Advertisement

Proteomics of Lactic Acid Bacteria

  • Yue Xiao
  • Yanjun Tong
  • Wei ChenEmail author
Chapter

Abstract

Protein is the direct mediator of gene functions. The biological processes in protein level including dynamic modification, processing, transportation and localization, and structure formation cannot be predicted from gene content. The expression of mRNA cannot directly reflect the expression of the corresponding protein. Therefore, proteomics rather than genomics can provide direct evidence for the “true” occurrence of life. In the mid-1990s, proteomics research, as a newly merged discipline, initiated benefiting from the development on human genome project. The proteomes are of diversity and variability, wherein the compositions and abundances of protein pool are different in the different cells within the same organism. Meanwhile, the proteomes are also variable under different phases and conditions in the same cell. Therefore, proteomics can provide an effective means for research on complexity of protein functions during life process from dynamic and comprehensive perspectives.

References

  1. Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19(3):102–108PubMedCrossRefGoogle Scholar
  2. Alcántara C, Bäuerl C, Revillaguarinos A et al (2016) Peptide and amino acid metabolism is controlled by an OmpR family -response regulator in lactobacillus casei. Mol Microbiol 1(100):25–41CrossRefGoogle Scholar
  3. Altermann E, Buck LB, Cano R et al (2004) Identification and phenotypic characterization of the cell-division protein CdpA. Gene 342(1):189–197PubMedCrossRefGoogle Scholar
  4. Alvarez MA, Moreno-Arribas MV (2014) The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci Technol 39(2):146–155CrossRefGoogle Scholar
  5. Amund O, Ouoba LI, Sutherland JP et al (2014) Assessing the effects of exposure to environmental stress on some functional properties of bifidobacterium animalis ssp. lactis. Benefic Microbes 5(4):461–469CrossRefGoogle Scholar
  6. An H, Douillard FP, Wang G et al (2014) Integrated transcriptomic and proteomic analysis of the bile stress response in a centenarian-originated probiotic bifidobacterium longum BBMN68. Mol Cell Proteomics 13(10):2558–2572PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arena S, D’Ambrosio C, Renzone G et al (2006) A study of streptococcus thermophilus proteome by integrated analytical procedures and differential expression investigations. Proteomics 6(1):181–192PubMedCrossRefGoogle Scholar
  8. Barcelona-Andrés B, Marina A, Rubio V (2002) Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J Bacteriol 184(22):6289–6300PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bastani P, Homayouni A, Tabrizian VG et al (2012) Dairy probiotic foods and bacterial vaginosis: a review on mechanism of action. In: Everlon CR (ed) Probiotics. INTECH Open Access Publisher, CroatiaGoogle Scholar
  10. Belfiore C, Fadda S, Raya R et al (2013) Molecular basis of the adaption of the anchovy isolate lactobacillus sakei CRL1756 to salted environments through a proteomic approach. Food Res Int 54(1):1334–1341CrossRefGoogle Scholar
  11. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S et al (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174PubMedCrossRefGoogle Scholar
  12. Bouchard D, Even S, Le Loir Y (2015) Lactic acid bacteria in animal production and health. In: Biotechnology of lactic acid bacteria: novel applications. Wiley, Hoboken, pp 144–158CrossRefGoogle Scholar
  13. Brandsma JB, van de Kraats I, Abee T et al (2012) Arginine metabolism in sugar deprived Lactococcus lactis enhances survival and cellular activity, while supporting flavour production. Food Microbiol 29(1):27–32PubMedCrossRefGoogle Scholar
  14. Brioukhanov A, Netrusov A (2007) Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review. Appl Biochem Microbiol 43(6):567–582CrossRefGoogle Scholar
