Myology 8: 159–168.Google Scholar
  222. Eilers, J.D., J.D. Tatum, J.B. Morgan, and G.C. Smith. 1996. Modification of early-postmortem muscle pH and use of postmortem aging to improve beef tenderness. Journal of Animal Science 74: 790–798.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Elam, N.A., J.A. Vasconceles, G. Hilton, D.L. VanOverbeke, T.E. Lawrence, T.H. Montgomery, W.T. Nichols, M.N. Streeter, J.P. Hutcheson, D.A. Yates, and M.L. Galyon. 2009. Effects of zilpaterol hydrochloride duration of feeding on performance, and carcass characteristics of feedyard cattle. Journal of Animal Science 87: 2133–2141.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Eldridge, G.A., and C.G. Winfield. 1988. The behaviour and bruising of cattle during transport at different space allowances. Australian Journal of Experimental Agriculture 28: 695–698.CrossRefGoogle Scholar
  225. Ellis, R.J., and S.M. van der Vies. 1991. Molecular chaperones. Annual Review of Biochemistry 60: 321–347.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Elmore, S. 2007. Apoptosis: A review of programmed cell death. Toxicologic Pathology 35: 495–516.PubMedPubMedCentralCrossRefGoogle Scholar
  227. El-Saleh, S.C., and R.J. Solaro. 1988. Troponin I enhances acidic pH-induced depression of Ca2+ binding to the regulatory sites in skeletal troponin Can. The Journal of Biological Chemistry 263: 3274–3278.PubMedPubMedCentralGoogle Scholar
  228. Elzo, M.A., D.D. Johnson, J.G. Wasdin, and J.D. Driver. 2012. Carcass and meat palatability breed differences and heterosis effects in an Angus–Brahman multibreed population. Meat Science 90: 87–92.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Engebretson, M. 2008. North America. 2008. In Long distance transport and welfare of farm animals, ed. M.C. Appleby, V.A. Cussen, L. Garcés, L.A. Lambert, and J. Turner, 218–260. Wallingford: CABI.CrossRefGoogle Scholar
  230. England, E.M., K.D. Fisher, S.J. Wells, D.A. Mohrhauser, D.E. Gerrard, and A.D. Weaver. 2012. Postmortem titin proteolysis is influenced by sarcomere length in bovine muscle. Journal of Animal Science 90: 989–995.PubMedCrossRefPubMedCentralGoogle Scholar
  231. England, E.M., T.L. Scheffler, S.C. Kasten, S.K. Matarneh, and D.E. Gerrard. 2013. Exploring the unknowns involved in the transformation of muscle to meat. Meat Science 95: 837–843.PubMedCrossRefPubMedCentralGoogle Scholar
  232. Ertbjerg, P., and E. Puolanne. 2017. Review Muscle structure, sarcomerelength andinfluences on meatquality. Meat Science 132: 139–172.PubMedCrossRefPubMedCentralGoogle Scholar
  233. Ertbjerg, P., P. Henckel, A. Karlsson, L.M. Larsen, and A.J. Moller. 1999. Combined effect of epinephrine and exercise on calpain/calpastatin and cathepsin B and L activity in porcine longissimus muscle. Journal of Animal Science 77: 2428–2436.PubMedCrossRefPubMedCentralGoogle Scholar
  234. Escobedo, J., S.A.M. Pucci, and T.J. Koh. 2004. HSP25 protects skeletal muscle cells against oxidative stress. Free Radical Biology & Medicine 37: 1455–1462.CrossRefGoogle Scholar
  235. Etherington, D.J. 1984. The contribution of proteolytic enzymes to postmortem changes in muscle. Journal of Animal Science 59: 1644–1650.CrossRefGoogle Scholar
  236. Eyre, D. 1987. Collagen cross-linking amino acids. Methods in Enzymology 144: 115–139.PubMedCrossRefPubMedCentralGoogle Scholar
  237. Fan, G.C., G. Chu, and E.G. Kranias. 2005. Hsp20 and its cardioprotection. Trends in Cardiovascular Medicine 15: 138–141.PubMedCrossRefPubMedCentralGoogle Scholar
  238. Fang, S.H., T. Nishimura, and K. Takahashi. 1999. Relationship between development of intramuscular connective tissue and toughness of pork during growth of pigs. Journal of Animal Science 77: 120–130.PubMedCrossRefPubMedCentralGoogle Scholar
  239. Farouk, M.M. 2013. Review. Advances in the industrial production of Halal and Kosher red meat. Meat Science 95: 805–820.CrossRefGoogle Scholar
  240. Farouk, M., E. Wiklund, A. Stuart, and P. Dobbie. 2009. Aging prior to freezing improves the color of frozen–thawed beef and venison. Paper presented at the Proceedings of 55th International Congress of Meat Science and Technology, Copenhagen, Denmark.Google Scholar
  241. Faucitano, L., P.Y. Chouinard, J. Fortin, I.B. Mandell, C. Lafreniere, C.L. Girard, and R. Berthiaume. 2008. Comparison of alternative beef production systems based on forage finishing or grain-forage diets with or without growth promotants: 2. Meat quality, fatty acid composition, and overall palatability. Journal of Animal Science 86: 1678–1689.PubMedCrossRefPubMedCentralGoogle Scholar
  242. Faul, C., A. Dhume, A.D. Schecter, and P. Mundel. 2007. Protein kinase Ca2+/calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes. Molecular Cell 27: 8215–8227.CrossRefGoogle Scholar
  243. Feasson, L., D. Stockholm, D. Freyssenet, I. Richard, S. Duguez, J.S. Beckmann, and C. Denis. 2002. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. The Journal of Physiology 543: 297–306.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Felderhoff, C.A., C.P. Lyford, J. Malaga, D.D. Harris, J.C. Brooks, J.M. Mehaffey, R. Polkinghorne, and M.F. Miller. 2007. National consumer survey reveals beef flavor is the most important trait affecting satisfaction. 60th Annual Reciprocal Meat Conference.Google Scholar
  245. Fell, L.R., I.G. Colditz, K.H. Walker, and D.L. Watson. 1999. Associations between temperament, performance and immune function in cattle entering a commercial feedyard. Australian Journal of Experimental Agriculture 39: 795–802.CrossRefGoogle Scholar
  246. Ferguson, D.M., and R.D. Warner. 2008. Have we underestimated the impact of preslaughter stress on meat quality in ruminants? Meat Science 80: 12–19.PubMedCrossRefGoogle Scholar
  247. Ferguson, D.M., J. Thompson, and R. Polkinghorne. 1999. Meat standards Australia, a “PACCP” based beef grading scheme for consumers. (3) PACCP requirements which apply to carcass processing. Book of abstracts of the 45th International Congress Meat Science and Technology, Yokohama, Japan, 18–19.Google Scholar
  248. Ferguson, D.M., S.T. Jiang, H. Hearnshaw, S.R. Rymill, and J.M. Thompson. 2000. Effect of electrical stimulation on protease activity and tenderness of M. longissimus from cattle with different proportions of Bos indicus content. Meat Science 55: 265–272.PubMedCrossRefGoogle Scholar
  249. Ferguson, D.M., H.L. Bruce, J.M. Thompson, A.F. Egan, D. Perry, and W.R. Shorthose. 2001. Factors affecting beef palatability—farmgate to chilled carcass. Australian Journal of Experimental Agriculture 41: 879–891.CrossRefGoogle Scholar
  250. Fernandez, X., and E. Tornberg. 1994. The influence of high post-mortem temperature and differing ultimate pH on the course of rigor and aging in pig Longissimus dorsi muscle. Meat Science 36: 345–363.PubMedCrossRefGoogle Scholar
  251. Fernando, P., J.F. Kelly, K. Balazsi, R.S. Slack, and L.A. Megeney. 2002. Caspase 3 activity is required for skeletal muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America 99: 11025–11030.PubMedPubMedCentralCrossRefGoogle Scholar
  252. Feve, B. 2005. Adipogenesis: Cellular and molecular aspects. Best Practice & Research. Clinical Endocrinology & Metabolism 19: 483–499.Google Scholar
  253. Fischer, U., R. Jänicke, and K. Schulze-Osthoff. 2003. Many cuts to ruin: A comprehensive update of caspase substrates. Cell Death and Differentiation 10: 76–100.PubMedCrossRefGoogle Scholar
  254. Fishell, V.K., E.D. Aberle, M.D. Judge, and T.W. Perry. 1985. Palatability and muscle properties of beef as influenced by preslaughter growth rate. Journal of Animal Science 61: 151–157.CrossRefGoogle Scholar
  255. Fordyce, G., M.E. Goddard, and G.W. Seifert. 1982. The measurement of temperament in cattle and the effect of experience and genotype. Animal Production in Australia 14: 329–332.Google Scholar
  256. Fordyce, G., M.E. Goddard, R. Tyler, G. Williams, and M.A. Toleman. 1985. Temperament and bruising of Bos indicus cross cattle. Australian Journal of Experimental Agriculture 25: 283–288.CrossRefGoogle Scholar
  257. Fordyce, G., J.R. Wythes, W.R. Shortnose, D.W. Underwood, and R.K. Shepherd. 1988a. Cattle temperaments in extensive beef herds in northern Queensland. 2. Effect of temperament on carcass and meat quality. Australian Journal of Experimental Agriculture 28: 689–693.CrossRefGoogle Scholar
  258. Fordyce, G., R. Dodt, and J. Wythes. 1988b. Cattle temperaments in extensive beef herds in northern Queensland. 1. Factors affecting temperament. Australian Journal of Experimental Agriculture 28: 683–687.CrossRefGoogle Scholar
  259. Fordyce, G., C.J. Howitt, R.G. Holroyd, P.K. O’Rourke, and K.W. Entwistle. 1996. The performance of Brahman-Shorthorn and Sahiwal-Shorthorn beef cattle in the dry tropics of northern Queensland. 5. Scrotal circumference, temperament, ectoparasite resistance, and the genetics of growth and other traits in bulls. Australian Journal of Experimental Agriculture 36: 9–17.CrossRefGoogle Scholar
  260. Foutz, C.P., H.G. Dolezal, T.L. Gardner, D.R. Gill, J.L. Hensley, and J.B. Morgan. 1997. Anabolic implant effects on steer performance, carcass traits, subprimal yields, and longissimus muscle properties. Journal of Animal Science 75: 1256–1265.PubMedCrossRefGoogle Scholar
  261. Franke, D.E. 1980. Breed and heterosis effects of American zebu cattle. Journal of Animal Science 50: 1206–1214.PubMedCrossRefGoogle Scholar
  262. Freking, B.A., J.W. Keele, C.W. Beattie, S.M. Kappes, T.P.L. Smith, T.S. Sonstegard, M.K. Nielsen, and K.A. Leymaster. 1998. Evaluation of the ovine callipyge locus: I. Relative chromosomal position and gene action. Journal of Animal Science 76: 2062–2071.PubMedCrossRefGoogle Scholar
  263. French, P., E.G. O’Riordan, F.J. Monahan, P.J. Caffrey, M.T. Mooney, D.J. Troy, and A.P. Moloney. 2001a. The eating quality of meat of steers fed grass and/or concentrates. Meat Science 57: 379–386.Google Scholar
  264. French, P., C. Stanton, F. Lawless, E.G. O’Riordan, F.J. Monahan, P.J. Caffrey, and A.P. Moloney. 2001b. Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grazed grass, grass silage, or concentrate based diets. Journal of Animal Science 78: 2849–2855.CrossRefGoogle Scholar
  265. Frisch, J.E., R. Drinkwater, B. Harrison, and S. Johnson. 1997. Classification of the southern African Sanga and east African shorthorned Zebu. Animal Genetics 28: 77–83.PubMedCrossRefGoogle Scholar
  266. Fritz, P.J., E.S. Vesell, E.L. White, and K.M. Pruitt. 1969. Intrinsic and extrinsic factors controlling meat tenderness. Proceedings of the National Academy of Sciences 62: 558.CrossRefGoogle Scholar
  267. Fritz, J.D., M.C. Mitchell, B.B. Marsh, and M.L. Greaser. 1993. Titin content of beef in relation to tenderness. Meat Science 33: 41–50.PubMedCrossRefGoogle Scholar
  268. Frylinck, L., and P.H. Heinze. 2003. Evaluation of meat tenderness of indigenous South African and other beef breeds. In Consistency of quality, 3–13. Proceedings of the 11th international meat symposium, 29–30 January 2003, Centurion, South Africa.Google Scholar
  269. Fukuda, N., H.L. Granzier, S. Ishiwata, and S. Kurihara. 2008. Physiological functions of the giant elastic protein titin in mammalian striated muscle. The Journal of Physiological Sciences 58: 151–159.PubMedCrossRefGoogle Scholar
  270. Fumika Iida, Y., R. Tsuyuki, K. Kato, A. Egusa, H. Ogoshi, and T. Nishimura. 2016. Changes in taste compounds, breaking properties, and sensory attributes during dry aging of beef from Japanese black cattle. Meat Science 112: 46–51.CrossRefGoogle Scholar
  271. Gama, L.T., M.C. Bressan, E.C. Rodrigues, L.V. Rossato, O.C. Moreira, S.P. Alves, and R.J.B. Bessa. 2013. Heterosis for meat quality and fatty acid profiles in crosses among Bos indicus and Bos taurus finished on pasture or grain. Meat Science 93: 98–104.PubMedCrossRefGoogle Scholar
  272. Garcia, M.D., R.M. Thallman, T.L. Wheeler, S.D. Shackleford, and E. Casas. 2010. Effect of bovine respiratory disease and overall pathogenic disease incidence on carcass traits. Journal of Animal Science 88: 491–496.PubMedCrossRefGoogle Scholar
  273. Gardner, B.A., H.G. Dolezal, L.K. Bryant, F.N. Owens, and R.A. Smith. 1999a. Health of finishing steers: Effects on performance, carcass traits, and meat tenderness. Journal of Animal Science 77: 3168–3175.PubMedCrossRefGoogle Scholar
  274. Gardner, G.E., L. Kennedy, J.T.B. Milton, and D.W. Pethick. 1999b. Glycogen metabolism and ultimate pH of muscle in Merino, first-cross, and second-cross wether lambs as affected by stress before slaughter. Australian Journal of Agricultural Research 50: 175–181.CrossRefGoogle Scholar
  275. Garmyn, A.J., and M.F. Miller. 2014. Meat Science and Muscle Biology Symposium—Implant and beta agonist impacts on beef palatability. Journal of Animal Science 92: 10–20.CrossRefPubMedPubMedCentralGoogle Scholar
  276. Garmyn, A.J., G.G. Hilton, R.G. Mateescu, and D.L. Van Overbeke. 2010. Effects of concentrate- versus forage-based finishing diet on carcass traits, beef palatability, and color stability in longissimus muscle from Angus Heifers. The Professional Animal Scientists 26: 579–586.Google Scholar
  277. Garmyn, A.J., S.M. Knobel, K.S. Spivey, L.F. Hightower, J.C. Brooks, B.J. Johnson, S.L. Parr, R.J. Rathmann, J.D. Starkey, D.A. Yates, J.M. Hodgen, J.P. Hutcheson, and M.F. Miller. 2011b. Warner-Bratzler and slice shear force measurements of 3 beef muscles in response to various aging periods after trenbolone acetate and estradiol implants and zilpaterol hydrochloride supplementation of finishing beef steers. Journal of Animal Science 89: 3783–3791.CrossRefGoogle Scholar
  278. Gaughan, J.B., S.L. Bonner, I. Loxton, and T.L. Mader. 2013. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedyard cattle. Journal of Animal Science 91: 120–129.PubMedCrossRefGoogle Scholar
  279. Geary, T.W., K.J. Wells, D.M. Deavila, J. Deavila, V.A. Conforti, D.J. McLean, A.J. Roberts, R.W. Waterman, and J.J. Reeves. 2011. Effects of immunization against luteinizing hormone releasing hormone and treatment with trenbolone acetate on reproductive function of beef bulls and steers. Journal of Animal Science 89: 2086–2095.PubMedCrossRefGoogle Scholar
  280. Geesink, G.H., A. Ouali, C. Tassy, and F.J.M. Smulders. 1992. Tenderization, calpain/calpastatin activities and osmolality of 6 different beef muscles. International Congress of Meat Science Technology Proceedings 38: 363–366.Google Scholar
  281. Geesink, G.H., M.H.D. Mareko, J.D. Morton, and R. Bickerstaffe. 2001a. Electrical stimulation – when more is less. Meat Science 57: 145–151.PubMedCrossRefGoogle Scholar
  282. Geesink, G.H., R.G. Taylor, A.E.D. Bekhit, and R. Bickerstaffe. 2001b. Evidence against the non-enzymatic calcium theory of tenderization. Meat Science 59: 417–422.Google Scholar
  283. Geesink, G.H., S. Kuchay, A.H. Chishti, and M. Koohmaraie. 2006. μ-calpain is essential for postmortem proteolysis of muscle proteins. Journal of Animal Science 84: 2834–2840.PubMedCrossRefGoogle Scholar
  284. George, M.H., J.D. Tatum, K.E. Belk, and G.C. Smith. 1999. An audit of retail beef loin steak tenderness conducted in eight U.S. cities. Journal of Animal Science 77: 1735–1741.PubMedCrossRefGoogle Scholar
  285. George-Evins, C. D. 1999. The effects of quality grade, postmortem aging, blade tenderization, and endpoint cooking temperature on Warner-Bratzler shear force, cooking characteristics, and sensory panel evaluation of longissimus, gluteus medius, and Semimembranosus muscles. MS Thesis, Kansas State University, Manhattan.Google Scholar
  286. Georgopoulos, C., and W.J. Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annual Review of Cell Biology 9: 601–634.PubMedCrossRefGoogle Scholar
  287. Gerken, C.L., J.D. Tatum, J.B. Morgan, and G.C. Smith. 1995. Use of genetically identical (clone) steers to determine the effects of estrogenic and androgenic implants on beef quality and palatability characteristics. Journal of Animal Science 73: 3317–3324.PubMedCrossRefGoogle Scholar
  288. Gerrard, D.E., X. Gao, and J. Tan. 1996. Beef marbling and color score determination by image processing. Journal of Food Science 61: 145.CrossRefGoogle Scholar
  289. Gill, C.O. 2009. Effects on the microbiological condition of product of decontaminating treatments routinely applied to carcasses at beef packing plants. Journal Food Protection 72: 1790–1801.CrossRefGoogle Scholar
