Advertisement

Teratogenic Activity of Toxins in Zebrafish Model

  • Saravanan Ramachandran
  • Senthilkumar Rajagopal
Chapter

Abstract

Toxins from the posterior salivary gland (PSG) of cuttlefish are known toxins with pronounced toxicity. In this chapter, crude toxins from Sepia pharashadi are fractionated by ion-exchange chromatography and purified by reversed-phase high-performance liquid chromatography (RP-HPLC). The yield protein and carbohydrate contents of the PSG toxin are estimated to be 1.61 mg/g and 0.06 mg/g, respectively. Fourier transform infrared spectroscopy (FT-IR) of PSG toxin affirmed the incidence of CO-NH, CH and conjugated alkyl, alcoholic OH and primary NH functional groups. Circular dichroism (CD) spectroscopy and K2D analysis of the PSG toxin authenticated the attendance of secondary structure with 37% α-helix, 26% β sheet and 38% random coil. Teratogenicity of PSG toxin against Zebrafish embryo exhibited evolving malformations and premature hatching at a maximum tolerated dose of 1.0 μM. These findings strongly exhibit the toxicity of the ionic peptide-rich PSG toxin from S. pharashadi and its utilisation for its promise as a prospective cytotoxic agent of the future.

Keywords

PSG toxin S. pharashadi RP-HPLC FT-IR CD Zebrafish Teratogenicity 

Notes

Acknowledgement

The author gratefully acknowledges the Department of Biotechnology, Ministry of Science and Technology, Government of India (BT/PR15676/AAQ/03/794/2016).

References

  1. Ballering RB, Jalving MA, VenTresca DA, Hallacher LE, Tomlinson JT, Wobber DR (1972) Octopus evenomation through a plastic bag via a salivary proboscis. Toxicon 10(3):245–248CrossRefGoogle Scholar
  2. Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Eval 28(4):219–229CrossRefGoogle Scholar
  3. Cornet V, Henry J, Corre E, Le Corguille G, Zanuttini B, Zatylny-Gaudin C (2014) Dual role of the cuttlefish salivary proteome in defense and predation. J Proteome 108:209–222CrossRefGoogle Scholar
  4. Erspamer V, Anastasi A (1962) Structure and pharmacological actions of eledoisin, the active endecapeptide of the posterior salivary glands of Eledone. Experientia 18(2):58–59CrossRefGoogle Scholar
  5. Eterovic VA, Ferchmin PA (1977) Predicted secondary structure of snake venom toxins from their primary structures. Int J Pept Protein Res 10(3):245–251CrossRefGoogle Scholar
  6. Ghiretti F (1959) Cephalotoxin: the crab-paralysing agent of the posterior salivary glands of cephalopods. Nature 183:1192–1193CrossRefGoogle Scholar
  7. Ghiretti F (1960) Toxicity of octopus saliva against Crustacea. Ann N Y Acad Sci 90(3):726–741CrossRefGoogle Scholar
  8. Grisley MS (1993) Separation and partial characterization of salivary enzymes expressed during prey handling in the octopus Eledone cirrhosa. Comp Biochem Physiol B 105(1):183–192CrossRefGoogle Scholar
  9. Grisley MS, Boyle PR (1987) Bioassay and proteolytic activity of digestive enzymes from octopus saliva. Comp Biochem Physiol B 88(4):1117–1123CrossRefGoogle Scholar
  10. Karthik R (2016) Studies on structural characterization, teratogenic and anticancer activities of toxin isolated from posterior salivary gland of Sepia pharaonis (Ehrenberg, 1831), Ph.D. thesis, Chettinad University, India, pp 45–48Google Scholar
  11. Karthik R, Saravanan R (2014) In: Omics M (ed) Study of marine mollusks – a glycomic approach. CRC Press, Se-Kwon Kim, pp 267–280Google Scholar
  12. Knochenmuss R, Zenobi R (2003) MALDI ionization: the role of in-plume processes. Chem Rev 103(2):441–452CrossRefGoogle Scholar
  13. Mackessy SP (2009) Handbook of venoms and toxins of reptiles. CRC Press, Boca Raton, pp 520–528Google Scholar
  14. McDonald NM, Cottrell GA (1972) Purification and mode of action of toxin from Eledonecirrhosa. Comp Genet Pharmacol 3(10):243–248CrossRefGoogle Scholar
  15. McIntosh M, Cruz LJ, Hunkapiller MW, Gray WR, Olivera BM (1982) Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch Biochem Biophys 218(1):329–334CrossRefGoogle Scholar
  16. Nagai H (2012) Marine protein toxins. In: Handbook of marine natural products. Springer, Dordrecht, pp 1388–1419CrossRefGoogle Scholar
  17. Niki I, Yokokura H, Sudo T, Kato M, Hidaka H (1996) Ca2+ signaling and intracellular Ca2+ binding proteins. J Biochem 120(4):685–698CrossRefGoogle Scholar
  18. Saravanan R, Karthik R (2016) Isolation of proteoglycans from marine sponges and its biomedical applications. In: Ramjee P, Hermann E (eds) Marine sponges: chemicobiological and biomedical applications. Springer, New Delhi, pp 287–304Google Scholar
  19. Shiomi K, Kawashima Y, Mizukami M, Nagashima Y (2002) Properties of proteinaceous toxins in the salivary gland of the marine gastropod (Monoplex echo). Toxicon 40(5):563–571CrossRefGoogle Scholar
  20. Songdahl JH, Shapiro BI (1974) Purification and composition of a toxin from the posterior salivary gland of Octopus dofleini. Toxicon 12(2):109–112CrossRefGoogle Scholar
  21. Ueda A, Suzuki M, Honma T, Nagai H, Nagashima Y, Shiomi K (2006) Purification, properties and cDNAcloning of neoverrucotoxin (neoVTX), a hemolytic lethal factor from the stonefish Synanceia verrucosa venom. Biochim Biophys Acta 17(11):1713–1722CrossRefGoogle Scholar
  22. Wesson KJ, Hamann MT, Keenamide A (1996) A bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J Nat Prod 59(6):629–631CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Saravanan Ramachandran
    • 1
  • Senthilkumar Rajagopal
    • 2
  1. 1.Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health SciencesChettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be a University)KelambakkamIndia
  2. 2.Department of BiochemistryRayalaseema UniversityKurnoolIndia

Personalised recommendations