  15. Bron PA, Tomita S, Mercenier A et al (2013) Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. Curr Opin Microbiol 16(3):262–269PubMedCrossRefGoogle Scholar
  16. Brooijmans RJW, Poolman B, Schuurman-Wolters GK et al (2007) Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J Bacteriol 189(14):5203–5209PubMedPubMedCentralCrossRefGoogle Scholar
  17. Capitani G, De Biase D, Aurizi C et al (2003) Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22(16):4027–4037PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370PubMedCrossRefGoogle Scholar
  19. Castillo A (2015) How bacteria use quorum sensing to communicate. Nat Educ 8(2):4Google Scholar
  20. Chen J, Shen J, Hellgren LI et al (2015) Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci Rep 5:14199PubMedPubMedCentralCrossRefGoogle Scholar
  21. Corcoran BM, Stanton C, Fitzgerald G et al (2008) Life under stress: the probiotic stress response and how it may be manipulated. Curr Pharm Des 14(14):1382–1399PubMedCrossRefGoogle Scholar
  22. Coton M, Romano A, Spano G et al (2010) Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol 27(8):1078–1085PubMedCrossRefGoogle Scholar
  23. de Angelis M, Gobbetti M (2004) Environmental stress responses in lactobacillus: a review. Proteomics 4(1):106–122PubMedCrossRefGoogle Scholar
  24. de Angelis M, Mariotti L, Rossi J et al (2002) Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from lactobacillus sanfranciscensis CB1. Appl Environ Microbiol 68(12):6193–6201PubMedPubMedCentralCrossRefGoogle Scholar
  25. de Angelis M, Di Cagno R, Huet C et al (2004) Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70(3):1336–1346PubMedPubMedCentralCrossRefGoogle Scholar
  26. Décanis N, Tazi N, Correia A et al (2011) Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J 5(1):119–126PubMedPubMedCentralCrossRefGoogle Scholar
  27. Desmond C, Fitzgerald GF, Stanton C et al (2004) Improved stress tolerance of GroESL—overproducing lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70(10):5929–5936PubMedPubMedCentralCrossRefGoogle Scholar
  28. di Cagno R, de Angelis M, Limitone A et al (2007) Cell–cell communication in sourdough lactic acid bacteria: a proteomic study in Lactobacillus sanfranciscensis CB1. Proteomics 7(14):2430–2446PubMedCrossRefGoogle Scholar
  29. di Cagno R, de Angelis M, Coda R et al (2009) Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Res Microbiol 160(5):358–366PubMedCrossRefGoogle Scholar
  30. di Cagno R, De Angelis M, Calasso M et al (2010) Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin a (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics 10(11):2175–2190PubMedCrossRefGoogle Scholar
  31. di Cagno R, De Angelis M, Calasso M et al (2011) Proteomics of the bacterial cross-talk by quorum sensing. J Proteome 74(1):19–34CrossRefGoogle Scholar
  32. Dias R, Vilas-Boas E, Campos FM et al (2015) Activity of lysozyme on Lactobacillus hilgardii strains isolated from port wine. Food Microbiol 49:6–11PubMedCrossRefGoogle Scholar
  33. Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14(1):87–96PubMedCrossRefGoogle Scholar
  34. Dijkstra AR, Alkema W, Starrenburg MJC et al (2014) Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness. Microb Cell Factories 13(1):1–11CrossRefGoogle Scholar
  35. Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59(10):1607–1616PubMedCrossRefGoogle Scholar
  36. Elkins CA, Moser SA, Savage DC et al (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in lactobacillus johnsonii 100-100 and other lactobacillus species. Microbiology 147(12):3403–3412PubMedCrossRefGoogle Scholar
  37. Fernandez A, Ogawa J, Penaud S et al (2008) Rerouting of pyruvate metabolism during acid adaptation in lactobacillus bulgaricus. Proteomics 8(15):3154–3163PubMedCrossRefGoogle Scholar