  290. Gill, C., R. Mestril, and A. Samali. 2002. Losing heart: The role of apoptosis in heart disease—A novel therapeutic target? Journal of Federation of American Societies of Experimental Biology 16: 135–146.CrossRefGoogle Scholar
  291. Girard, I., J.L. Aalhus, J.A. Basarab, I.L. Larsen, and H.L. Bruce. 2011. Modification of muscle inherent properties through age at slaughter, growth promotants and breed crosses. Canadian Journal of Animal Science 91: 635–648.CrossRefGoogle Scholar
  292. ———. 2012a. Modification of beef quality through steer age at slaughter, breed cross and growth promotants. Canadian Journal of Animal Science 92: 175–188.CrossRefGoogle Scholar
  293. Girard, I., H.L. Bruce, J.A. Basarab, I.L. Larsen, and J.L. Aalhus. 2012b. Contribution of myofibrillar and connective tissue components to the Warner-Bratzler shear force of cooked beef. Meat Science 92: 775–782.PubMedCrossRefGoogle Scholar
  294. Gissel, H., and T. Clausen. 2001. Excitation-induced Ca2+ influx and skeletal muscle cell damage. Acta Physiologica Scandinavica 171: 327–334.PubMedCrossRefGoogle Scholar
  295. Golenhofen, N., M.D. Perng, R.A. Quinlan, and D. Drenckhahn. 2004. Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochemistry and Cell Biology 122: 415–425.PubMedCrossRefGoogle Scholar
  296. Goll, D.E., W.C. Kleese, and A. Szpacenko. 1989. Skeletal muscle proteases and protein turnover. In Animal growth regulation, ed. D.R. Campion, G.J. Hausman, and R.J. Martin, 141–182. New York: Plenum Publishing.CrossRefGoogle Scholar
  297. Goll, D.E., R.J. Taylor, J.A. Christiansen, and V.F. Thompson. 1991. Role of proteinases and protein turnover in muscle growth and meat quality. Proceedings of 44th Annual Reciprocal Meat Conference 44: 25–36.Google Scholar
  298. Goll, D.E., V.F. Thompson, R.G. Taylor, and J.A. Christiansen. 1992a. Role of the calpain system in muscle growth. Biochimie 74: 225–237.PubMedCrossRefGoogle Scholar
  299. Goll, D.E., V.F. Thompson, R.G. Taylor, and T. Zalewska. 1992b. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? BioEssays 14: 549–556.PubMedCrossRefGoogle Scholar
  300. Goll, D.E., V.F. Thompson, H. Li, W. Wei, and J. Cong. 2003. The calpain system. Physiological Reviews 83: 731–801.PubMedCrossRefGoogle Scholar
  301. Goll, D.E., G. Neti, S.W. Mares, and V.F. Thompson. 2008. Myofibrillar protein turnover: The proteasome and the calpains. Journal of Animal Science 86: E19–E35.PubMedCrossRefGoogle Scholar
  302. Gonzalez, J.M., L.E. Camacho, S.M. Ebarb, K.C. Swanson, K.A. Vonnahme, et al. 2013. Realimentation of nutrient restricted pregnant beef cows supports compensatory fetal muscle growth. Journal of Animal Science 91: 4797–4806.PubMedCrossRefGoogle Scholar
  303. Goodson, K.J., W.W. Morgan, J.O. Reagan, B.L. Gwartney, S.M. Courington, J.W. Wise, and J.W. Savell. 2002. Beef customer satisfaction: Factors affecting consumer evaluations of clod steaks. Journal of Animal Science 80: 401–408.Google Scholar
  304. Grandin, T. 1980. The effect of stress on livestock and meat quality prior to and during slaughter. International Journal of Study Animal Problems 1: 313–337.Google Scholar
  305. ———. 1993a. Handling and welfare of livestock in slaughter plants. In Livestock handling and transport, ed. T. Grandin, 295. Wallingford: CAB International.Google Scholar
  306. ———. 1993b. Teaching principles of behavior and equipment design for handling livestock. Journal of Animal Science 71: 1065–1070.PubMedCrossRefGoogle Scholar
  307. ———. 1997. Assessment of stress during handling and transport. Journal of Animal Science 75: 249–257.PubMedCrossRefGoogle Scholar
  308. ———. 2000a. Effect of animal welfare audits of slaughter plants by amajor fast food company on cattle handling and stunning practices. Journal of the American Veterinary Medical Association 216: 848–851.PubMedCrossRefGoogle Scholar
  309. ———. 2000b. Livestock handling and transport. 2nd ed. Wallingford, Oxon: CABI Publishing.CrossRefGoogle Scholar
  310. Grayson, A.L., D.A. King, S.D. Shackleford, M. Koohmaraie, and T.L. Wheeler. 2014. Freezing and thawing or freezing, thawing, and aging effects on beef tenderness. Journal of Animal Science 92: 2735–2740.PubMedCrossRefGoogle Scholar
  311. Greenwood, P.L., L.M. Cafe, H. Hearnshaw, D.W. Hennessy, and S.G. Morris. 2009. Consequences of prenatal and preweaning growth for yield of beef primal cuts from 30-month-old Piedmontese- and Wagyu-sired cattle. Animal Production Science 49: 468–478.CrossRefGoogle Scholar
  312. Greenwood, L.P., L.M. Cafe, B.L. McIntyre, G.H. Geesink, J.M. Thompson, R. Polkinghorne, D.W. Pethick, and D.L. Robinson. 2013. Molecular value predictions: Associations with beef quality, carcass, production, behavior, and efficiency phenotypes in Brahman cattle. Journal of Animal Science 91: 5912–5925.PubMedCrossRefGoogle Scholar
  313. Gregory, N.G. 2005. Recent concerns about stunning and slaughter. Meat Science 70: 481–491.PubMedCrossRefGoogle Scholar
  314. ———. 2007. Animal welfare and meat production. 2nd ed, 213–226. Wallingford: CABI Publishing.CrossRefGoogle Scholar
  315. Gregory, K.E., S.C. Seideman, and J.J. Ford. 1983. Effects of late castration, zeranol, and breed group on composition and palatability characteristics of zeranol muscle of bovine males. Journal of Animal Science 56: 781.CrossRefGoogle Scholar
  316. Gregory, K.E., L.V. Cundiff, R.M. Koch, M.E. Dikeman, and M. Koohmaraie. 1994. Breed effects, retained heterosis, and estimates of genetic and phenotypic parameters for carcass and meat traits of beef cattle. Journal of Animal Science 72: 1174–1183.PubMedCrossRefGoogle Scholar
  317. Grobet, L., L.J.R. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hanset, and M. Georges. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics 17: 71–74.PubMedCrossRefGoogle Scholar
  318. Grobet, L., D. Poncelet, L.J. Royo, B. Brouwers, D. Pirottin, C. Michaux, F. Menissier, M. Zanotti, S. Dunner, and M. Georges. 1998. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome 9: 210–213.PubMedCrossRefGoogle Scholar
  319. Gruber, S.L., J.D. Tatum, J.A. Scanga, P.L. Chapman, G.C. Smith, and K.E. Belk. 2006. Effects of postmortem aging and USDA quality grade on Warner–Bratzler shear force values of seventeen individual beefmuscles. Journal of Animal Science 84: 3387–3396.CrossRefGoogle Scholar
  320. Gruber, S.L., J.D. Tatum, T.E. Engle, P.L. Chapman, K.E. Belk, and G.C. Smith. 2010. Relationships of behavioral and physiological symptoms of preslaughter stress to beef longissimus muscle tenderness. Journal of Animal Science 88: 1148–1159.PubMedCrossRefGoogle Scholar
  321. Gruber, S.L., J.D. Tatum, T.E. Engle, P.L. Chapman, R.M. Enns, K.E. Belk, and G.C. Smith. 2011. Effects of genetic markers and implant strategy on longissimus and gluteus muscle tenderness of calf-fed steers and heifers. Journal of Animal Science 89: 1401–1411.PubMedCrossRefGoogle Scholar
  322. Grujić, R., L. Petrović, B. Pikula, and L. Amidžić. 1993. Definition of the optimum freezing rate—1. Investigation of structure and ultrastructure of beef M. longissimus dorsi frozen at different freezing rates. Meat Sci. 33: 301–318.PubMedCrossRefGoogle Scholar
  323. Grunert, K.G. 1997. What’s in a steak? A cross-cultural study on the quality perception of beef. Food Quality and Preference 8: 157–174.CrossRefGoogle Scholar
  324. Guelker, M.R., A.N. Haneklaus, J.C. Brooks, C.C. Carr, R.J. Delmore, D.B. Griffin, et al. 2013. National Beef Tenderness Survey—2010: Warner–Bratzler shear-force values and sensory-panel ratings for beef steaks from United States retail and foodservice establishments. Journal of Animal Science 92: 1005–1014.Google Scholar
  325. Guillemin, N., C. Jurie, D. Micol, G. Renand, J.F. Hocquette, and B. Picard. 2011a. Prediction equations of beef tenderness: Implication of oxidative stress and apoptosis. In Proceedings of 57th International Congress Meat Science Technology. 1–6. Ghent-Belgium.Google Scholar
  326. Guillemin, N., C. Jurie, I. Cassar-Malek, J.F. Hocquette, G. Renand, and B. Picard. 2011b. Variations in the abundance of 24 protein biomarkers of beef tenderness according to muscle and animal type. Animals 5: 885–894.Google Scholar
  327. Gulati, J., and A. Babu. 1989. Effect of acidosis on Ca2+ sensitivity of skinned cardiac muscle with troponin C exchange. FEBS Letters 245: 279–282.PubMedCrossRefGoogle Scholar
  328. Gursanky, B., R. Kuypers, and D.M. Ferguson. 2002. Investigations of the causal factors associated with the variation in Bos indicus beef tenderness. Meat Science.Google Scholar
  329. Han, J., J.D. Morton, A.E.D. Bekhit, and J.R. Sedcole. 2009. Pre-rigor infusion with kiwi fruit juice improves lamb tenderness. Meat Science 82: 324–330.PubMedCrossRefGoogle Scholar
  330. Haneklaus, A.N., J.M. Hodgen, R.J. Delmore, T.E. Lawrence, D.A. Yates, D.M. Allen, D.B. Griffin, and J.W. Savell. 2011. Effects of zilpaterol hydrochloride on retail yield of subprimals from beef and calf-fed Holstein steers. Journal of Animal Science 89: 2867–2877.PubMedCrossRefPubMedCentralGoogle Scholar
  331. Hankins, O.G., and R.L. Hiner. 1938. Tenderness of beef as affected by different freezing temperatures. Journal of Animal Science 8: 260–261.Google Scholar
  332. Hansen, S., M. Therkildsen, and D.V. Byrne. 2006. Effects of a compensatory growth strategy on sensory and physical properties of meat from young bulls. Meat Science 74: 628–643.PubMedPubMedCentralGoogle Scholar
  333. Harper, G.S. 1999. Trends in skeletal muscle biology and the understanding of toughness in beef. Australian Journal of Agricultural Research 50: 1105–1129.CrossRefGoogle Scholar
  334. Harper, G.S., P.G. Allingham, and R.P. Le Feuvre. 1999. Changes in connective tissue of M. semitendinosus as a response to different growth paths in steers. Meat Science 53: 107–114.PubMedCrossRefGoogle Scholar
  335. Harris, P.V., and W.R. Shorthose. 1988. Meat texture. In Developments in meat science, ed. R. Lawrie, 245–296. London: Elsevier Applied Science.Google Scholar
  336. Harris, J.J., R.K. Miller, J.W. Savell, H.R. Cross, and L.J. Ringer. 1992. Evaluation of the tenderness of beef top sirloin steaks. Journal of Food Science 57: 6–9.CrossRefGoogle Scholar
  337. Hawkins, E.W., C.W. Wiltbank, F.T. MsCollum III, D.K. Lunt, R.K. Miller, K.S. Barlin, R.L. Hale, and S.B. Smith. 2004. Aggressive implant strategies do not negatively impact beef tenderness. Journal of Animal and Veterinary Advances 3: 13–18.Google Scholar
  338. Hayes, N.S., C. Schwartz, K.J. Phelps, P. Borowicz, K.R. Maddock-Carlin, and R.J. Maddock. 2015. The relationship between pre-harvest stress and the carcass characteristics of beef heifers that qualified for kosher designation. Meat Science 100: 134–138.CrossRefPubMedPubMedCentralGoogle Scholar
  339. Hearnshaw, H., and C.A. Morris. 1984. Genetic and environmental effects on a temperament score in beef cattle. Australian Journal of Agricultural Research 35: 723–733.CrossRefGoogle Scholar
  340. Hearnshaw, H., B.G. Gursansky, B. Gogel, J.M. Thompson, L.R. Fell, P.D. Stephenson, et al. 1998a. Meat quality in cattle of varying Brahman content: The effect of post-slaughter processing, growth rate and animal behaviour on tenderness. In Proceedings 44th international congress of meat science and technology, 1048–1049. Spain: Barcelona.Google Scholar
  341. Hearnshaw, H., P.F. Arthur, P.D. Stephenson, K. Dibley, D. Ferguson, J.M. Thompson, J. O’Halloran, S. Morris, and A. Woodhead. 1998b. Meat quality of Angus, Braham and Piedmontese-sired progeny: results from the first calf crop. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production 25: 165–168.Google Scholar
  342. Hedrick, H.B., W.B. Stringer, R.J. Epley, M.A. Alexander, and G.F. Krause. 1968. Comparison of factors affecting Wasrner-Bratzler shear force values of beef steaks. Journal of Animal Science 27: 628–631.CrossRefGoogle Scholar
  343. Hendrick, J.P., and F.U. Hartl. 1993. Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry 62: 349–384.PubMedCrossRefPubMedCentralGoogle Scholar
  344. Hergenreder, J.E., J.J. Hosch, K.A. Varnold, A.L. Haack, L.S. Senaratne, S. Pokharel, et al. 2013. The effects of freezing and thawing rates on tenderness, sensory quality and retail display of beef subprimals. Journal of Animal Science 91: 483–490.PubMedCrossRefPubMedCentralGoogle Scholar
  345. Herrera-Mendez, C.H., S. Becila, A. Boudjellal, and A. Ouali. 2006. Meat aging: Reconsideration of the current concept. Trends in Food Science and Technology 17: 394–405.CrossRefGoogle Scholar
  346. Herring, H.K., R.G. Cassens, and E.J. Briskey. 1965. Sarcomere length of free and restrained bovine muscles at low temperatures as related to tenderness. J, Sci. Food and Agriculture 16: 379–384.CrossRefGoogle Scholar
  347. Herschler, R.C., A.W. Olmsted, A.J. Edwards, R.L. Hale, T. Montgomery, R.L. Preston, S.J. Bartle, and J.J. Sheldon. 1995. Production responses to various doses and ratios of estradiol benzoate and trenbolone acetate implants in steers and heifers. Journal of Animal Science 73: 2873–2881.PubMedCrossRefPubMedCentralGoogle Scholar
  348. Highfill, C.M., O. Esquivel-Font, M.E. Dikeman, and D.H. Kropf. 2012. Tenderness profiles of ten muscles from F1 Bos indicus x Bos taurus and Bos taurus cattle cooked as steaks and roasts. Meat Science 90: 881–886.PubMedCrossRefPubMedCentralGoogle Scholar
  349. Hildrum, K.I., M. Solvang, B.N. Nilson, T. Froystein, and J. Berg. 1999. Combined effects of chilling rate, low voltage electrical stimulation and freezing on sensory properties of bovine M. longissimus dorsi. Meat Science 52: 1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  350. Hildrum, K.I., R. Rodbotten, M. Hoy, J. Berg, B. Narum, and J.P. Wold. 2009. Classification of different bovine muscles according to sensory characteristics and Warner Bratzler shear force. Meat Science 83: 302–307.CrossRefGoogle Scholar
  351. Hill, F. 1966. The solubility of intramuscular collagen in meat animals of various ages. Journal of Food Science 31: 161–166.CrossRefGoogle Scholar
  352. Hilton, G.G., J.L. Montgomery, C.R. Krehbiel, D.A. Yates, J.P. Hutcheson, W.T. Nichols, M.N. Streeter, J.R. Blanton Jr., and M.F. Miller. 2009. Effects of feeding zilpaterol hydrochloride with and without monensin and tylosin on carcass cutability and meat palatability of beef steers. Journal of Animal Science 87: 1394–1406.PubMedCrossRefPubMedCentralGoogle Scholar
  353. Hiner, R.L., L.L. Madsen, and O.G. Hankins. 1945. Histological characteristics, tenderness, and drip losses of beef in relation to temperature of freezing. Journal of Food Science 10: 312–324.CrossRefGoogle Scholar
  354. Hocquette, J.F., F. Gondret, E. Baeza, F. Medale, C. Jurie, and D.W. Pethick. 2010. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animals 4: 303–319.Google Scholar
  355. Hocquette, J.F., L. Van Wezemael, S. Chriki, I. Legrand, W. Verbeke, L. Farmer, N.D. Scollan, R. Polkinghorne, R. Rødbotteni, P. Allen, and D.W. Pethick. 2014. Modelling of beef sensory quality for a better prediction of palatability. Meat Science 97: 316–322.CrossRefPubMedPubMedCentralGoogle Scholar
  356. Hodnett, D.W., N.A. Jorgensen, and H.F. Deluca. 1992. 1α-Hydroxyvitamin D3 plus 25 hydroxyvitamin D3 reduces parturient paresis in dairy cows fed high dietary calcium. Journal of Dairy Science 75: 485–491.PubMedCrossRefGoogle Scholar
  357. Holland, B.P., L.O. Burciaga-Robles, D.L. Van Overbeke, J.N. Shook, D.L. Step, C.J. Richards, and C.R. Krehbiel. 2010. Effect of bovine respiratory disease during preconditioning on subsequent feedyard performance, carcass characteristics, and beef attributes. Journal of Animal Science 88: 2486–2499.PubMedCrossRefGoogle Scholar
  358. Hollis, B.W., H.R. Conrad, and J.W. Hibbs. 1977. Changes in plasma 25-hydroxycholicalciferol and selected blood parameters after injection of massive doses of cholecalciferol or 25-hydroxycholecalciferol in non-lactating dairy cows. The Journal of Nutrition 107: 606–613.PubMedCrossRefGoogle Scholar
  359. Holloway, J.W. and B.G. Warrington. 2009. Evaluation of tenderness by Warner-Bratzler Shear Force and Slice Shear Force for 13 muscles from Bonsmara crossbred steer carcasses. In The supply of a distinctive beef product. ed. J.W. Holloway. Amarillo.Google Scholar
  360. Holloway, J.W., R.K. Miller, P.E. Strydom, B.G. Warrington, and G.E. Carstens. 2004. Influence of postweaning cattle growth systems on carcass characteristics, retain product yield, and tenderness. Beef Cattle Research in Texas, Department of Animal Science Texas A&M, College Station, TX. August, 2004. pp. 121–128.Google Scholar
  361. Holmer, S.F., D.M. Fernandez-Duenas, S.M. Scramlin, C.M. Souza, D.D. Boler, F.K. McKeith, J. Killefer, R.J. Delmore, J.L. Beckett, T.E. Lawrence, D.L. VanOverbeke, G.G. Hilton, M.E. Dikeman, J.C. Brooks, R.A. Zinn, M.N. Streeter, J.P. Hutcheson, W.T. Nichols, D.M. Allen, and D.A. Yates. 2009. The effect of zilpaterol hydrochloride on meat quality of calf-fed Holstein steers. Journal of Animal Science 87: 3730–3738.PubMedCrossRefGoogle Scholar
  362. Holmes, K.C., D. Popp, W. Gebhard, and W. Kabsch. 1990. Atomic model of the actin filament. Nature 347: 44–49.PubMedCrossRefGoogle Scholar
  363. Hopkins, D.L., and R.G. Taylor. 2004. Post-mortem muscle proteolysis and meat tenderness. In Muscle development in livestock animals: Physiology, genetics and meat quality, ed. M.F.W.T. Pas, M.E. Everts, and H.P. Haagsman, 363–389. Cambridge: CABI Publishing.CrossRefGoogle Scholar
  364. Hopkins, D.L., and J.M. Thompson. 2001a. Inhibition of protease activity. Part 1. The effect on tenderness and indicators of proteolysis in ovine muscle. Meat Science 59: 175–185.Google Scholar
  365. ———. 2001b. The relationship between tenderness, proteolysis, muscle contraction and dissociation of actomyosin. Meat Science 57: 1–12.Google Scholar
  366. ———. 2002. Factors contributing to proteolysis and disruption of myofibrillar protein and the impact on tenderisation in beef and sheep meat. Australian Journal of Agricultural Research 53: 149–166.CrossRefGoogle Scholar
  367. Hoppe, S., H.R. Brandt, S. König, G. Erhardt, and M. Gauly. 2010. Temperament traits of beef calves measured under field conditions and their relationships to performance. Journal of Animal Science 88: 1982–1989.PubMedCrossRefGoogle Scholar
  368. Horgan, D.J., P.N. Jones, N.L. King, L.B. Kurth, and R. Kuypers. 1991. The relationship between animal age and the thermal stability and cross-link content of collagen from five goat muscles. Meat Science 29: 251–262.PubMedCrossRefGoogle Scholar
  369. Hornick, J.L., C. Van Eenaeme, O. Gerard, I. Dufrasne, and L. Istasse. 2000. Mechanisms of reduced and compensatory growth. Domestic Animal Endocrinology 19: 121–132.PubMedCrossRefGoogle Scholar
  370. Horst, R.L. 1986. Regulation of calcium and phosphorus homeostasis in the dairy cow. Journal of Dairy Science 69: 604–616.PubMedCrossRefGoogle Scholar
  371. Hostetler, R.L., B.A. Link, W.A. Landmann, and H.A. Fitzhugh. 1972. Effect of carcass suspension on sarcomere length and shear force of some major bovine muscles. Journal of Food Science 38: 264–267.CrossRefGoogle Scholar
  372. Hove, K., R.L. Horst, and E.T. Littledike. 1983. Effects of 1α-hydroxyvitaminD3, 1,25 -dihydroxyvitamin D3, 1,24,25-trihydroxyvitaminD3, and 1,25,26-trihydroxyvitamin D3 on mineral metabolism and 1,25-dihydroxyvitamin D concentration in dairy cows. Journal of Dairy Science 66: 59–66.PubMedCrossRefGoogle Scholar
  373. Howard, J.T., S.D. Kachman, M.K. Nielsen, T.L. Mader, and M.L. Spangler. 2013. The effect of myostatin genotype on body temperature during extreme temperature events. Journal of Animal Science 91: 3051–3058.CrossRefGoogle Scholar
  374. Huang, F., M. Huang, G. Zhou, X. Xu, and M. Xue. 2011a. In vitro proteolysis of myofibrillar proteins from beef skeletal muscle by caspase-3 and caspase-6. Journal of Agricultural and Food Chemistry 59: 9658–9663.PubMedCrossRefGoogle Scholar
  375. Huang, M., F. Huang, M. Xue, X. Xu, and G. Zhou. 2011b. The effect of active caspase-3 on degradation of chicken myofibrillar proteins and structure of myofibrils. Food Chemistry 128: 22–27.PubMedCrossRefGoogle Scholar
  376. Huff-Lonergan, E., and S.M. Lonergan. 2005. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science 71: 194–204.PubMedCrossRefGoogle Scholar
  377. Huff-Lonergan, E., T. Mitsuhashi, F.C. Parrish Jr., and R.M. Robson. 1996a. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting comparisons of purified myofibrils and whole muscle preparations for evaluation titin and nebulin in postmortem bovine muscle. Journal of Animal Science 74: 779–785.PubMedCrossRefGoogle Scholar
  378. Huff-Lonergan, E., T. Mitsuhashi, D.D. Beekman, F.C. Parrish, D.G. Olson, and R.M. Robson. 1996b. Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. Journal of Animal Science 74: 993–1008.PubMedCrossRefGoogle Scholar
  379. Huff-Lonergan, E., W. Zhang, and S.M. Lonergan. 2010. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Science 86: 184–195.PubMedCrossRefGoogle Scholar
  380. Huffman, K.L., M.F. Miller, L.C. Hoover, C.K. Wu, H.C. Brittin, and C.B. Ramsey. 1996. Effect of beef tenderness on consumer satisfaction with steaks consumed in the home and restaurant. Journal of Animal Science 74: 91–97.Google Scholar
  381. Hunt, M.C., J.J. Schoenbeck, E.J. Yancey, M.E. Dikeman, T.M. Loughin, and P.B. Addis. 2003. Effects of post-exsanguination vascular infusion of carcasses with calcium chloride or a solution of saccharides, sodium chloride, and phosphates on beef display-color stability. Journal of Animal Science 81: 669–675.PubMedCrossRefGoogle Scholar
  382. Hunt, M.R., A.J. Garmyn, T.G. O’Quinn, C.H. Corbin, C.H. Legako, R.J. Rathmann, et al. 2014. Consumer assessment of beef palatability fromfour beefmuscles from USDA choice and select graded carcasses. Meat Science 98: 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  383. Hurwitz, S. 1996. Homeostatic control of plasma calcium concentration. Critical Reviews in Biochemistry and Molecular Biology 31: 41–100.PubMedCrossRefGoogle Scholar
  384. Hwang, I.H., and J.M. Thompson. 2001a. The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. Meat Science 58: 135–144.PubMedCrossRefGoogle Scholar
  385. ———. 2001b. The interaction between pH and temperature decline early postmortem on the calpain system and objective tenderness in electrically stimulated beef longissimus dorsi muscle. Meat Science 58: 167–174.PubMedCrossRefGoogle Scholar
  386. Hwang, I.H., C.E. Devine, and D.L. Hopkins. 2003. The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness. Meat Science 65: 677–691.PubMedCrossRefGoogle Scholar
  387. Hwang, I.H., B.Y. Park, S.H. Cho, and J.M. Lee. 2004. Effects of muscle shortening and proteolysis on Warner-Bratzler shear force in beef longissimus and semitendinosus. Meat Science 68: 497–505.PubMedCrossRefGoogle Scholar
  388. Hwang, I.H., B.Y. Park, J.H. Kim, S.H. Cho, and J.M. Lee. 2005. Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Science 69: 79–91.PubMedCrossRefGoogle Scholar
  389. Hwang, Y.H., G.D. Kim, J.Y. Jeong, S.J. Hur, and S.T. Joo. 2010. The relationship between muscle fiber characteristics and meat quality traits of highly marbled Hanwoo (Korean native cattle) steers. Meat Science 86: 456–461.PubMedPubMedCentralGoogle Scholar
  390. Jackson, S.P., M.F. Miller, and R.D. Green. 1997. Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: II. Carcass characteristics and retail yield. Journal of Animal Science 75: 125–132.PubMedCrossRefGoogle Scholar
  391. Jeacocke, R.E. 1993. The concentrations of free magnesium and free calcium ions both increase in skeletal muscle fibers entering Rigor mortis. Meat Science 35: 27–45.PubMedCrossRefGoogle Scholar
  392. Jenkins, K.H., J.T. Vasconcelos, J.B. Hinkle, S.A. Furman, A.S. de Mello Jr., L.S. Senaratne, S. Pokharel, and C.R. Calkins. 2011. Evaluation of performance, carcass characteristics, and sensory attributes from finishing steers fed field peas. Journal of Animal Science 89: 1167–1172.PubMedCrossRefGoogle Scholar
  393. Jeong, J.Y., S.J. Hur, H.S. Yang, S.H. Moon, Y.H. Hwang, G.B. Park, and S.T. Joo. 2009. Discoloration characteristics of 3 major muscles from cattle during cold storage. Journal of Food Science 74: C1–C5.PubMedCrossRefGoogle Scholar
  394. Jeremiah, L.E., and L.L. Gibson. 2003b. The effects of postmortem product handling and aging time on beef palatability. Food Research International 36: 929–941.CrossRefGoogle Scholar
  395. Jeremiah, L.E., G.C. Smith, and Z.L. Carpenter. 1971. Palatability of individual muscles from ovine leg steaks related to chronological age and marbling. Journal of Food Science 36: 45–47.CrossRefGoogle Scholar
  396. Jeremiah, L.E., L.L. Gibson, J.L. Aalhus, and M.E.R. Dugan. 2003a. Assessment of palatability attributes of the major beef muscles. Meat Science 65: 949–958.CrossRefGoogle Scholar
  397. Jeremiah, L.E., M.E.R. Dugan, J.L. Aalhus, and L.L. Gibson. 2003b. Assessment of the chemical and cooking properties of the major beef muscles and muscle groups. Meat Science 65: 985–992.CrossRefPubMedPubMedCentralGoogle Scholar
  398. Jeremiah, L.E., M.E.R. Dugan, J.L. Aalhus, et al. 2003c. Assessment of the relationship between chemical components and palatability of major beef muscles and muscle groups. Meat Science 65: 1013–1019.CrossRefPubMedPubMedCentralGoogle Scholar
  399. Jia, X., K. Hollung, M. Therkildsen, K.I. Hildrum, and E. Bendixen. 2006. Proteome analysis of early post-mortem changes in two bovine muscle types: M. longissimus dorsi and M. semitendinosis. Journal of Proteome Research 6: 936–944.Google Scholar
  400. Jia, X., M. Ekman, H. Grove, E.M. Frgestad, L. Aass, K.I. Hildrum, and K. Hollung. 2007. Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. Journal of Proteome Research 6: 2720–2731.PubMedCrossRefGoogle Scholar
  401. Johnson, M.I., and G. Tabasam. 2003. An investigation into the analgesic effects of interferential currents and transcutaneous electrical nerve stimulation on experimentally induced ischemic pain in otherwise pain-free volunteers. Physical Therapy 83: 208–223.PubMedGoogle Scholar
  402. Johnson, R.C., C.M. Chen, T.S. Muller, W.J. Costello, J.R. Romans, and K.W. Jones. 1988. Characterization of the muscles within the beef forequarter. Journal of Food Science 53: 1247–1250.CrossRefGoogle Scholar
  403. Johnson, D.D., R.D. Huffman, S.E. Williams, and D.D. Hargrove. 1990. Effects of percentage Brahman and Angus breeding, age-season of feeding, and slaughter end point on meat palatability and muscle characteristics. Journal of Animal Science 68: 1980–1986.PubMedCrossRefGoogle Scholar
  404. Johnson, B.J., P.T. Anderson, J.C. Meiske, and W.R. Dayton. 1996. Effect of a combined trenbolone acetate and estradiol implant on feedyard performance, carcass characteristics, and carcass composition of feedyard steers. Journal of Animal Science 74: 363–371.PubMedCrossRefGoogle Scholar
  405. Johnston, D.J., and H.U. Graser. 2010. Estimated gene frequencies of GeneSTAR markers and their size of effects on meat tenderness, marbling, and feed efficiency in temperate and tropical beef cattle breeds across a range of production systems. Journal of Animal Science 88: 1917–1935.PubMedCrossRefGoogle Scholar
  406. Jones, S. 2013. Bovine Myology. Available at Accessed 10 Jan 2016.
  407. Jones, S.J., D.L. Starkey, C.R. Calkins, and J.D. Crouse. 1990. Myofibrillar protein turnover in feed-restricted and realimented beef cattle. Journal of Animal Science 68: 2707–2715.PubMedCrossRefGoogle Scholar
  408. Jones, S.J., D.E. Burson, and C. R. Calkins. 2001. Muscle profiling and bovine myology. Available at Accessed 28 June 2006.
  409. Joo, S.T., G.D. Kim, Y.H. Hwang, and Y.C. Ryu. 2013. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science 95: 828–836.PubMedCrossRefGoogle Scholar
  410. Joulia-Ekaza, D., and G. Cabello. 2006. Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects. Experimental Cell Research 312: 2401–2414.PubMedCrossRefGoogle Scholar
  411. Jung, E.Y., Y.H. Hwang, and S.T. Joo. 2016a. Muscle profiling to improve the value of retail meat cuts. Meat Science 120: 47–53.CrossRefGoogle Scholar
  412. ———. 2016b. The relationships between chemical compositions, meat quality traits and palatability of the 10 primal cuts from Hanwoo steer. Korean Journal for Food Science of Animal Resources 36: 137–143.CrossRefGoogle Scholar
  413. Kadel, M.J., D.J. Johnson, H.M. Burrow, H.U. Graser, and D.M. Ferguson. 2006. Genetics of flight time and other measures of temperament and their value as selection criteria for improving meat quality traits in tropically adapted breeds of beef cattle. Australian Journal of Agricultural Research 57: 1029–1035.CrossRefGoogle Scholar
  414. Kambadur, R., M. Sharma, T.P.L. Smith, and J.J. Bass. 1997. Mutations in myostatin (GDF8) in double muscled Belgian Blue cattle. Genome Research 7: 910–915.PubMedCrossRefGoogle Scholar
  415. Kato, K., S. Goto, Y. Inaguma, K. Hasegawa, R. Morishita, and T. Asano. 1994. Purification and characterization of a 20-kDa protein that is highly homologous to αB crystallin. The Journal of Biological Chemistry 269: 15302–15309.PubMedGoogle Scholar
  416. Kato, K., H. Ito, K. Kamei, Y. Inaguma, I. Iwamototo, and S. Sagal. 1998. Phosphorylation of αB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. The Journal of Biological Chemistry 273: 28346–28354.PubMedCrossRefGoogle Scholar
  417. Kellermeier, J.D., A.W. Tittor, J.C. Brooks, M.L. Galyean, D.A. Yates, J.P. Hutcheson, W.T. Nichols, M.N. Streeter, B.J. Johnson, and M.F. Miller. 2009. Effects of zilpaterol hydrochloride with or without an estrogen-trenbolone acetate terminal implant on carcass traits, retail cutout, tenderness, and muscle fiber diameter in finishing steers. Journal of Animal Science 87: 3702–3711.PubMedCrossRefGoogle Scholar
  418. Kemp, C.M., R.G. Bardsley, and T. Parr. 2006. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. Journal of Animal Science 84: 2841–2846.PubMedCrossRefGoogle Scholar
  419. Kemp, C.M., P.L. Sensky, R.G. Bardsley, P.J. Buttery, and T. Parr. 2010. Tenderness — An enzymatic view. Meat Science 84: 248–256.PubMedCrossRefGoogle Scholar
  420. Kemp, C.M., W.T. Oliver, T.L. Wheeler, A.H. Chishti, and M. Koohmaraie. 2013. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems. Journal of Animal Science 91: 3155–3167.PubMedPubMedCentralCrossRefGoogle Scholar
  421. Kerr, J.F., A.H. Wyllie, and A.R. Currie. 1972. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 26: 239–257.PubMedPubMedCentralCrossRefGoogle Scholar
  422. Kerth, C.R., J.L. Montgomery, J.L. Lansdell, C.B. Ramsey, and M.F. Miller. 2002. Shear gradient in longissimus steaks. Journal of Animal Science 80: 2390–2395.PubMedGoogle Scholar
  423. Khan, A.W., and Y.K. Kim. 1975. Effect of calcium on isometric tension, glycolysis and tenderness of poultry breast meat. Journal of Food Science 40: 1119–1121.CrossRefGoogle Scholar
  424. Kilgour, R.J., G.L. Melville, and P.L. Greenwood. 2006. Individual differences in the reaction of beef cattle to situations involving social isolation, close proximity of humans, restraint and novelty. Applied Animal Behaviour Science 99: 21–40.CrossRefGoogle Scholar
  425. Kim, N.K., S. Cho, S.H. Lee, H.R. Park, C.S. Lee, Y.M. Cho, Y.H. Choy, D. Yoon, S.K. Im, and E.W. Park. 2008. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Science 80: 1068–1073.PubMedCrossRefGoogle Scholar
  426. Kim, Y.H.B., M. Frandsen, and K. Rosenvold. 2011. Effect of aging prior to freezing on color stability of ovine longissimus muscle. Meat Science 88: 332–337.PubMedCrossRefGoogle Scholar
  427. Kim, Y.H.B., R. Kemp, and L.M. Samuelsson. 2016. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Science 111: 168–176.PubMedCrossRefGoogle Scholar
  428. Kim, Y.H.B., B. Meyers, H.W. Kim, A.M. Liceag, and R.P. Lemenager. 2017. Effects of stepwise dry/wet-aging and freezing on meat quality of beef loins. Meat Science 123: 57–63.PubMedCrossRefGoogle Scholar
  429. King, D.A., C.E. Schuehle Pfeiffer, R.D. Randel, T.H. Welsh Jr., R.A. Oliphint, B.E. Baird, K.O. Curley Jr., R.C. Vann, D.S. Hale, and J.W. Savell. 2006. Influence of animal temperament and stress responsiveness on the carcass quality and beef tenderness of feedyard cattle. Meat Science 74: 546–556.PubMedCrossRefGoogle Scholar
  430. King, D.A., T.L. Wheeler, S.D. Shackleford, K.D. Pfeiffer, R. Nickelson, and M. Koohmaraie. 2009. Effect of blade tenderization, aging time, and aging temperature on tenderness of beef longissimus lumborum and gluteus medius. Journal of Animal Science 87: 2952–2960.PubMedCrossRefGoogle Scholar
  431. Kinsman, D.M. 1961. Variation in tenderness of a number of muscles within the beef carcass. Journal of Animal Science 20: 199.Google Scholar
  432. Kirchofer, K.S., C.B. Calkins, and B.L. Gwartney. 2002. Fiber type composition of muscles of the beef chuck and round. Journal of Animal Science 80: 2872–2878.PubMedCrossRefGoogle Scholar