  38. Fernández-Pérez R, Aldama LD, Lázaro MG et al (2014) Nitrogen metabolic profile of lactococcus lactis subsp. cremoris strains under stress conditions. Industrial, medical and environmental applications of microorganisms: current status and trends. In: Proceedings of the Vth international conference on environmental, industrial and applied microbiology (BioMicro World 2013) Mad, Wageningen Academic Publishers, p 347Google Scholar
  39. Fields S, Song O (1989) A novel genetic system to detect protein protein interactions. Nature 340(6230):245–246PubMedCrossRefGoogle Scholar
  40. Fiocco D, Capozzi V, Goffin P et al (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77(4):909–915PubMedCrossRefGoogle Scholar
  41. Flahaut NAL, Wiersma A, van de Bunt B et al (2013) Genome-scale metabolic model for lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl Microbiol Biotechnol 97(19):8729–8739PubMedCrossRefGoogle Scholar
  42. Gagnaire V, Mollé D, Herrouin M et al (2001) Peptides identified during Emmental cheese ripening: origin and proteolytic systems involved. J Agric Food Chem 49(9):4402–4413PubMedCrossRefGoogle Scholar
  43. Gagnaire V, Piot M, Camier B et al (2004) Survey of bacterial proteins released in cheese: a proteomic approach. Int J Food Microbiol 94(2):185–201PubMedCrossRefGoogle Scholar
  44. Gao QX, Wu TX, Wang JB et al (2011) Inhibition of bacterial adhesion to HT-29 cells by lipoteichoic acid extracted from clostridium butyricum. Afr J Biotechnol 10(39):7633–7639Google Scholar
  45. García-Ruiz A, González-Rompinelli EM, Bartolomé B et al (2011) Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int J Food Microbiol 148(2):115–120PubMedCrossRefGoogle Scholar
  46. Glenting J, Beck HC, Vrang A et al (2013) Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins. Microbiol Res 168(5):245–253PubMedCrossRefGoogle Scholar
  47. Grandvalet C, Coucheney F, Beltramo C et al (2005) CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J Bacteriol 187(16):5614–5623PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guerrini S, Mangani S, Granchi L et al (2002) Biogenic amine production by Oenococcus oeni. Curr Microbiol 44(5):374–378PubMedCrossRefGoogle Scholar
  49. Guisbert E, Morimoto RI (2013) The regulation and function of the heat shock response. In: Morimoto RI, Christen Y (eds) Protein quality control in neurodegenerative diseases. Springer, Berlin/Heidelberg, pp 1–18Google Scholar
  50. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999PubMedCrossRefGoogle Scholar
  51. Haddaji N, Krifi B, Lagha R et al (2015) Effect of high temperature on viability of Lactobacillus casei and analysis of secreted and GroEL proteins profiles. Afr J Bacteriol Res 7(3):29–35Google Scholar
  52. Hamon E, Horvatovich P, Bisch M et al (2011) Investigation of biomarkers of bile tolerance in lactobacillus casei using comparative proteomics. J Proteome Res 11(1):109–118PubMedCrossRefGoogle Scholar
  53. Hemaiswarya S, Raja R, Ravikumar R et al (2013) Mechanism of action of probiotics. Braz Arch Biol Technol 56(1):113–119CrossRefGoogle Scholar
  54. Herve-Jimenez L, Guillouard I, Guedon E et al (2008) Physiology of streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 8(20):4273–4286PubMedCrossRefGoogle Scholar
  55. Herve-Jimenez L, Guillouard I, Guedon E et al (2009) Postgenomic analysis of streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75(7):2062–2073PubMedCrossRefGoogle Scholar
  56. Heunis T, Deane S, Smit S et al (2014) Proteomic profiling of the acid stress response in Lactobacillus plantarum 423. J Proteome Res 13(9):4028–4039PubMedCrossRefGoogle Scholar
  57. Hörmann S, Scheyhing C, Behr J et al (2006) Comparative proteome approach to characterize the high-pressure stress response of lactobacillus sanfranciscensis DSM 20451T. Proteomics 6(6):1878–1885PubMedCrossRefGoogle Scholar