  433. Knee, B.W., L.J. Cummins, P.J. Walker, G.A. Kearney, and R.D. Warner. 2007. Reducing dark-cutting in pasture-fed beef steers by high-energy supplementation. Australian Journal of Experimental Agriculture 47: 1277–1283.CrossRefGoogle Scholar
  434. Knobel-Graves, S.D.M., J.C. Brooks, B.J. Johnson, J.D. Starkey, J.L. Beckett, J.M. Hodgen, J.P. Hutcheson, M.N. Streeter, C.L. Thomas, R.J. Rathmann, A.J. Garmyn, and M.F. Miller. 2016. Effect of vitamin D3, zilpaterol hydrochloride supplementation, and postmortem aging on shear force measurements of three muscles in finishing beef steers. Meat Science 94: 2637–2647.Google Scholar
  435. Knowles, T.G. 1999. A review of the road transport of cattle. The Veterinary Record 144: 197–201.PubMedCrossRefGoogle Scholar
  436. Knowles, T. G., and P. Warriss. 2007. Stress physiology of animals during transport. 312–328 In Livestock Handling and Transport. ed. T. Grandin CAB Int., Cambridge, MA.Google Scholar
  437. Knowles, T.G., S.N. Brown, J.E. Edwards, A.J. Phillips, and P.D. Warriss. 1999. Effect on young calves of a one-hour feeding stop during a 19-hour road journey. Veterinary Record 144: 687–692.PubMedCrossRefGoogle Scholar
  438. Koch, R.M., L.V. Cundiff, and K.E. Gregory. 1982. Heritabilities and genetic, environmental and phenotypic correlations of carcass traits in a population of diverse biological types and their implications in selection programs. Journal of Animal Science 55: 1319–1329.CrossRefGoogle Scholar
  439. Koh, T.J., and J. Escobedo. 2004. Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. American Journal of Physiology and Cell Physiology 286: C713–C722.PubMedCrossRefGoogle Scholar
  440. Kołczak, T., E. Pospiech, K. Palka, and J. Łącki. 2003. Changes of myofibrillar and centrifugal drip proteins and shear force of psoas major and minor and semitendinosus muscles from calves, heifers and cows during post-mortem aging. Meat Science 64: 69–75.PubMedCrossRefGoogle Scholar
  441. Konda-Naganathan, G., L.M. Grimes, J. Subbiah, C.R. Calkins, A. Samal, and G.E. Meyer. 2008a. Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Computers and Electronics in Agriculture 64: 225–233.CrossRefGoogle Scholar
  442. Konda-Naganathan, G., L. Grimes, J. Subbiah, C.R. Calkins, A. Samal, and G. Meyer. 2008b. Partial least squares analysis of near-infrared hyperspectral images for beef tenderness prediction. Sensing and Instrumentation for Food Quality and Safety 2: 178–188.CrossRefGoogle Scholar
  443. Konishi, M. 1998. Cytoplasmic free concentrations of Ca2+ and Mg2+ in skeletal muscle fibers at rest and during contraction. The Japanese Journal of Physiology 48: 421–438.PubMedCrossRefGoogle Scholar
  444. Koohmaraie, M. 1992a. The role of Ca2+-dependent proteases (calpains) in postmortem proteolysis and meat tenderness. Biochimie 74: 239–245.PubMedCrossRefGoogle Scholar
  445. ———. 1992b. Effect of pH, temperature, and inhibitors on autolysis and catalytic activity of bovine skeletal muscle mu-calpain. Journal of Animal Science 70: 3071–3080.PubMedCrossRefGoogle Scholar
  446. ———. 1992c. Ovine skeletal muscle multicatalytic proteinase complex (proteasome): Purification, characterization, and comparison of its effects on myofibrils with m-calpain. Journal of Animal Science 70: 3697–3708.PubMedCrossRefGoogle Scholar
  447. ———. 1992d. Role of the neutral proteinases in postmortem muscle protein degradation and meat tenderness. Proceedings of Reciprocal Meat Conference 45: 63.Google Scholar
  448. ———. 1994. Muscle proteinases and meat aging. Meat Science 36: 93–104.PubMedCrossRefGoogle Scholar
  449. ———. 1996. Biochemical factors regulating the toughening and tenderization processes of meat. Meat Science 43: 193–201.CrossRefGoogle Scholar
  450. Koohmaraie, M., and G.H. Geesink. 2006. Contribution of postmortemmuscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science 74: 34–43.CrossRefPubMedPubMedCentralGoogle Scholar
  451. Koohmaraie, M., A.S. Babiker, R.A. Merkel, and T.R. Dutson. 1988a. Role of Ca ++ dependent proteases and lysosomal enzymes in postmortem changes in bovine skeletal muscle. Journal of Food Science 53: 1253–1257.CrossRefGoogle Scholar
  452. Koohmaraie, M., S.C. Seideman, J.E. Schollmeyer, T.R. Dutson, and A.S. Babiker. 1988b. Factors associated with the tenderness of three bovine muscles. Journal of Food Science 53: 407–410.CrossRefGoogle Scholar
  453. Koohmaraie, M., A.S. Babiker, A.L. Schroeder, R.A. Merkel, and T.R. Dutson. 1988c. Acceleration of postmortem tenderization process of ovine carcass through activation of Ca 2+-dependent proteases. Journal of Food Science 53: 1638–1641.CrossRefGoogle Scholar
  454. Koohmaraie, M., J.D. Crouse, and H.J. Mersmann. 1989. Acceleration of postmortem tenderization in ovine carcasses through infusion of calcium chloride: Effect of concentration and ionic strength. Journal of Animal Science 67: 934–942.PubMedCrossRefGoogle Scholar
  455. Koohmaraie, M., G. Whipple, and J.D. Crouse. 1990. Acceleration of postmortem tenderization in lamb and brahman-cross beef carcasses through infusion of calcium chloride. Journal of Animal Science 68: 1278–1283.Google Scholar
  456. Koohmaraie, M., G. Whipple, D.H. Kretchmar, J.D. Crouse, and H.J. Mersmann. 1991. Postmortem proteolysis in longissimus muscle from beef, lamb and pork carcasses. Journal of Animal Science 69: 617–624.PubMedCrossRefGoogle Scholar
  457. Koohmaraie, M., T.L. Wheeler, and S.D. Shackleford. 1994. Beef tenderness: Regulation and prediction. Beef Vanguard ’94 Internaltional. Congr., Buenos Aires, Argentina.Google Scholar
  458. Koohmaraie, M., J. Killefer, M.D. Bishop, S.D. Shackleford, T.L. Wheeler, and J.R. Arbona. 1995. Calpastatin-based methods for predicting meat tenderness. In Expression of tissue proteinases and regulation of protein degradation as related to meat quality, ed. A. Ouali, D. Demeyer, and F. Smulders, 395–412. Utrecht: EECEAMST.Google Scholar
  459. Koohmaraie, M., M.E. Doumit, and T.L. Wheeler. 1996a. Meat toughening does not occur when meat shortening is prevented. Journal of Animal Science 74: 2935–2942.PubMedCrossRefGoogle Scholar
  460. Koohmaraie, M., S.D. Shackleford, and T.L. Wheeler. 1996b. Effects of a b-adrenergic agonist (L-644,969) and male sex condition on muscle growth and meat quality of callipyge lambs. Journal of Animal Science 74: 70–79.PubMedCrossRefPubMedCentralGoogle Scholar
  461. ———. 1998. Effect of pre-rigor freezing and post-rigor calcium chloride injection on the tenderness of callipyge longissimus. Journal of Animal Science 76: 1427–1432.PubMedCrossRefGoogle Scholar
  462. Koohmaraie, M., M.P. Kent, S.D. Shackleford, E. Veiseth, and T.L. Wheeler. 2002. Meat tenderness and muscle growth: Is there any relationship? Meat Science 62: 345–352.CrossRefGoogle Scholar
  463. Koohmaraie, M., T.M. Arthur, J.M. Bosilevac, M. Guerini, S.D. Shackleford, and T.L. Wheeler. 2005. Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Science 71: 79–91.PubMedCrossRefGoogle Scholar
  464. Koots, K.R., J.P. Gibson, C. Smith, and J.W. Wilton. 1994. Analyses of published genetic parameter estimates for beef production traits. Heritability. Animal Breeding Abstract 62: 309–338.Google Scholar
  465. Kovanen, V., H. Suominen, and E. Heikkinen. 1984. Mechanical properties of fast and slow skeletal muscle with special reference to collagen and endurance training. Journal of Biomechanics 17: 725–735.PubMedCrossRefGoogle Scholar
  466. Kretchmar, D.H., M.R. Hathaway, R.J. Dayton, and W.R. Epley. 1990. Alterations in postmortem degradation of myofibrillar proteins in muscle of lambs fed a b-adrenergic agonist. Journal of Animal Science 68: 1760–1772.PubMedCrossRefGoogle Scholar
  467. Kristensen, L., M. Therkildsen, B. Riis, M.T. Sorensen, N. Oksbjerg, P.P. Purslow, and P. Ertbjerg. 2002. Dietary-induced changes of muscle growth rate in pigs: Effects on in vivo and postmortem muscle proteolysis and meat quality. Journal of Animal Science 80: 2862–2871.PubMedCrossRefGoogle Scholar
  468. Krystallis, A., G. Chryssochoidis, and J. Scholderer. 2007. Consumer-perceived quality in ‘traditional’ food chains: The case of the Greek meat supply chain. Appetite 48: 54–68.PubMedCrossRefGoogle Scholar
  469. Kukowski, A.C., R.J. Maddock, and D.M. Wulf. 2004. Evaluating consumer acceptability of various muscles from the beef chuck and rib. Journal of Animal Science 82: 521–525.CrossRefPubMedPubMedCentralGoogle Scholar
  470. Kukowski, A.C., R.J. Maddock, D.M. Wulf, S.W. Fausti, and G.L. Taylor. 2005. Evaluating consumer acceptbaility and willingness to pay for various beef chuck msucles. Journal of Animal Science 83: 2605–2610.CrossRefPubMedPubMedCentralGoogle Scholar
  471. Lacetero, N., U. Bernabucci, D. Scalia, L. Basirico, P. Momera, and A. Nardone. 2006. Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. Journal of Dairy Science 89: 4606–4612.CrossRefGoogle Scholar
  472. Lahucky, R., O. Palanska, J. Mojto, K. Zaujec, and J. Huba. 1998. Effect of preslaughter handling on muscle glycogen level and selected meat quality traits in beef. Meat Science 50: 389–393.PubMedCrossRefGoogle Scholar
  473. Laine, E.S., J.M. Scheftel, D.J. Boxrud, K.J. Vought, R.N. Danilla, K.M. Elfering, and K.E. Smith. 2005. Outbreak of Escherichia coli O157:H7 infections associated with nonintact blade-tenderized frozen steaks sold by door-to-door vendors. Journal of Food Protection 68: 1198–1202.PubMedCrossRefGoogle Scholar
  474. Lambert, H., S.J. Charette, A.F. Bernier, A. Guimond, and J. Landry. 1999. HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. The Journal of Biological Chemistry 274: 9378–9385.PubMedCrossRefGoogle Scholar
  475. Lametsch, R., and E. Bendixen. 2001. Proteome analysis applied to meat science: Characterizing post mortem changes in porcine muscle. Journal of Agricultural and Food Chemistry 49: 4531–4537.PubMedCrossRefGoogle Scholar
  476. Lanier, J.L., T. Grandin, R.D. Green, D. Avery, and K. McGee. 2000. The relationship between reaction to sudden, intermittent movements and sounds and temperament. Journal of Animal Science 78: 1467–1474.PubMedCrossRefGoogle Scholar
  477. Laurent, G.J. 1987. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. American Journal of Physiology 252: C1.PubMedCrossRefGoogle Scholar
  478. Laurent, G.J., M.P. Sparrow, P.C. Bates, and D.J. Millward. 1978. Turnover of muscle protein in the fowl. Collagen content and turnover in cardiac and skeletal muscles of the adult fowl and the changes during stretch-induced growth. Biochemistry Journal 176: 419–427.CrossRefGoogle Scholar
  479. Laville, E., T. Sayd, C. Terlouw, S. Blinet, J. Pinguet, M. Fillaut, J. Glénisson, and P. Chérel. 2009a. Differences in pig muscle proteome according to HAL genotype: Implications for meat quality defects. Journal of Agricultural and Food Chemistry 57: 4913–4923.PubMedCrossRefGoogle Scholar
  480. Laville, E., T. Sayd, M. Morzel, S. Blinet, C. Chambon, J. Lepetit, et al. 2009b. Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. Journal of Agriculture Food Chemistry 57: 10755–10764.CrossRefGoogle Scholar
  481. Law, H.M., S.P. Yang, A.M. Mullins, and M.M. Fielder. 1967. Effect of storage and cooking on qualities of loin and top round steak. Journal of Food Science 32: 637–641.CrossRefGoogle Scholar
  482. Lawrence, J.D., and M.A. Ibarburu. 2007. Economic analysis of pharmaceutical technologies in modern beef production. Proceedings of NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, Market Risk Manage. Chicago, IL. Available at Accessed 28 Apr 2010.
  483. Lee, S.H., Seung-Chang Kim, Han-Ha Chai, Soo-Hyun Cho, Hyeong-Cheol Kim, Dajeong Lim, Bong-Hwan Choi, Chang-Gwan Dang, Aditi Sharma, Cedric Gondro, Boh-Suk Yang, and Seong-Koo Hong. 2014. Mutations in calpastatin and μ-calpain are associated with meat tenderness, flavor and juiciness in Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/μ-calpain complex. Meat Science 96: 1501–1508.CrossRefPubMedPubMedCentralGoogle Scholar
  484. Lefaucheur, L. 2010. A second look into fibre typing—relation to meat quality. Meat Science 84: 257–270.PubMedCrossRefGoogle Scholar
  485. Leheska, J.M., J.L. Montgomery, C.R. Krehbiel, D.A. Yates, J.P. Hutcheson, W.T. Nichols, M. Streeter, J.R. Blanton Jr., and M.F. Miller. 2009. Dietary zilpaterol hydrochloride. II. Carcass composition and meat palatability of beef cattle. Journal of Animal Science 87: 1384–1393.CrossRefPubMedPubMedCentralGoogle Scholar
  486. Lepetit, J. 2008. Collagen contribution to meat toughness: Theoretical aspects. Meat Science 80: 960–967.PubMedCrossRefGoogle Scholar
  487. Lepetit, J., and J. Culioli. 1994. Mechanical properties of meat. Meat Science 36: 203–237.PubMedCrossRefGoogle Scholar
  488. Lepetit, J., A. Grajales, and R. Favier. 2000. Modelling the effect of sarcomere length on collagen thermal shortening in cooked meat: Consequence on meat toughness. Meat Science 54: 239–250.PubMedCrossRefGoogle Scholar
  489. Lepper, B.A.N., E.P. Berg, A.J. Germolus, D.S. Buchanan, and P.T. Berg. 2014. Consumer evaluation of palatability characteristics of a beef value-added cut compared to common retail cuts. Meat Science 96: 419–422.CrossRefGoogle Scholar
  490. Levéziel, H., J.F. Hocquette, J. Lepetit, C. Denoyelle, V. Dodelin, N. Payet, et al. 2006. Q204X myostatin mutation effects on carcass and meat quality traits in heterozygous Charolais young bulls. 52nd International Congress Meat Science and Technology. 65−66. Dublin, IrelandGoogle Scholar
  491. Lewis, G.J., P.P. Purslow, and A.E. Rice. 1991. The effect of conditioning on the strength of perimysial connective tissue dissected from cooked meat. Meat Science 30: 1–12.PubMedCrossRefGoogle Scholar
  492. Leygonie, C., T.J. Britz, and L.C. Hoffman. 2012. Impact of freezing and thawing on the quality of meat: Review. Meat Science 91: 93–98.PubMedCrossRefGoogle Scholar
  493. Li, J., and P. Shatadal. 2001. Classification of tough and tender beef by image texture analysis. Meat Science 57: 341–346.CrossRefGoogle Scholar
  494. Li, J., J. Tan, F.A. Martz, and H. Heymann. 1999. Image texture features as indicators of beef tenderness. Meat Science 53: 17–22.CrossRefGoogle Scholar
  495. Li, H., V.F. Thompson, and D.E. Goll. 2004a. Effects of autolysis on properties of [mu]- and m-calpain. Biochimica et Biophysica Acta-Molecular Cell Research 1691: 91–103.CrossRefGoogle Scholar
  496. Li, J., J. Tan, F.A. Martz, D.H. Lee, L.M. Steffen, and D.R. Jacobs. 2004b. Association between serum glutamyl transferase and dietary factors: The Coronary Artery Risk Development inYoungAdults (CARDIA) Study. American Journal of Clinical Nutrition 79: 600–605.CrossRefGoogle Scholar
  497. Li, C.B., G.H. Zhou, and X.L. Xu. 2010. Dynamical changes of beef intramuscular connective tissue and muscle fiber during heating and their effects on beef shear force. Food and Bioprocess Technology 3: 521–527.CrossRefGoogle Scholar
  498. Li, C.B., J. Li, G.H. Zhou, R. Lametsch, P. Ertbjerg, D.A. Brüggemann, H.G. Huang, A.H. Karlsson, M. Hviid, and K. Lundström. 2012b. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation, and meat tenderization in beef. Journal of Animal Science 90: 1638–1649.PubMedCrossRefGoogle Scholar
  499. Li, L., Y. Zhu, X. Wang, Y. He, and B. Cao. 2014a. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellowcattle. Journal of Animal Science and Biotechnology 5: 21.PubMedPubMedCentralCrossRefGoogle Scholar
  500. Li, X., .J. Babol,L. Wender, P. Bredie, B. Nielsen, J. Tománková, and K. Lundström. 2014b. A comparative study of beef quality after aging longissimus muscle using a dry aging bag, traditional dry aging or vacuum package aging. Meat Science 97: 433–442.PubMedCrossRefGoogle Scholar
  501. Lieber, R.L., and J. Fridén. 1999. Mechanisms of muscle injury after eccentric contraction. Journal of Science and Medicine in Sport 2: 253–265.PubMedCrossRefGoogle Scholar
  502. Light, N.D., A.E. Champion, C. Voyle, and A.J. Bailey. 1985. The role of the epimysial, perimysial and endomysial collagen in determining texture in six bovine muscles. Meat Science 13: 137–149.PubMedCrossRefGoogle Scholar
  503. Lindquist, S. 1986. The heat-shock response. Annual Review of Biochemistry 55: 1151–1191.PubMedCrossRefGoogle Scholar
  504. Lindquist, S., and E.A. Craig. 1988. The heat-shock proteins. Annual Review of Genetics 22: 631–677.PubMedCrossRefGoogle Scholar
  505. Lines, D.S., W.S. Pitchford, Z.A. Kruk, and C.D.K. Bottema. 2009. Limousin myostatin F94L variant affects semitendinosus tenderness. Meat Science 81: 126–131.PubMedCrossRefGoogle Scholar
  506. Listrat, A., A. Levieux, and J. Lepetit. 2007. Muscle, age and sex effects on total pyridinoline cross-links content and beef tenderness. 53rd International Congress Meat Science and Technology Beijing, China, 247–248.Google Scholar
  507. Liu, J.M., S.E. Hankinson, M.J. Stampfer, N. Rifai, W.C. Willett, and J. Ma. 2003a. Body iron stores and their determinants in healthy postmenopausal US women. American Journal of Clinical Nutrition 78: 1160–1167.PubMedCrossRefGoogle Scholar
  508. Liu, Y., B.G. Lyon, W.R. Windham, C.E. Realini, T.D.D. Pringle, and S. Duckett. 2003b. Prediction of color, texture, and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy. A feasibility study. Meat Science 65: 1107–1115.PubMedCrossRefGoogle Scholar
  509. Locker, R.H. 1960. Degree of muscular contraction as a factor in the tenderness of beef. Food Research 25: 304–307.CrossRefGoogle Scholar
  510. Locker, R.H., and C.J. Hagyard. 1963. A cold shortening effect in beef muscle. Journal of Science and Food 14: 787–793.CrossRefGoogle Scholar
  511. Lomiwes, D., M.M. Farouk, D.A. Frost, P.M. Dobbie, and O.A. Young. 2011. Small heat shock proteins and tenderness in intermediate pHu beef. Proceedings of 57th International Congress Meat Science and Technology (Ghent).Google Scholar
  512. Lomiwes, D., M.M. Farouk, D.A. Frost, P.M. Dobbie, and O.A. Young. 2013a. Small heat shock proteins and toughness in intermediate pHu beef. Meat Science 95: 472–479.PubMedCrossRefGoogle Scholar
  513. Lomiwes, D., M.M. Farouk, E. Wiklund, and O.A. Young. 2013b. Small heat shock proteins and their role in meat tenderness: A review. Meat Science 96: 26–40.PubMedCrossRefGoogle Scholar
  514. Lomiwes, D., S.M. Hurst, P. Dobbie, D.A. Frost, R.D. Hurst, O.A. Young, and M.M. Farouk. 2014. The protection of bovine skeletal myofibrils from proteolytic damage post mortem by small heat shock proteins. Meat Science 97: 548–557.PubMedCrossRefGoogle Scholar
  515. Lonergan, S.M., C.W. Ernst, M.D. Bishop, C.R. Calkins, and M. Koohmaraie. 1995. Relationship of restricted fragment length polymorphisms (RFLP) at the bovine calpastatin activity and meat tenderness. Journal of Animal Science 73: 3608–3612.PubMedCrossRefGoogle Scholar
  516. Lonergan, S.M., E. Huff-Lonergan, B.R. Wiegand, and L.A. Kriese-Anderson. 2001. Postmortem proteolysis and tenderization of top loin steaks from Brangus cattle. Journal of Muscle Foods 12: 121–136.CrossRefGoogle Scholar
  517. Long, C.R. 1980. Crossbreeding for beef production: Experimental results. Journal of Animal Science 51: 1197–1223.CrossRefGoogle Scholar
  518. Lorenzen, C.L., M. Koohmaraie, S.D. Shackleford, F. Jahoor, H.C. Freetly, T.L. Wheeler, J.W. Savell, and M.L. Fiorotto. 2000. Protein kinetics in callipyge lambs. Journal of Animal Science 78: 78–87.PubMedCrossRefGoogle Scholar
  519. Lorenzen, C.L., R.K. Miller, J.F. Taylor, T.R. Neely, J.D. Tatum, J.W. Wise, M.J. Buyck, J.O. Reagan, and J.W. Savell. 2003. Beef customer satisfaction: trained sensory panel ratings and Warner-Bratzler shear force values. Journal of Animal Science 81: 143–149.CrossRefGoogle Scholar
  520. Love, J.D., and A.M. Pearson. 1974. Metmyoglobin and nonheme iron as prooxidants in cooked meat. Journal of Agricultural and Food Chemistry 22: 1032–1034.PubMedCrossRefGoogle Scholar
  521. Luckett, R.L., T.D. Bidner, E.A. Icaza, and J.W. Turner. 1975. Tenderness studies in straightbred and crossbred steers. Journal of Animal Science 40: 468–475.CrossRefGoogle Scholar
  522. Lusk, J.L., J.A. Fox, T.C. Schroeder, J. Mintert, and M. Koohmaraie. 2001. In-store valuation of steak tenderness. American Journal of Agricultural Economics 83: 539–550.CrossRefGoogle Scholar
  523. Maddock Carlin, K.R., V.L. Anderson, D.M. Larson, B.R. Ilse, R.J. Maddock, M.L. Bauer, and G.P. Lardy. 2013. Effects of increasing field pea (Pisum sativum) level in high concentrate diets on meat tenderness and sensory taste panel attributes in finishing steers and heifers. The Professional Animal Scientists 29: 33–38.CrossRefGoogle Scholar
  524. Maddock, K.R., E. Huff-Lonergan, L.J. Rowe, and S.M. Lonergan. 2005. Effect of pH and ionic strength on mu- and m-calpain inhibition by calpastatin. Journal of Animal Science 83: 1370–1376.PubMedCrossRefGoogle Scholar
  525. Magolski, J.D., V.L. Anderson, T.D. Maddock, B.L. Ilse, A.N. Lepper, and K.R. Carlin. 2008. Effect of dietary field pea inclusion at prescribed times from weaning to slaughter on performance, carcass quality, and palatability of beef. Proceedings of Reciprocal Meat Conference 61: 35.Google Scholar
  526. Magolski, J.D., D.S. Buchanan, K.R. Maddock-Carlin, V.L. Anderson, D.J. Newman, and E.P. Berginfluencing. 2013. Relationship between commercially available DNA analysis and phenotypic observations on beef quality and tenderness. Meat Science 95: 480–485.PubMedCrossRefGoogle Scholar
  527. Mailhos, C., M.K. Howard, and D.S. Latchman. 1993. Heat shock protects neuronal cells from programmed cell death by apoptosis. Neuroscience 55: 621–627.PubMedCrossRefGoogle Scholar
  528. Maltin, C.A., K.D. Sinclair, P.D. Warriss, C.M. Grant, A.D. Porter, and M.I. Delday. 1998. The effects of age at slaughter, genotype and finishing system on the biochemical properties, muscle fiber type characteristics and eating quality of bull beef from suckled calves. Animal Science 66: 341–348.Google Scholar
  529. Maltin, C., D. Balcerzak, R. Tilley, and M. Delday. 2003. Determinants of meat quality: Tenderness. The Proceedings of the Nutrition Society 62: 337–347.PubMedCrossRefGoogle Scholar
  530. Manwell, C., and C.M.A. Baker. 1980. Chemical classification of cattle. 2. Phylogenetic tree and specific status of the Zebu. Animal Blood Groups Biochemical Gene 11: 151–162.CrossRefGoogle Scholar
  531. Marais, G. L. 2007. Evaluation of genetic and physiological parameters associated with meat tenderness in South African Feedyard cattle. M.Sc thesis, Departement of Animal and Wildlife Sciences, University of Pretoria, South Africa.Google Scholar
  532. Marino, R., M. Albenzio, A. Della Malva, M. Caroprese, A. Santillo, and A. Sevi. 2014. Changes in meat quality traits and sarcoplasmic proteins during aging in three different cattle breeds. Meat Science 98: 178–186.PubMedCrossRefGoogle Scholar
  533. Marsh, B.B. 1977. The nature of tenderness. Proceedings of Reciprocal Meat Conference 30: 69–74.Google Scholar
  534. Marsh, B.B., and N.G. Leet. 1966. Studies on meat tenderness. III. The effects of cold shortening on tenderness. Journal of Food Science 31: 1122–1147.Google Scholar
  535. Marsh, B.B., P.R. Woodhams, and N.G. Leet. 1968. Studies in meat tenderness. 5. The effect on tenderness of carcass cooling and frewezing before the completion of rigor motis. Journal of Food Science 33: 12.CrossRefGoogle Scholar
  536. Marsh, B.B., T.P. Ringkob, R.L. Russell, D.R. Swartz, and L.A. Pagel. 1987. Effects of early-postmortem glycolytic rate on beef tenderness. Meat Science 21: 241–248.PubMedCrossRefGoogle Scholar
  537. Marshall, D.M. 1999. The genetics of meat quality. In The genetics of cattle, ed. R. Fries and A. Ruvinsky, 605–636. Wallingford: CABI Publishing.Google Scholar
  538. Marti, S., C.E. Realini, A. Bach, M. Pérez-Juan, and M. Devant. 2011. Effect of vitamin A restriction on performance and meat quality in finishing Holstein bulls and steers. Meat Science 89: 412–418.PubMedPubMedCentralGoogle Scholar
  539. ———. 2013. Effect of castration and slaughter age on performance, carcass, and meat quality traits of Holstein calves fed a high-concentrate diet. Journal of Animal Science 91: 1129–1140.PubMedPubMedCentralGoogle Scholar
  540. Martin, K.M., G.E. Gardner, J.M. Thompson, and D.L. Hopkins. 2006. Nutritional impact on muscle glycogen metabolism in lambs selected for muscling. Internaltional Journal of Sheep Wool Science 54: 233–234.Google Scholar
  541. Martineau, R., H.V. Petit, C. Benchaar, H. Lapierre, D.R. Ouellet, D. Pellerin, et al. 2008. Effects of lasalocid or monensin on in situ biohydrogenation of flaxseed and sunflower seed unsaturated fatty acids. Canadian Journal of Animal Science 88: 335–339.CrossRefGoogle Scholar
  542. Martino, M.N., L. Otero, P.D. Sanz, and N.E. Zaritzky. 1998. Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods. Meat Science 50: 303–313.PubMedCrossRefGoogle Scholar
  543. Maruyama, K., M.L. Sunde, and R.W. Swick. 1978. Growth and muscle protein turnover in the chick. The Biochemist 716: 573–582.CrossRefGoogle Scholar
  544. Mateescu, R.G., D.J. Garrick, A.J. Garmyn, D.L. Van Overbeke, G.G. Mafi, and J.M. Reecy. 2015. Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle. Journal of Animal Science 93: 21–27.PubMedCrossRefGoogle Scholar
  545. Mateo-Oyague, J., and M.L. Perez-Chabela. 2004. Frozen meat handbook of frozen foods. CRC Press.Google Scholar
  546. Mazzei, G.J., and J.F. Kuo. 1984. Phosphorylation of skeletal-muscle troponin I and troponin by phospholipid-sensitive Ca2+-dependent protein kinase and its inhibition by troponin C and tropomyosin. Journal of Biochemistry 218: 361–369.CrossRefGoogle Scholar
  547. McArdle, A., A. Vasilaki, and M. Jackson. 2002. Exercise and skeletal muscle aging: Cellular and molecular mechanisms. Aging Research Review 1: 79–93.CrossRefGoogle Scholar
  548. McBee, J.L., Jr., and J.A. Wiles. 1967. Influence ofmarbling and carcass grade on the physical and chemical characteristics of beef. Journal of Animal Science 26: 701–704.CrossRefGoogle Scholar
  549. McCormick, R.J. 1989. The influence of nutrition on collagen metabolism and stability. Reciprocal Meat Conference Proceedings 42: 137–148.Google Scholar
  550. ———. 1994. The flexibility of the collagen compartment of muscle. Meat Science 36: 79–91.PubMedCrossRefGoogle Scholar
  551. ———. 1999. Extracellular modifications to muscle collagen: implications for meat quality. Poultry Science 78: 785–791.PubMedCrossRefGoogle Scholar
  552. McCrae, S.E., C.G. Seccombe, B.B. Marsh, and W.A. Carse. 1971. Studies in meat tenderness. 9. Tenderness of various lamb muscles in relation to their skeletal restraint and delay before freezing. Journal of Food Science 36: 566–570.CrossRefGoogle Scholar
  553. McKay, M.E., P.G. Gursansky,P.G. Allingham, and G.S. Harper. 2001. Macroscopic structural effects of breed on intramuscular connective tissue in cattle. Proceedings of Matrix Biology Society Australia New Zealand, 5 Symposium12.Google Scholar
  554. McKeith, F.K., D.L. De Vol, R.S. Miles, P.J. Bechtel, and T.C. Carr. 1985. Chemical and sensory properties of thirteen major beef muscles. Journal of Food Science 50: 869–872.CrossRefGoogle Scholar
  555. McPherron, A.C., and S.J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences 94: 12457–12461.CrossRefGoogle Scholar
  556. McPherron, A.C., A.M. Lawler, and S.J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-B(beta) superfamily member. Nature 387: 83–90.PubMedCrossRefGoogle Scholar
  557. McVeigh, J.M., P.V. Tarrant, and M.G. Harrington. 1982. Behavioral stress and skeletal muscle glycogen metabolism in young bulls. Journal of Animal Science 54: 790–795.PubMedCrossRefGoogle Scholar
  558. Mehaffey, J.M., J.C. Brooks, R.J. Rathmann, E.M. Alsup, J.P. Hutcheson, W.T. Nichols, M.N. Streeter, D.A. Yates, B.J. Johnson, and M.F. Miller. 2009. Effect of feeding zilpaterol hydrochloride to beef and calf-fed Holstein cattle on consumer palatability ratings. Journal of Animal Science 87: 3712–3721.PubMedCrossRefGoogle Scholar
  559. Menissier, F. 1982a. General survey of the effect of double muscling on cattle performance. In Muscle hypertrophy of genetic origin and its use to improve beef production, ed. J.W.B. King and F. Menissier, 23–53. Leiden: Martinus Nijhoff Publishers.CrossRefGoogle Scholar
  560. ———. 1982b. Present state of knowledge about the genetic determination of muscular hypertrophy or the double muscled trait in cattle. In Muscle hypertrophy of genetic origin and its use to improve beef production, ed. J.W.B. King and F. Menissier, 387–428. Leiden: Martinus Nijhoff Plubishers.CrossRefGoogle Scholar
  561. Mercier, Y., P. Gatellier, and M. Renerre. 2004. Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. Meat Science 66: 467–473.PubMedCrossRefGoogle Scholar
  562. Merkel, R.A., and A.M. Pearson. 1975. Slow chilling could produce tender beef from lean carcasses. Meat Industry 21: 27.Google Scholar
  563. Meyer, E.H.H. 1984. Chromosomal and biochemical genetic markers of cattle breeds in Southern Africa. In Proceedings of the 2nd World Congress on Sheep and Beef Cattle Breeding, 328–339. South Africa: Pretoria.Google Scholar
  564. Micol, D., M.P. Oury, B. Picard, J.F. Hocquette, M. Briand, R. Dumont, D. Egal, R. Jailler, H. Dubroeucq, and J. Agabriel. 2009. Effect of age at castration on animal performance, muscle characteristics and meat quality traits in 26-month-old Charolais steers. Livestock Science 120: 116–126.CrossRefGoogle Scholar
  565. Miller, M.F., D.K. Garcia, M.E. Coleman, P.A. Ekeren, D.K. Lunt, K.A. Wagner, M. Procknor, T.H. Welsh Jr., and S.B. Smith. 1988. Adipose tissue, longissimus muscle and anterior pituitary growth and function in clenbuterol-fed heifers. Journal of Animal Science 66: 12–20.PubMedCrossRefPubMedCentralGoogle Scholar
  566. Miller, M.F., C.R. Kerth, J.W. Wise, J.L. Lansdell, J.E. Stowell, and C.B. Ramsey. 1997. Slaughter plant location, USDA quality grade, external fat thickness, and aging time effects on sensory characteristics of beef loin strip steak. Journal of Animal Science 75: 662–667.PubMedPubMedCentralGoogle Scholar
  567. Miller, M.F., M.F. Carr, C.B. Ramsey, K.L. Crocket, and L.C. Hoover. 2001. Consumer thresholds for establishing the value of beef tenderness. Journal of Animal Science 79: 3062–3068.PubMedCrossRefGoogle Scholar
  568. Miranda-de la Lama, G.C., M. Pascual-Alonso, A. Guerrero, P. Alberti, S. Alierta, P. Sans, J.P. Gajan, M. Villarroel, A. Dalmau, A. Velarde, M.M. Campo, F. Galindo, M.P. Santolaria, C. Sañudo, and G.A. María. 2013. Influence of social dominance on production, welfare and the quality of meat from beef bulls. Meat Science 94: 432–437.PubMedCrossRefGoogle Scholar
  569. Miranda-de la Lama, G.C., M. Villarroel, and G.A. María. 2014. Livestock transport from the perspective of the pre-slaughter logistic chain: A review. Meat Science 98: 9–20.PubMedCrossRefGoogle Scholar
  570. MLC. 1991. A Blueprint for improved consistent quality beef. Milton Keynes: Meat and Livestock Commission.Google Scholar
  571. Modzelewska-Kapituła, M., and Z. Nogalski. 2016. The influence of diet on collagen content and quality attributes of infraspinatus muscle from Holstein–Friesian young bulls. Meat Science 117: 158–162.PubMedCrossRefGoogle Scholar
  572. Mohrhauser, D.A., S.M. Lonergan, E. Huff-Lonergan, K.R. Underwood, and A.D. Weaver. 2014. Calpain-1 activity in bovine muscle is primarily influenced by temperature, not pH decline. Journal of Animal Science 92: 1261–1270.PubMedCrossRefGoogle Scholar
  573. Mohrhauser, D.A., A.R. Taylor, K.R. Underwood, R.H. Pritchard, A.E. Wertz-Lutz, and A.D. Blair. 2015a. The influence of maternal energy status during midgestation on beef offspring carcass characteristics and meat quality. Journal of Animal Science 93: 786–793.PubMedCrossRefGoogle Scholar
  574. Mohrhauser, D.A., A.R. Taylor, M.G. Gonda, K.R. Underwood, R.H. Pritchard, A.E. Wertz-Lutz, and A.D. Blair. 2015b. The influence of maternal energy status during mid-gestation on beef offspring tenderness, muscle characteristics, and gene expression. Meat Science 110: 201–211.PubMedCrossRefGoogle Scholar
  575. Moloney, A.P., P. Allen, R.L. Joseph, P.V. Tarrant, and E.M. Convey. 1994. Carcass and meat quality of finishing Friesian steers the β-adrenergic agonist L-644,969. Meat Science 38: 419–432.PubMedCrossRefGoogle Scholar
  576. Montgomery, J.L., F.C. Parrish Jr., D.C. Beitz, R.L. Horst, E.J. Huff-Lonergan, and A.H. Trenkle. 2000. The use of vitamin D3 to improve beef tenderness. Journal of Animal Science 78: 2615–2621.CrossRefGoogle Scholar
  577. Montgomery, L.J., M.A. Carr, C.R. Kerth, G.G. Hilton, B.P. Price, M.L. Galyean, R.L. Horst, and M.F. Miller. 2002. Effect of vitamin D3 supplementation level on the postmortem tenderization of beef from steers. Journal of Animal Science 80: 971–981.CrossRefGoogle Scholar