  58. Hosseini NM, Hussain MA, Britz ML et al (2015) Stress responses in probiotic lactobacillus casei. Crit Rev Food Sci Nutr 55(6):740–749CrossRefGoogle Scholar
  59. Huang G, Li C, Cao Y (2011) Proteomic analysis of differentially expressed proteins in lactobacillus brevis NCL912 under acid stress. FEMS Microbiol Lett 318(2):177–182PubMedCrossRefGoogle Scholar
  60. Inoue K, Shirai T, Ochiai H et al (2003) Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57(3):490–495PubMedCrossRefGoogle Scholar
  61. Jensen H, Roos S, Jonsson H et al (2014) Role of Lactobacillus reuteri cell and mucus-binding protein a (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiology 160(4):671–681PubMedCrossRefGoogle Scholar
  62. Jiang W, Xia S, Liang J et al (2013) Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Res 47(1):187–196PubMedCrossRefGoogle Scholar
  63. Jin J, Zhang B, Guo H et al (2012) Mechanism analysis of acid tolerance response of bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS One 7(12):e50777PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jofré A, Champomier-Vergès MC, Anglade P et al (2007) Proteomic analysis of the response of lactic acid and pathogenic bacteria to high hydrostatic pressure treatment. Res Microbiol 58:512–520CrossRefGoogle Scholar
  65. Kaper JB, Sperandio V (2005) Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 73(6):3197–3209PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kieronczyk A, Skeie S, Langsrud T et al (2003) Cooperation between lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids. Appl Environ Microbiol 69(2):734–739PubMedPubMedCentralCrossRefGoogle Scholar
  67. Konings WN (2006) Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek 90(4):325–342PubMedCrossRefGoogle Scholar
  68. Koponen J, Laakso K, Koskenniemi K et al (2012) Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J Proteome 75(4):1357–1374CrossRefGoogle Scholar
  69. Lamberti C, Purrotti M, Mazzoli R et al (2011) ADI pathway and histidine decarboxylation are reciprocally regulated in lactobacillus hilgardii ISE 5211: proteomic evidence. Amino Acids 41(2):517–527PubMedCrossRefGoogle Scholar
  70. Landete JM, Pardo I, Ferrers S (2006) Histamine, histidine, and growth-phase mediated regulation of the histidine decarboxylase gene in lactic acid bacteria isolated from wine. FEMS Microbiol Lett 260(1):84–90PubMedCrossRefGoogle Scholar
  71. Landete JM, Pardo I, Ferrer S (2007) Tyramine and phenylethylamine production among lactic acid bacteria isolated from wine. Int J Food Microbiol 115(3):364–368PubMedCrossRefGoogle Scholar
  72. Landete JM, Ferrer S, Monedero V et al (2013) Malic enzyme and malolactic enzyme pathways are functionally linked but independently regulated in lactobacillus casei BL23. Appl Environ Microbiol 79(18):5509–5518PubMedPubMedCentralCrossRefGoogle Scholar
  73. Laughton JM, Devillard E, Heinrichs DE et al (2006) Inhibition of expression of a staphylococcal superantigen-like protein by a soluble factor from Lactobacillus reuteri. Microbiology 152(4):1155–1167PubMedCrossRefGoogle Scholar
  74. Leahy SC, Higgins DG, Fitzgerald GF et al (2005) Getting better with bifidobacteria. J Appl Microbiol 98(6):1303–1315PubMedCrossRefGoogle Scholar
  75. Lee KB, Lee HG, Pi KB et al (2008) The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri. Proteomics 8(8):1624–1630PubMedCrossRefGoogle Scholar
  76. Lee JY, Pajarillo EAB, Kim MJ et al (2012) Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. J Proteome Res 12(1):432–443PubMedCrossRefGoogle Scholar
  77. Levering J, Musters MWJM, Bekker M et al (2012) Role of phosphate in the central metabolism of two lactic acid bacteria–a comparative systems biology approach. FEBS J 279(7):1274–1290PubMedCrossRefGoogle Scholar
  78. Lindner JDD, Canchaya C, Zhang Z et al (2007) Exploiting bifidobacterium genomes: the molecular basis of stress response. Int J Food Microbiol 120(1):13–24CrossRefGoogle Scholar