  578. Montgomery, J.L., C.R. Krehbiel, J.J. Cranston, D.A. Yates, J.P. Hutcheson, W.T. Nichols, M.N. Streeter, D.T. Bechtol, E. Johnson, T. TerHume, and T.H. Montgomery. 2009. Dietary zilpaterol hydrochloride. I. Feedyard performance and carcass traits of steers and heifers. Journal of Animal Science 87: 1374–1383.PubMedCrossRefGoogle Scholar
  579. Morgan, J.B., J.W. Savell, D.S. Hale, R.K. Miller, D.B. Griffin, H.R. Cross, et al. 1991. National Beef tenderness survey. Journal of Animal Science 69: 3274–3283.CrossRefGoogle Scholar
  580. Morris, C.A., N.G. Cullen, S.M. Hickey, P.M. Dobbie, B.A. Veenvliet, T.R. Manley, W.S. Pitchford, Z.A. Kruk, C.D.K. Bottema, and T. Wilson. 2006. Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey × Limousin, Angus and Hereford-cross cattle. Animal Genetics 37: 411–414.PubMedCrossRefGoogle Scholar
  581. Morzel, M., C. Terlouw, C. Chambon, D. Micol, and B. Picard. 2008. Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d’Aquitaine” young bulls: a central role of HSP27 isoforms. Meat Science 78: 297–304.PubMedCrossRefGoogle Scholar
  582. Motoyama, M., K. Sasaki, and A. Watanabe. 2016. Wagyu and the factors contributing to its beef quality: A Japanese industry overview. Meat Science 120: 10–18.CrossRefPubMedPubMedCentralGoogle Scholar
  583. Mounier, N., and A.P. Arrigo. 2002. Actin cytoskeleton and small heat shock proteins: How do they interact? Cell Stress & Chaperones 7: 167–176.CrossRefGoogle Scholar
  584. Mounier, L., H. Dubroeucq, S. Andanson, and I. Veissier. 2006. Variations in meat pH of beef bulls in relation to conditions of transfer to slaughter and previous history of the animals. Journal of Animal Science 84: 1567–1576.PubMedCrossRefGoogle Scholar
  585. Moyen, C., S. Goudenege, S. Poussard, A.H. Sassi, J.J. Brustis, and P. Cottin. 2004. Involvement of micro-calpain (CAPN 1) in muscle cell differentiation. The International Journal of Biochemistry & Cell Biology 36: 728–743.CrossRefGoogle Scholar
  586. Muela, E., C. Sañudo, M.M. Campo, I. Medel, and J.A. Beltrán. 2010. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display. Meat Science 84: 662–669.PubMedCrossRefGoogle Scholar
  587. Mueller, S.L., D.A. King, B.E. Baird, D.R. McKenna, W.N. Osburn, and J.W. Savell. 2006. In: Home consumer evaluations of individual muscles from beef rounds subjected to tenderization treatments. Meat Science 74: 272–280.PubMedCrossRefGoogle Scholar
  588. Murgiano, L., A. D’Alessandro, M.G. Egidi, A. Crisà, G. Prosperini, A.M. Timperio, et al. 2010. Proteomics and transcriptomics investigation on longissimus muscles in Large White and Casertana pig breeds. Journal of Proteome Research 9: 6450–6466.PubMedCrossRefGoogle Scholar
  589. Muroya, S., I. Nakajima, and K. Chikuni. 2003. Amino acid sequences of multiple fast and slow troponin T isoforms expressed in adult bovine skeletal muscles. Journal of Animal Science 81: 1185–1192.PubMedCrossRefGoogle Scholar
  590. Narberhaus, F. 2002. α-Crystallin-type heat shock proteins: Socializingminichaperones in the context of a multichaperone network. Microbiol Molec. Biological Reviews 66: 64–93.CrossRefGoogle Scholar
  591. Nattrass, G.S., L.M. Café, B.L. McIntyre, G.E. Gardner, P. McGilchrist, D.L. Robinson, Y.H. Wang, D.W. Pethick, and P.L. Greenwood. 2014. A post-transcriptional mechanism regulates calpastatin expression in bovine skeletal muscle. Journal of Animal Science 92: 443–455.PubMedCrossRefGoogle Scholar
  592. Neely, T.R., C.L. Lorenzen, R.K. Miller, J.D. Tatum, J.W. Wise, J.F. Taylor, M.J. Buyck, J.O. Reagan, and J.W. Savell. 1998. Beef customer satisfaction: Role of cut, USDA quality grade, and city on in-home consumer ratings. Journal of Animal Science 76: 1027–1033.CrossRefGoogle Scholar
  593. Nestorov, N., T. Tomov, and A. Krestev. 1970. A study on transport stress in cattle and conditions for its manifestation. Proceedings of 16th Mtng European Meat Research Workers 1:A24, Sofia, Bulgary.Google Scholar
  594. Neufer, P.D., and I.J. Benjamin. 1996. Differential expression of alpha B-crystallin and Hsp27 in skeletalmuscle during continuous contractile activity. Relationship to myogenic regulatory factors. The Journal of Biological Chemistry 271: 24089–24095.PubMedCrossRefGoogle Scholar
  595. Ngapo, T.M., I.H. Babare, J. Reynolds, and R.F. Mawson. 1999a. Freezing and thawing rate effects on drip loss from samples of pork. Meat Science 53: 149–158.PubMedCrossRefGoogle Scholar
  596. ———. 1999b. Freezing rate and frozen storage effects on the ultrastructure of samples of pork. Meat Science 53: 159–168.PubMedCrossRefGoogle Scholar
  597. Ngapo, T.M., P. Berge, J. Culioli, E. Dransfield, S. De Smet, and E. Claeys. 2002. Perimysial collagen crosslinking and meat tenderness in Belgian Blue doublemuscled cattle. Meat Science 61: 91–102.PubMedCrossRefGoogle Scholar
  598. Nishimura, T. 2010. The role of intramuscular connective tissue in meat texture. Animal Science Journal 81: 21–27.PubMedCrossRefGoogle Scholar
  599. ———. 2015. Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat. Meat Science 109: 48–55.PubMedCrossRefGoogle Scholar
  600. Nishimura, T., M.R. Rhue, A. Okitani, and H. Kato. 1988. Components contributing to the improvement of meat taste during storage. Agricultural and Biological Chemistry 52: 2323–2330.Google Scholar
  601. Nishimura, T., K. Ojima, A. Liu, A. Hattori, and K. Takahashi. 1996. Structural changes in the intramuscular connective tissue during development of bovine semitendinosus muscle. Tissue & Cell 28: 527–536.CrossRefGoogle Scholar
  602. Nishimura, T., A. Liu, A. Hattori, and K. Takahashi. 1998. Changes in mechanical strength of intramuscular connective tissue during postmortem aging of beef. Journal of Animal Science 76: 528–532.PubMedCrossRefGoogle Scholar
  603. Nishimura, T., A. Hattori, and K. Takahashi. 1999. Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: Effect of marbling on beef tenderization. Journal of Animal Science 77: 93–104.CrossRefGoogle Scholar
  604. Nishimura, T., S.H. Fang, J. Wakamatsu, and K. Takahashi. 2009. Relationships between physical and structural properties of intramuscular connective tissue and toughness of raw pork. Animal Science Journal 80: 85–90.PubMedCrossRefGoogle Scholar
  605. Nkrumah, J.D., D.H. Crews Jr., J.A. Basarab, M.A. Price, E.K. Okine, Z. Wang, C. Li, and S.S. Moore. 2007. Genetic and phenotypic relationships of feeding behaviour and temperament with performance, ultrasound, and carcass merit in beef cattle. Journal of Animal Science 85: 2382–2390.PubMedCrossRefGoogle Scholar
  606. Norris, R.T., R.B. Richards, J.H. Creeper, T.F. Jubb, B. Madin, and J.W. Kerr. 2003. Cattle deaths during sea transport from Australia. Australian Veterinary Journal 81: 156–161.PubMedCrossRefGoogle Scholar
  607. Nuernberg, K., G. Nuernberg, K. Ender, D. Dannenberger, W. Schabbel, S. Grumbach, W. Zupp, and H. Steinhart. 2005a. Effect of grass vs. concentrate feeding on the fatty acid profile of different fat depots in lambs. European Journal of Lipid Science and Technology 107: 737–745.Google Scholar
  608. Nuernberg, K., D. Dannenberger, G. Nuernberg, K. Ender, J. Voigt, N.D. Scollan, J.D. Wood, G.R. Nute, and R.I. Richardson. 2005b. Effect of a grass based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissmus muscle in different cattle breeds. Livestock Production Science 94: 137–147.Google Scholar
  609. O’Connor, S.F., J.D. Tatum, D.M. Wulf, R.D. Green, and G.C. Smith. 1997. Genetic effects on beef tenderness of Bos indicus composite and Bos taurus cattle. Journal of Animal Science 75: 1822–1830.PubMedCrossRefGoogle Scholar
  610. O’Halloran, J.M., D.M. Ferguson, D. Perry, and A.E. Egan. 1998. Mechanism of tenderness improvement in tenderstretched beef carcasses. 44th International Congress Meat Science and Technology Barcelona Spain 45: 712–713.Google Scholar
  611. O’Neill, H.A., E.C. Webb, L. Frylinck, and P.E. Strydom. 2006. The stress responsiveness of three different beef breed types and the effect on ultimate pH and meat color. In: Proceedings of the 52nd International congress of meat science and technology. 181–182, Dublin, Ireland.Google Scholar
  612. O’Rourke, B.A., J.A. Dennis, P.J. Healy, W.A. McKiernan, P.L. Greenwood, L.M. Cafe, et al. 2009. Quantitative analysis of performance, carcass and meat quality traits in cattle from two Australian beef herds in which a null myostatin alleles is segregating. Animal Production Science 49: 297–305.CrossRefGoogle Scholar
  613. Oddy, V.H., G.S. Harper, P.L. Greenwood, and M.B. McDonagh. 2001. Nutritional and developmental effects on the intrinsic properties of muscles as they relate to the eating quality of beef. Australian Journal of Experimental Agriculture 41: 921–942.CrossRefGoogle Scholar
  614. Oesterreich, S., R. Benndorf, and H. Bielka. 1990. The expression of the growth-related 25 kDa protein (p25) of Ehrlich ascites tumor cells is increased by hyperthermic treatment (heat shock). Biomedica Biochimica Acta 49: 219–226.PubMedGoogle Scholar
  615. Ohlendieck, K. 2010. Proteomics of skeletal muscle glycolysis. Biochimica et Biophysica Acta 1804: 2089–2101.PubMedCrossRefGoogle Scholar
  616. Öneç, A., and A. Kaya. 2004. The effects of electrical stunning and percussive captive bolt stunning on meat quality of cattle processed by Turkish slaughter procedures. Meat Science 66: 809–815.CrossRefGoogle Scholar
  617. Ouali, A. 1984. Sensitivity to ionic strength of Mg–Ca-enhanced ATPase activity as an index of myofibrillar aging in beef. Meat Science 11: 79–88.PubMedCrossRefGoogle Scholar
  618. ———. 1990. Meat tenderization: Possible causes and mechanisms. A Review. Journal of Muscle Foods 1: 129–165.CrossRefGoogle Scholar
  619. ———. 1992. Proteolytic and physicochemical mechanisms involved in meat texture development. Biochimie 74: 251–265.PubMedCrossRefGoogle Scholar
  620. Ouali, A., and A. Talmant. 1990. Calpains and calpastatin distribution in bovine, porcine, and ovine skeletal muscles. Meat Science 28: 331–348.PubMedCrossRefGoogle Scholar
  621. Ouali, A., N. Garrel, A. Obled, C. Deval, C. Valin, and I.F. Penny. 1987. Comparative action of cathepsins D, B, H, L and of a new lysosomal cysteine proteinase on rabbit myofibrils. Meat Science 19: 83–100.PubMedCrossRefGoogle Scholar
  622. Ouali, A., C.H. Herrera-Mendez, G. Coulis, S. Becila, A. Boudjellal, L. Aubry, et al. 2006. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science 74: 44–58.PubMedCrossRefGoogle Scholar
  623. Ouali, A., M. Gagaoua, Y. Boudida, S. Becila, A. Boudjellal, .C.H. Herrera-Mendez, and M.A. Sentandreu. 2013. Review Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Science 95:854–870.PubMedCrossRefGoogle Scholar
  624. Ozawa, S., T. Mitsuhashi, M. Mitsumoto, S. Matsumoto, N. Itoh, and K. Itagaki. 2000. The characteristics of muscle fiber types of longissimus thoracis muscle and their influences on the quantity and quality of meat from Japanese Black steers. Meat Science 54: 65–70.PubMedCrossRefGoogle Scholar
  625. Page, B.T., E. Casas, M.P. Heaton, N.G. Cullen, D.L. Hyndman, C.A. Morris, et al. 2002. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. Journal of Animal Science 80: 3077–3085.PubMedCrossRefGoogle Scholar
  626. Page, B.T., E. Casas, R.L. Quaas, R.M. Thallman, T.L. Wheeler, S.D. Shackleford, M. Koohmaraie, S.N. White, G.L. Bennett, J.W. Keele, M.E. Dikeman, and T.P.L. Smith. 2004. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. Journal of Animal Science 82: 3474–3481.PubMedCrossRefGoogle Scholar
  627. Palmer, A.Z. 1963. Relation of age, breed, sex, and feeding practices on beef and pork tenderness. In Proceedings of Meat Tenderness Symppsium, Campbell Soup Co., Camden N.J. p 161.Google Scholar
  628. Palmer, S., and J.C. Kentish. 1994. The role of troponin C inmodulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibers. The Journal of Physiology 480: 45–60.PubMedPubMedCentralCrossRefGoogle Scholar
  629. Park, B., Y.R. Chen, W.R. Hruschka, S.D. Shackleford, and M. Koohmaraie. 1998. Near-infrared reflectance analysis for predicting beef longissimus tenderness. Journal of Animal Science 76: 2115–2120.PubMedCrossRefGoogle Scholar
  630. Parr, T., H.D. Molebeledi, K. Mareko, J.P. Ryan, K.M. Hemmings, D.M. Brown, and J.M. Bramel. 2016. The impact of growth promoters on muscle growth and the potential consequences for meat quality. Meat Science 120: 93–99.PubMedCrossRefGoogle Scholar
  631. Parrish, F.C., Jr., J.A. Boles, R.E. Rust, and D.G. Olson. 1991. Dry and wet aging effects on palatability attributes of beef loin and rib steaks from three quality grades. Journal of Food Science 56: 601–603.Google Scholar
  632. Parsell, D.A., and S. Lindquist. 1993. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics 27: 437–496.PubMedCrossRefGoogle Scholar
  633. Parsons, B., D. Szczesna, J. Zhao, G. Van Slooten, W.G. Kerrick, J.A. Putkey, and J.D. Potter. 1997. The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibers. Journal of Muscle Research and Cell Motility 18: 599–609.PubMedCrossRefGoogle Scholar
  634. Paul, P., and L.J. Bratzler. 1955. Studies on tenderness of beef. III. Size of shear cores and end to end variation in the semimembranosus and adductor. Food Research 20: 635–638.CrossRefGoogle Scholar
  635. Paul, P., and B.B. McLean. 1946. Studies on veal. II. Variation between somemuscles of the hindquarter. Food Research 11: 116–120.CrossRefGoogle Scholar
  636. Paulick, C., F.A. Stolle, and G. Von Mickwitz. 1989. The influence of different stunning methods on meat quality of sheep meat. Fleischwirtschaft 69: 227–230.Google Scholar
  637. Paulsen, G., K. Vissing, J.M. Kalhovde, I. Ugelstad, M.L. Bayer, F. Kadi, P. Schjerling, J. Hallen, and T. Raastad. 2007. Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. American Journal of Physiology. Regulation, Integrative and Comparative Physiology 293: R844–R853.CrossRefGoogle Scholar
  638. Peacock, F.M., M. Koger, A.Z. Palmer, J.W. Carpenter, and T.A. Olson. 1982. Additive breed and heterosis effects for individual and maternal influences on feedyard gain and carcass traits of Angus, Brahman, Charolais and crossbred steers. Journal of Animal Science 55: 797.CrossRefGoogle Scholar
  639. Pearson, A.M., and R.B. Young. 1989. Muscle and meat biochemistry. San Diego: Academic Press.Google Scholar
  640. Peng, Y., and J. Wu. 2008. Hyperspectral scattering profiles for prediction of beef tenderness. ASABE Annual International Meeting. No: 080004.Google Scholar
  641. Peng, Y., J. Wu, and J. Chen. 2009. Prediction of beef quality attributes using hyperspectral scattering imaging technique. ASABE Annual International Meeting No. 096424.Google Scholar
  642. Peng, Y., J. Wu, J. Chen, W. Wang, and S. Dhakal. 2010. A hyperspectral imaging system for prediction of beef internal quality. ASABE Annual International Meeting No. 1009886.Google Scholar
  643. Penny, I. F. 1980. The enzymology of conditioning. In: R. Lawrie (ed.) Developments in Meat Science. p 115. Applied Science, Rarking, UK.Google Scholar
  644. Perry, S.V., and H.A. Cole. 1974. Phosphorylation of troponin and the effects of interactions between the components of the complex. The Biochemical Journal 141: 733–743.PubMedPubMedCentralCrossRefGoogle Scholar
  645. Petersen, J.S., P. Berge, P. Henckel, and M.T. Soerensen. 1997. Collagen characteristics and meat texture of pigs exposed to different levels of physical activity. Journal of Muscle Foods 8: 47–61.CrossRefGoogle Scholar
  646. Petersen, G.V., and D.K. Blackmore. 1982. The effect of different slaughter methods on the post mortem glycolysis of muscle in lambs. New Zealand Veterinary Journal 30: 195–198.PubMedCrossRefGoogle Scholar
  647. Petherick, C.J., and J.C. Phillips. 2009. Space allowances for confined livestock and their determination from allometric principles. Applied Animal Behaviour Science 117: 1–12.CrossRefGoogle Scholar
  648. Petherick, J.C., R.G. Holroyd, V.J. Doogan, and B.K. Venus. 2002. Productivity, carcass and meat quality of lot-fed Bos indicus cross steers grouped according to temperament. Australian Journal of Experimental Agriculture 42: 389–398.CrossRefGoogle Scholar
  649. Pethick, D.W., L. Cummins, G.E. Gardner, B.W. Knee, M. McDowell, M. McIntyre, G. Tudor, P.J. Walker, and R.D. Warner. 1999. The regulation by nutrition of glycogen in the muscle of ruminants. Recent Advance Animal Nutrition Australia 12: 145–152.Google Scholar
  650. Petrović, L., R. Grujić, and M. Petrović. 1993. Definition of the optimal freezing rate—2. Investigation of the physico-chemical properties of beef M. longissimus dorsi frozen at different freezing rates. Meat Science 33: 319–331.PubMedCrossRefGoogle Scholar
  651. Pfeiffer, K.D., K.L. Voges, D.A. King, D.B. Griffin, and J.W. Savell. 2005. Innovative wholesale carcass fabrication and retail cutting to optimize beef value. Meat Science 71: 743–752.PubMedCrossRefGoogle Scholar
  652. Pfizer. 2009a. Understanding GeneSTAR MVP results. Albeion: Pfizer Animal Health and Animal Genetics.Google Scholar
  653. ———. 2009b. GeneSTAR MVPs—Molecular value predictions for beef feed efficiency, marbling and tenderness. Technical summary, March 2009. Pfizer Animal Health and Animal Genetics, Albion, Queensland, Austraelia.Google Scholar
  654. Phillips, C.J.C., and E. Santurtun. 2013. The welfare of livestock transported by ship. Veterinary Journal 196: 309–314.CrossRefGoogle Scholar
  655. Phocas, F., X. Boivin, J. Sapa, G. Trillat, A. Boissy, and P. Le Neindre. 2006. Genetic correlations between temperament and breeding traits in Limousin heifers. Animal Science 82: 805–811.CrossRefGoogle Scholar
  656. Pietrasik, Z., and P.J. Shand. 2011. Effects of moisture enhancement, enzyme treatment, and blade tenderization on the processing characteristics and tenderness of beef Semimembranosus steaks. Meat Science 88: 8–13.PubMedCrossRefGoogle Scholar
  657. Pikosky, M.A., P.C. Gaine, W.F. Martin, K.C. Grabarz, A.A. Ferrando, R.R. Wolfe, and N.R. Rodriguez. 2006. Aerobic exercise training increases skeletal muscle protein turnover in healthy adults at rest. The Journal of Nutrition 136: 379–383.PubMedCrossRefGoogle Scholar
  658. Platter, W.J., J.D. Tatum, K.E. Belk, J.A. Scanga, and G.C. Smith. 2003a. Effects of repetitive use of hormonal implants on beef carcass quality tenderness, and consumer ratings of beef palatability. Journal of Animal Science 81: 984–996.CrossRefPubMedPubMedCentralGoogle Scholar
  659. Platter, W.J., J.D. Tatum, K.E. Belk, P.L. Chapman, J.A. Scanga, and G.C. Smith. 2003b. Relationships of consumer sensory ratings, marbling score, and shear force value to consumer acceptance of beef strip loin steaks. Journal of Animal Science 81: 2741–2750.PubMedGoogle Scholar
  660. Platter, W.J., J.D. Tatum, K.E. Belk, S.R. Koontz, P.L. Chapman, and G.C. Smith. 2005. Effects of marbling and shear force on consumers’ willingness to pay for beef strip loin steaks. Journal of Animal Science 83: 890–899.PubMedCrossRefGoogle Scholar
  661. Polkinghorne, R. 2005. Does variation between muscles in sensory traits preclude carcass grading as useful tool for consumers? Proceedings of 51st International Congress Meat Science Technology, August 7–12, 2005—Baltimore, Maryland, USA.Google Scholar
  662. Polkinghorne, R., R. Watson, M. Porter, A. Gee, J. Scott, and J. Thompson. 1999. Meat Standards Australia, A ’PACCP’ based beef grading scheme for consumers. (1) The use of consumer scores to set grade standards. 45th Internaltional Congress Meat Science and Technology Yokohama, Japan 45: 14–15.Google Scholar
  663. Price, M.G. 1991. Striated muscle endosarcomeric and exosarcomeric lattices. Advance Structure Biology 1: 175–207.Google Scholar
  664. Pringle, T.D., S.E. Williams, B.S. Lamb, D.D. Johnson, and R.L. West. 1997. Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbred steers. Journal of Animal Science 75: 2955–2961.PubMedCrossRefGoogle Scholar
  665. Prost, E., E. Pelczynska, and A.W. Kotula. 1975. Quality characteristics of bovine meat. II. Beef tenderness in relation to individual muscles, age and sex of animal, and carcass quality grade. Journal of Animal Science 41: 541–547.CrossRefGoogle Scholar
  666. Pulford, D.J., S. Fraga Vazquez, D.F. Frost, E. Fraser-Smith, P. Dobbie, and K. Rosenvold. 2008. The intracellular distribution of small heat shock proteins in post-mortem beef is determined by ultimate pH. Meat Science 79: 623–630.PubMedCrossRefPubMedCentralGoogle Scholar
  667. Pulford, D.J., P. Dobbie, S. Fraga Vazquez, E. Fraser-Smith, D.F. Frost, and C.A. Morris. 2009. Variation in bull beef quality due to ultimate muscle pH is correlated to endopeptidase and small heat shock protein levels. Meat Science 83: 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  668. Purchas, R.W., and R. Aungsupakorn. 1993. Further investigations into the relationship between ultimate pH and tenderness for beef samples from bulls and steers. Meat Science 34: 163–178.CrossRefPubMedPubMedCentralGoogle Scholar
  669. Purchas, R.W., and R.A. Barton. 1976. Tenderness of meat of several breeds of cattle raised under New Zealand pastoral conditions. New Zealand Journal of Agricultural Research 19: 421–428.CrossRefGoogle Scholar
  670. Purchas, R.W., D.L. Burnham, and S.T. Morris. 2002. Effect of growth potential and growth path on tenderness of beef longissimus muscle for bulls and steers. Journal of Animal Science 80: 3211–3221.PubMedCrossRefPubMedCentralGoogle Scholar
  671. Purslow, P.P. 1985. The physical basis of meat texture: observations on the fracture behavior of cooked bovine M. semitendinosus. Meat Science 12: 39–60.PubMedCrossRefPubMedCentralGoogle Scholar
  672. ———. 2005. Review: intramuscular connective tissue and its role in meat quality. Meat Science 70: 435–447.PubMedPubMedCentralGoogle Scholar
  673. Purslow, P.P., A.C. Archile-Contreras, and M.C. Cha. 2012. Manipulating meat tenderness by increasing the turnover of intramuscular connective tissue. Journal of Animal Science 90: 950–959.PubMedCrossRefPubMedCentralGoogle Scholar
  674. Radunz, A.E., S.C. Loerch, G.D. Lowe, F.L. Fluharty, and H.N. Zerby. 2009. Effect of Wagyu- versus Angus-sired calves on feedyard performance, carcass characteristics, and tenderness. Journal of Animal Science 87: 2971–2976.PubMedCrossRefPubMedCentralGoogle Scholar
  675. Rahelic, S., and S. Puac. 1981. Fiber types in longissimus-dorsi from wild and highly selected pig breeds. Meat Science 5: 439–450.PubMedCrossRefPubMedCentralGoogle Scholar
  676. Raman, B., and C.M. Rao. 1994. Chaperone-like activity and quaternary structure of alphacrystallin. The Journal of Biological Chemistry 269: 27264–27268.PubMedPubMedCentralGoogle Scholar
  677. Ramsbottom, J.M., and E.J. Strandine. 1948. Comparative tenderness and identification of muscles in wholesale beef cuts. Food Research 13: 315–330.PubMedCrossRefGoogle Scholar
  678. Ramsbottom, J.M., E.J. Strandine, and C.H. Koonz. 1945. Comparative tenderness of representative beef muscles. Food Research 10: 497–509.PubMedCrossRefGoogle Scholar
  679. Rao, P.V., J. Horwitz, and J.S. Zigler. 1993. [Alpha]-crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochemical and Biophysical Research Communications 190: 786–793.PubMedCrossRefGoogle Scholar
  680. Rathmann, R.J., J.M. Mehaffey, T.J. Baxa, W.T. Nichols, D.A. Yates, J.P. Hutcheson, J.C. Brooks, B.J. Johnson, and M.F. Miller. 2009. Effects of duration of zilpaterol hydrochloride and days on the finishing diet on carcass cutability, composition, tenderness, and skeletal muscle gene expression in feedyard steers. Journal of Animal Science 87: 3686–3701.PubMedCrossRefGoogle Scholar
  681. Rathmann, R.J., B.C. Bernhard, R.S. Swingle, T.E. Lawrence, W.T. Nichols, D.A. Yates, J.P. Hutcheson, M.N. Streeter, J.C. Brooks, M.F. Miller, and B.J. Johnson. 2012. Effects of zilpaterol hydrochloride and days on the finishing diet on feedyard performance, carcass characteristics, and tenderness in beef heifers. Journal of Animal Science 90: 3301–3311.PubMedCrossRefGoogle Scholar
  682. Raynaud, F., E. Fernandez, G. Coulis, L. Aubry, X. Vignon, N. Bleimling, M. Gautel, Y. Benyamin, and A. Ouali. 2005. Calpain 1–titin interactions concentrate calpain 1 in the Z-band edges and in the N2-line region within the skeletal myofibril. The FEBS Journal 272: 2578–2590.PubMedCrossRefGoogle Scholar
  683. Reeds, P.J., S.M. Hay, P.M. Dorwood, and R.M. Palmer. 1986. Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. British Journal of Nutrition 56: 249–258.PubMedCrossRefGoogle Scholar
  684. Reicks, A.L., J.C. Brooks, A.J. Garmyn, L.D. Thompson, C.L. Lyford, and M.F. Miller. 2011. Demographics and beef preferences affect consumer motivation for purchasing beef steaks and roasts. Meat Science 87: 403–411.PubMedCrossRefGoogle Scholar
  685. Reiling, B.A., and D.D. Johnson. 2003. Effects of implant regimens (trenbolone acetate-estradiol administration alone or in combination with zeranol) and bitamin D3 on fresh beef color and quality. Journal of Animal Science 81: 135–142.PubMedPubMedCentralGoogle Scholar
  686. Reinhardt, C.D., W.D. Busby, and L.R. Corah. 2009. Relationship of various incoming cattle traits with feedyard performance and carcass traits. Journal of Animal Science 87: 3030–3042.PubMedCrossRefGoogle Scholar
  687. Renand, G., B. Picard, C. Touraille, P. Berge, and J. Lepetit. 2001. Relationships between muscle characteristics and meat quality traits of young charolais bulls. Meat Science 59: 49–60.PubMedCrossRefPubMedCentralGoogle Scholar
  688. Reverter, A., D.J. Johnston, D.M. Ferguson, D. Perry, M.E. Goddard, H.M. Burrow, V.H. Oddy, J.M. Thompson, and B.M. Bindon. 2003. Genetic and phenotypic characterization of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 4. Correlations among animal, carcass, and meat quality traits. Australian Journal of Agricultural Research 54: 149–158.CrossRefGoogle Scholar
  689. Reville, W.J., B.A. Murray, S. Ahern, and M.G. Zeece. 1994. Easily releasable myofilaments in post mortem bovine muscle. Scienza deli’Alimentazione. 14: 431–440.Google Scholar
  690. Rhee, M.S., and B.C. Kim. 2001. Effect of low voltage electrical stimulation and temperature conditioning on postmortem changes in glycolysis and calpains activities of Korean native cattle (Hanwoo). Meat Science 58: 231–237.PubMedCrossRefPubMedCentralGoogle Scholar
  691. Rhee, M.S., T.L. Wheeler, S.D. Shackleford, and M. Koohmaraie. 2004. Variation in palatability and biochemical traits within and among eleven beef muscles. Journal of Animal Science 82: 534–550.PubMedPubMedCentralGoogle Scholar
  692. Richardson, E.C., and R.M. Herd. 2004. Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Australian Journal of Experimental Agriculture 44: 431–440.CrossRefGoogle Scholar
  693. Riley, D.G., C.C. Chase Jr., T.D. Pringle, R.L. West, D.D. Johnson, T.A. Olson, A.C. Hammond, and S.W. Coleman. 2003. Effect of sire on μ- and m-calpain activity and rate of tenderization as indicated by myofibril fragmentation indices of steaks from Brahman cattle. Journal of Animal Science 81: 2440–2447.PubMedCrossRefPubMedCentralGoogle Scholar
  694. Ritchey, S.J., and R.L. Hostetler. 1964. Characterization of the eating quality of four beef muscles fromanimals of different ages by panel scores, shear force values, extensibility of muscle fiber, and collagen content. Food Technology 18: 1067–1070.Google Scholar
  695. Rivaroli, D.C., A. Guerrero, M.V. Valero, F. Zawadzki, C.E. Eiras, M. del Mar Campo, C. Sañudo, A.M. Jorge, and I.N. do Prado. 2016. Effect of essential oils on meat and fat qualities of crossbred young bulls finished in feedyards. Meat Science 121: 278–284.PubMedCrossRefPubMedCentralGoogle Scholar
  696. Robertson, I.S., J.C. Wilson, and H.M. Fraser. 1979. Immunological castration in male cattle. The Veterinary Record 105: 556–557.PubMedCrossRefGoogle Scholar
  697. Robinson, D.L., L.M. Cafe, B.L. McIntyre, G.H. Geesink, W. Barendse, D.W. Pethick, J.M. Thompson, R. Polkinghorne, and P.L. Greenwood. 2012. Production and processing studies on calpainsystem gene markers for beef tenderness: Consumer assessments of eating quality. Journal of Animal Science 90: 2850–2860.PubMedCrossRefPubMedCentralGoogle Scholar
  698. Roeber, D.L., R.C. Cannel, K.E. Belk, R.K. Miller, J.D. Tatum, and G.C. Smith. 2000a. Implant strategies during feeding: impact on carcass grades and consumer acceptability. Journal of Animal Science 78: 1867–1874.PubMedCrossRefPubMedCentralGoogle Scholar
  699. Roeber, D.L., R.C. Cannell, K.E. Belk, J.D. Tatum, and G.C. Smith. 2000b. Effects of a unique application of electrical stimulation on tenderness, color, and quality attributes of the beef longissimus muscle. Journal of Animal Science 78: 1504–1509.PubMedCrossRefPubMedCentralGoogle Scholar
  700. Roeber, D.L., N.C. Speer, J.G. Gentry, J.D. Tatum, C.D. Smith, J.C. Whittier, G.F. Jones, K.E. Belk, and G.C. Smith. 2001b. Feeder cattle health management: Effects on morbidity rates, feedyard performance, carcass characteristics, and beef palatability. The Professional Animal Scientists 17: 39–44.Google Scholar
  701. Rogalla, T., M. Ehrnsperger, X. Preville, A. Kotlyarov, G. Lutsch, C. Ducasse, C. Paul, M. Wieske, A.P. Arrigo, J. Buchner, and M. Gaestel. 1999. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. The Journal of Biological Chemistry 274: 18947–18956.PubMedCrossRefGoogle Scholar
  702. Rosenvold, K., M.C.E. North, E. Devine, P. Micklander, and et. al. 2007. The protective effect of electrical stimulation and wrapping on beef tenderness at high pre rigor temperatures. Meat Science 79: 299–306.PubMedCrossRefGoogle Scholar
  703. Rosser, B.W., B.J. Norris, and P.M. Nemeth. 1992. Metabolic capacity of individual muscle fibers from different anatomic locations. The Journal of Histochemistry and Cytochemistry 40: 819–825.PubMedCrossRefGoogle Scholar
  704. Rossman, M.G. 1981. Evolution of glycolytic enzymes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 293: 191–203.PubMedCrossRefGoogle Scholar
  705. Rouquette, F.M., Jr., T.D.A. Forbes, R.K. Miller, K.R. Hawks, C.C. Santos, E.F. Delgado, J.W. Holloway, B.G. Warrington, and C.R. Long. 2014. Natural beef production and growth of Bonsmara steers stocked on rye and ryegrass pastures at humid and semiarid environments. Professional Animal Scientist TBC (TBC) 30: 1–11.CrossRefGoogle Scholar
  706. Rowe, R.W.D. 1974. Collagen Fiber arrangement in intramuscular connective tissue. Changes associated with muscle shortening and their possible relevance to raw meat toughness measurements. Journal of Food Technology 9: 501–508.CrossRefGoogle Scholar
  707. Rowe, L.J., K.R. Maddock, S.M. Lonergan, and E. Huff-Lonergan. 2004a. Influence of early postmortem protein oxidation on beef quality. Journal of Animal Science 82: 785–793.PubMedCrossRefGoogle Scholar
  708. ———. 2004b. Oxidative environments decrease tenderization of beef steaks through inactivation of mu-calpain. Journal of Animal Science 82: 3254–3266.PubMedCrossRefGoogle Scholar
  709. Roy, B.C., G. Sedgewick, J.L. Aalhus, J.A. Basarabc, and H.L. Bruce. 2015. Modification of mature non-reducible collagen cross-link concentrations in bovine m. gluteus medius and semitendinosus with steer age at slaughter, breed cross and growth promotants. Meat Science 110: 109–117.PubMedCrossRefGoogle Scholar
  710. Rucklidge, G.J., G. Milne, B.A. McGaw, E. Milne, and S.P. Robins. 1992. Turnover rates of different collagen types measures by isotope ratio mass spectrometry. Biochimica et Biophysica Acta 1156: 57–61.PubMedCrossRefGoogle Scholar
  711. Russell, R.G., and F.T. Oteruelo. 1981. An ultrastructural study of the differentiation of skeletal muscle in the bovine fetus. Anatomy and Embryology 162: 403–417.PubMedGoogle Scholar
  712. Rust, S.R., D.M. Price, J. Subbiah, G. Kranzler, G.G. Hilton, D.L. Vanoverbeke, and J.B. Morgan. 2008. Predicting beef tenderness using near-ionfrared spectroscopy. Journal of Animal Science 86: 211–219.PubMedCrossRefGoogle Scholar
  713. Rymill, S.R. 1997. Factors affecting the sensory evaluation of cooked meat. Master Rural Science thesis, University of New England, Armidale.Google Scholar
  714. Ryu, Y.C., and B.C. Kim. 2005. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Science 71: 351–357.PubMedCrossRefGoogle Scholar
  715. Sacks, B., N.H. Casey, E. Boshof, and H. van Zyl. 1993. Influence of freezing method on thaw drip and protein loss of low-voltage electrically stimulated and nonstimulated sheeps’ muscle. Meat Science 34: 235–243.PubMedCrossRefGoogle Scholar
  716. Samber, J.A., J.D. Tatum, M.I. Wray, W.T. Nichols, J.B. Morgan, and G.C. Smith. 1996. Implant program effects on performance and carcass quality opf steer calves finished for 212 days. Journal of Animal Science 74: 1470–1476.PubMedCrossRefGoogle Scholar
  717. Sandri, M., U. Carraro, M. Podhorska-Okolov, C. Rizzi, P. Arslan, D. Monti, and C. Franceschi. 1995. Apoptosis, DNA damage and ubiquitin expression in normal and mdx muscle fibers after exercise. FEBS Letters 373: 291–295.PubMedCrossRefGoogle Scholar
  718. Santoro, M.G. 2000. Heat shock factors and the control of the stress response. Biochemical Pharmacology 59: 55–63.PubMedCrossRefGoogle Scholar
  719. Sapa, J., K. Donoghue, and F. Phocas. 2006. Genetic parameters between sexes for temperament traits in Limousin cattle. pp 174. In Proceedings of 8th World Congress Genetics Applied Livest. Prod., Brazil. World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil.Google Scholar
  720. Sasaki, K., M. Motoyama, and T. Narita. 2012. Increased intramuscular fat improves both ‘chewiness’ and ‘hardness’ as defined In: ISO5492:1992 of beef longissimus muscles of Holstein × Japanese Black F1 steers. Animal Science Journal 83: 338–343.PubMedCrossRefGoogle Scholar
  721. Savell, J.W., and H.R. Cross. 1988. The role of fat in the palatability of beef, pork and lamb. In Designing foods: Animal Product Options in the Market Place, 345–356. Washington, DC: National Academy Press.Google Scholar
  722. Savell, J.W., and S.D. Shackleford. 1992. Significance of tenderness to the meat industry. In Proceedings of 45th annual reciprocal meat conference, Colorado, USA. 43–46.Google Scholar
  723. Savell, J.W., G.C. Smith, and Z.L. Carpenter. 1978. Beef Quality and palatability as affected by electrical stimulation and cooler aging. Journal of Food Science 43: 1666–1668.CrossRefGoogle Scholar
  724. Savell, J.W., C.L. Lorenzen, T.R. Neely, R.K. Miller, J.D. Tatum, J.W. Wise, J.F. Taylor, M.J. Buyck, and J.O. Reagan. 1999. Beef Customer Satisfaction: Cooking method and degree of doneness effects on the top sirloin steak. Journal of Animal Science 77: 645–652.CrossRefPubMedPubMedCentralGoogle Scholar
  725. Savoia, S., A. Brugiapaglia, A. Pauciullo, L. Di Stasio, S. Schiavon, G. Bittante, and A. Albera. 2019. Characterisation of beef production systems and their effects on carcass and meat quality traits of Piemontese young bulls. Meat Science 153: 75–85.PubMedCrossRefGoogle Scholar
  726. Scheffler, J.M., D.D. Buskirk, S.R. Rust, J.D. Cowley, and M.E. Doumit. 2003. Effect of repeated administration of combination trenbolone acetate and estradiol implants on growth, carcass traits, and beef quality of long-fed Holstein steers. Journal of Animal Science 81: 2395–2400.PubMedCrossRefGoogle Scholar
  727. Schmidt, J.R., M.C. Miller, J.G. Andrae, S.E. Ellis, and S.K. Duckett. 2013. Effect of summer forage species grazed during finishing on animal performance, carcass quality, and meat quality. Journal of Animal Science 91: 4451–4461.PubMedCrossRefGoogle Scholar
  728. Schneider, B.A., J.D. Tatum, T.E. Engle, and T.C. Bryant. 2007. Effects of heifer finishing implants on beef carcass traits and longissimus tenderness. Journal of Animal Science 85: 2019–2030.PubMedPubMedCentralGoogle Scholar
  729. Schneider, M.J., R.G. Tait Jr., W.D. Busby, and J.M. Reecy. 2009. An evaluation of bovine respiratory disease complex in feedyard cattle: Impact on performance and carcass traits using treatment records and lung lesion scores. Journal of Animal Science 87: 1821–1827.PubMedCrossRefGoogle Scholar
  730. Schroeder, J.W., D.A. Cramer, R.A. Bowling, and C.W. Cook. 1980. Palatability, shelf life, and chemical differences between forage- and grain-finished beef. Journal of Animal Science 50: 852.Google Scholar
  731. Schultz-Altmann, A.G.T. 2008. Engineering and design of vessels for sea transport of animals: The Australian design regulations for livestock carriers. Veterinaria Italiana 44: 247–258.PubMedGoogle Scholar
  732. Schwartz, W., and J.W. Bird. 1977. Degradation of myofi brillar proteins by cathepsins B and D. The Biochemical Journal 167: 811–820.PubMedPubMedCentralCrossRefGoogle Scholar
  733. Scollan N. D., M.S. Dhanoa, N.J. Choi, W.J. Maeng, M. Enser, and J.D. Wood. 2001a. Biohydrogenation and digestion of long chain fatty acids in steers fed on different sources of lipid. The Journal of Agricultural Science 136:345–355.CrossRefGoogle Scholar
  734. Scollan N.D., N.J. Choi, E. Kurt, A.V. Fisher, M. Enser, and J.D. Wood. 2001b. Manipulating the fatty acid composition ofmuscle and adipose tissue in beef cattle. British Journal of Nutrition 85:115–124.PubMedCrossRefGoogle Scholar
  735. Scramlin, S.M., W.J. Platter, R.A. Gomez, W.T. Choat, F.K. McKeith, and J. Killefer. 2010. Comparative effects of ractopamine hydrochloride and zilpaterol hydrochloride on growth performance, carcass traits, and longissimus tenderness of finishing steers. Journal of Animal Science 88: 1823–1829.PubMedCrossRefGoogle Scholar
  736. Segars, R.A., H.A. Nordstrom, and J.G. Kapsalis. 1974. Textural characteristics of beef muscle. Journal of Texture Studies 5: 283–297.CrossRefGoogle Scholar
  737. Seggern, D.D.V., C.R. Calkins, D.D. Johnson, J.E. Brickler, and B.L. Gwartney. 2005. Muscle profiling: Characterizing themuscles of the beef chuck and round. Meat Science 71: 39–51.PubMedCrossRefGoogle Scholar
  738. Seideman, S.C., J.D. Crouse, and H.R. Cross. 1986. The effect of sex condition and growth implants on bovine muscle fiber characteristics. Meat Science 17: 79–95.PubMedCrossRefGoogle Scholar
  739. Seideman, S.C., H.R. Cross, and J.D. Crouse. 1989. Variation in the sensory properties of beef as affected by sex condition, muscle, and postmortem aging. Journal of Food Quality 12: 49–58.Google Scholar
  740. Sekikawa, M., K. Seno, and M. Mikami. 1998. Degradation of ubiquitin in beef during storage. Meat Science 48: 201–204.PubMedCrossRefGoogle Scholar
  741. Sentandreu, M.A., G. Coulis, and A. Ouali. 2002. Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends in Food Science and Technology 13: 398–419.CrossRefGoogle Scholar
  742. Shackleford, S.D., M. Koohmaraie, T.L. Wheeler, L.V. Cundiff, and M.E. Dikeman. 1994a. Effect of biological type of cattle on the incidence of the dark, firm, and dry condition in the longissimus muscle. Journal of Animal Science 72: 337–343.CrossRefGoogle Scholar
  743. Shackleford, S.D., M. Koohmaraie, L.V. Cundiff, K.E. Gregory, G.A. Rohrer, and J.W. Savell. 1994b. Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner–Bratzler shear force, retail product yield, and growth rate. Journal of Animal Science 72: 857–863.CrossRefGoogle Scholar
  744. Shackleford, S.D., T.L. Wheeler, and M. Koohmaraie. 1997. Effect of the callipyge phenotype and cooking method on tenderness of several major lamb muscles. Journal of Animal Science 75: 2100–2105.CrossRefGoogle Scholar
  745. Shackleford, S.D., T.L. Wheeler, M.K. Meade, J.O. Reagan, B.L. Byrnes, and M. Koohmaraie. 2001. Consumer impressions of tender select beef. Journal of Animal Science 79: 2605–2614.CrossRefGoogle Scholar
  746. Shackleford, S.D., T.L. Wheeler, and M. Koohmaraie. 2012a. Technical note: Validation of a model for online classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. Journal of Animal Science 90: 973–977.CrossRefGoogle Scholar
  747. Shackleford, S.D., T.L. Wheeler, D.A. King, and M. Koohmaraie. 2012b. Field testing of a system for online classification of beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. Journal of Animal Science 90: 978–988.CrossRefGoogle Scholar
  748. Shackleford, S.D., J.B. Morgan, H.R. Cross, and J.W. Savell. 1991a. Identification of threshold levels for Warner-Bratzler shear force in beef top loin steaks. Journal of Muscle Foods 2: 289–296.CrossRefGoogle Scholar
  749. Shackleford, S.D., M. Koohmaraie, M.F. Miller, J.D. Crouse, and J.O. Reagan. 1991b. An evaluation of tenderness of the Longissimus muscle of Angus x Hereford vs. Brahman crossbred heifers. Journal of Animal Science 69: 171–177.CrossRefGoogle Scholar
  750. Shackleford, S.D., T.L. Wheeler, and M. Koohmaraie. 1995. Relationship between shear force and trained sensory panel tenderness ratings of 10 major muscles from Bos indicus and Bos taurus cattle. Journal of Animal Science 73: 3333–3340.Google Scholar
  751. ———. 1999. Tenderness classification of beef: II. Design and analysis of a system to measure beef logissimus shear force under commercial processing conditions. Journal of Animal Science 77: 1474–1481.CrossRefGoogle Scholar
  752. ———. 2004. Development of optimal protocol for visible and near-infrared reflectance spectroscopy evaluation of meat quality. Meat Science 68: 371–381.CrossRefGoogle Scholar
  753. ———. 2005. On-line classification of U.S. Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. Meat Science 69: 409–415.CrossRefGoogle Scholar
  754. Shamovsky, I., and E. Nudler. 2008. New insights into the mechanisms of heat shock response activation. Cellular and Molecular Life Sciences 65: 855–861.PubMedCrossRefGoogle Scholar
  755. Shanks, B.C., D.M. Wulf, and R.J. Madduck. 2002. Technical note: The effect of freezing on Warner-Bratzler shear force values of beef longissimus steaks across several postmortem aging periods. Journal of Animal Science 80: 2122–2125.PubMedGoogle Scholar
  756. Shen, Q.W., W.J. Means, K.R. Underwood, S.A. Thompson, M.J. Zhu, R.J. McCormick, et al. 2006. Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and −1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle. Journal of Agricultural and Food Chemistry 54: 5583–5589.PubMedCrossRefGoogle Scholar
  757. Sherbeck, J.A., J.D. Tatum, T.G. Field, J.B. Morgan, and G.C. Smith. 1995a. Feedyard performance, carcass traits, and palatability traits of Hereford and Hereford_Brahman steers. Journal of Animal Science 73: 3613–3620.PubMedPubMedCentralGoogle Scholar
  758. Sherbeck, J.A., D.M. Wulf, J.B. Morgan, J.D. Tatum, G.C. Smith, and S.N. Williams. 1995b. Dietary supplementation of vitamin E to feedyard cattle affects beef retail display properties. Journal of Food Science 60: 250–252.Google Scholar
  759. Shibata, M., K. Matsumoto, M. Oe, M. Ohnishi-Kameyama, K. Ojima, I. Nakajima, et al. 2009. Differential expression of the skeletal muscle proteome in grazed cattle. Journal of Animal Science 87: 2700–2708.PubMedCrossRefGoogle Scholar
  760. Shimada, A., M. Watanuki, Y. Tanisawa, and K. Hatae. 1992. Changes in the taste of beef with aging. Journal of Home Economics Japan 43: 199–206.Google Scholar
  761. Shook, J.N., D.L. Van Overbeke, L.A. Kinman, C.R. Krehbiel, B.P. Holland, M.N. Streeter, D.A. Yates, and G.G. Hilton. 2009. Effects of zilpzterol hydrochloride and zilpaterol hydrochloride withdrawal time on beef carcass cutability, composition, and tenderness. Journal of Animal Science 87: 3677–3685.PubMedCrossRefGoogle Scholar
  762. Shorthose, W.R. 1989. Dark cutting in sheep and beef carcasses under the different environments in Australia. In Dark cutting in cattle and sheep, ed. S.U. Fabiansson, W.R. Shorthose, and R.D. Warner, 68–73. Sydney: Australian Meat Livestock Research Development Corporation.Google Scholar
  763. Shorthose, W.R., P.V. Harris, and P.E. Bouton. 1972. The effects on some properties of beef of resting and feeding cattle after a long journey to slaughter. Proceedings of Australian Society of Animal Production 9: 387–391.Google Scholar
  764. Shrode, R.R., and S.P. Hammack. 1971. Chute behavior of yearling beef cattle. Journal of Animal Science 33: 193. (Abstr.).CrossRefGoogle Scholar
  765. Sifre, L., P. Berge, E. Engel, J.F. Martin, J.M. Bonny, A. Listrat, R. Taylor, and J. Culioli. 2005. Influence of the spatial organization of the perimysium on beef tenderness. Journal of Agricultural and Food Chemistry 53: 8390–8399.PubMedCrossRefGoogle Scholar
  766. Sikes, A., E. Tornberg, and R. Tume. 2010. A proposed mechanism of tenderizing post-rigor beef using high pressure-heat treatment. Meat Science 84: 390–399.PubMedCrossRefGoogle Scholar
  767. Silva, J.A., L. Patarata, and C. Martins. 1999. Influence of ultimate pH on bovine meat tenderness during aging. Meat Science 52: 453–459.PubMedCrossRefGoogle Scholar
  768. Simmons, N.J., K. Singh, P.M. Dobbie, and C.E. Devine. 1996. The effect of pre-rigor holding temperature on calpain and calpastatin activity and meat tenderness. 42nd International Congress Meat Science and Technology, Lillehammer, Norway, 42:414–415.Google Scholar
  769. Simmons, N.J., J.M. Cairney, and C.C. Daly. 1997. Effect of pre-rigor temperature and muscle prestraint on the biophysical properties of meat tenderness. 43rd International Congress Meat Science and Technology, Auckland, New Zealand, 43:608–609.Google Scholar
  770. Simmons, N.J., C.C. Daly, C.R. Mudford, I. Richards, G. Jarvis, and H. Pleiter. 2006. Integrated technologies to enhance meat quality—An Australasian perspective. Meat Science 74: 172–179.PubMedCrossRefGoogle Scholar
  771. Simmons, N.J., C.C. Daly, and T.L. Cummings. 2008. Reassessing the principles of electrical stimulation. Meat Science 80: 110–122.PubMedCrossRefGoogle Scholar
  772. Simonin, H., F. Duranton, and M. de Lamballerie. 2012. New insights into the highpressure processing ofmeat and meat products. Comprehensive Reviews in FoodScience and Food Safety 11 (3): 285–306.CrossRefGoogle Scholar
  773. Slanger, W.D., M.J. Marche, R.B. Danielson, C.N. Haugse, V.K. Johnson, A.S. Vidal, et al. 1985. Muscle tenderness, other carcass traits and the effect of crossbreeding on these traits in beef cattle. Journal of Animal Science 61: 1402–1410.CrossRefGoogle Scholar
  774. Smith, G.C., and Z.L. Carpenter. 1974. Eating quality of animal products and their fat content. Proceedings of the Symposium on Changing the Fat Content and Composition of Animal Products. Washington DC: National Academy of Science.Google Scholar
  775. Smith, S.H., and M.D. Judge. 1991. Relationship between pyridinoline concentration and thermal stability of bovine intramuscular collagen. Journal of Animal Science 69: 1989–1993.PubMedCrossRefGoogle Scholar
  776. Smith, G.C., G.R. Culp, and Z.L. Carpenter. 1978. Postmortem aging of beef carcasses. Journal of Food Science 43: 823–826.Google Scholar
  777. Smith, G.C., S.C. Seideman, and Z.L. Carpenter. 1979. Blade tenderization effects on cooking and palatability characteristics of steaks from bullock and cow carcasses. Journal of Food Protection 42: 563–566.PubMedCrossRefGoogle Scholar
  778. Smith, G.C., J.W. Savell, H.R. Cross, Z.L. Carpenter, C.E. Murphey, and J.L. Aalhus. 1987. Relationship of USDA quality grades to palatability of cooked beef. Journal of Food Quality 10: 269–286.CrossRefGoogle Scholar
  779. Smith, G.C., J.W. Savell, R.P. Clayton, T.G. Field, D.B. Griffin, D.S. Hale, M.F. Miller, T.H. Montgomery, J.B. Morgan, J.D. Tatum, and J.W. Wise. 1992. Improving the consistency and competitiveness of beef. The final report of the national beef quality audit-1991. Natl Cattlemen’s Beef Assn., Englewood, CO.Google Scholar
  780. Smith, G.C., J.W. Savell, H.G. Dolezoll, T.G. Field, D.R. Gill, and D.B. Griffin. 1995. Improving the quality, consistency, competitiveness, and market share of beef: the final report of the second blueprint for total quality management in the fed-beef (slaughter steer/heifer) industry. National Beef Quality Audit-1995.Google Scholar
  781. Smith, T.P.L., N.L. Lopez-Corrales, S.M. Kappes, and T.S. Sonstegard. 1997. Myostatin maps to the interval containing the bovine mh locus. Mammalian Genome 8: 742–744.PubMedCrossRefGoogle Scholar
  782. Smith, T.P.L., E. Casas, C.E. Rexroad III, S.M. Kappes, and J.W. Keele. 2000c. Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. Journal of Animal Science 78:2589-2594.PubMedCrossRefGoogle Scholar
  783. Smith, K.R., S.K. Duckett, M.J. Azain, R.N. Sonon Jr., and T.D. Pringle. 2007. The effect of anabolic implants on intramuscular lipid deposition in finished beef cattle. Journal of Animal Science 85: 430–440.PubMedGoogle Scholar
  784. Smith, G.C., J.D. Tatum, and K.E. Belk. 2008a. International perspective: Characterisation of United States Department of Agriculture and Meat Standards Australia systems for assessing beef quality. Australian Journal of Experimental Agriculture 48: 1465–1480.CrossRefGoogle Scholar
  785. Smith, G.C., D.L. Pendell, J.D. Tatum, K.E. Belk, and J.N. Sofos. 2008b. Post-slaughter traceability. Meat Science 80: 66–74.PubMedCrossRefPubMedCentralGoogle Scholar
  786. Smith, R.D., K.L. Nicholson, J.D.W. Nicholson, K.B. Harris, R.K. Miller, D.B. Griffin, and J.W. Savell. 2008c. Dry versus wet aging of beef: Retail cutting yields and consumer palatability evaluations of steaks from US Choice and US Select short loins. Meat Science 79: 631–639.CrossRefGoogle Scholar
  787. Snowder, G.D., L.D. Van Fleck, L.V. Cundiff, G.L. Bennett, M. Koohmaraie, and M.E. Dikeman. 2007. Bovine respiratory disease in feedyard cattle: Phenotypic, environmental, and genetic correlations with growth, carcass, and longissimus muscle palatability traits. Journal of Animal Science 85: 1885–1892.