  79. Liu F, Du L, Xu W et al (2013) Production of tyramine by Enterococcus faecalis strains in water-boiled salted duck. J Food Prot 76(5):854–859PubMedCrossRefGoogle Scholar
  80. Louesdon S, Charlot-Rougé S, Tourdot-Maréchal R et al (2015) Membrane fatty acid composition and fluidity are involved in the resistance to freezing of Lactobacillus buchneri R1102 and bifidobacterium longum R0175. Microb Biotechnol 8(2):311–318PubMedCrossRefGoogle Scholar
  81. Luo J, Vijayasankaran N, Autsen J et al (2012) Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng 109(1):146–156PubMedCrossRefGoogle Scholar
  82. Machado MC, López CS, Heras H et al (2004) Osmotic response in lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys 422(1):61–70PubMedCrossRefGoogle Scholar
  83. Maeda T, García-Contreras R, Pu M et al (2012) Quorum quenching quandary: resistance to antivirulence compounds. ISME J 6(3):493–501PubMedCrossRefGoogle Scholar
  84. Manso MA, Léonil J, Jan G et al (2005) Application of proteomics to the characterisation of milk and dairy products. Int Dairy J 15(6–9):845–855CrossRefGoogle Scholar
  85. Marceau A, Zagorec M, Chaillou S et al (2004) Evidence for involvement of at least six proteins in adaptation of lactobacillus sakei to cold temperatures and addition of NaCl. Appl Environ Microbiol 70(12):7260–7268PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mazzoli R, Lamberti C, Coisson JD et al (2009) Influence of ethanol, malate and arginine on histamine production of Lactobacillus hilgardii isolated from an Italian red wine. Amino Acids 36(1):81–89PubMedCrossRefGoogle Scholar
  87. Mazzoli R, Pessione E, Dufour M et al (2010) Glutamate-induced metabolic changes in lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis. Amino Acids 39(3):727–737PubMedCrossRefGoogle Scholar
  88. Mendoza GM, Pasteris SE, Otero MC et al (2014) Survival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storage. J Appl Microbiol 116(1):157–166CrossRefGoogle Scholar
  89. Milani C, Turroni F, Duranti S et al (2016) Genomics of the genus bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 82(4):980–991PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mills S, Stanton C, Fitzgerald GF et al (2011) Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb Cell Factories 10(1):1–15CrossRefGoogle Scholar
  91. Miyoshi A, Rochat T, Gratadoux JJ et al (2003) Oxidative stress in lactococcus lactis. Genet Mol Res 2(4):348–359PubMedGoogle Scholar
  92. Mohammadi T, Karczmarek A, Crouvoisier M et al (2007) The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol Microbiol 65(4):1106–1121PubMedPubMedCentralCrossRefGoogle Scholar
  93. Molière N, Turgay K (2009) Chaperone-protease systems in regulation and protein quality control in bacillus subtilis. Res Microbiol 160(9):637–644PubMedCrossRefGoogle Scholar
  94. Moreno-Arribas MV, Polo MC, Jorganes F et al (2003) Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 84(1):117–123PubMedCrossRefGoogle Scholar
  95. Oliveira LC, Saraiva TDL, Soares SC et al (2014) Genome sequence of lactococcus lactis subsp. lactis NCDO 2118, a GABA-producing strain. Genome Announc 2(5):e00980–e00914PubMedPubMedCentralCrossRefGoogle Scholar
  96. Parente E, Ciocia F, Ricciardi A et al (2010) Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: a multivariate screening study. Int J Food Microbiol 144(2):270–279PubMedCrossRefGoogle Scholar
  97. Passot S, Bouix M, Gautier J et al (2012) Relevance of cell biophysical behaviour and membrane fluidity for explaining freezing resistance of lactic acid bacteria. Cryobiology 65(3):355CrossRefGoogle Scholar
  98. Pessione E, Mazzoli R, Giuffrida MG et al (2005) A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics 5(3):687–698PubMedCrossRefGoogle Scholar
  99. Pessione E, Pessione A, Lamberti C et al (2009) First evidence of a membrane-bound, tyramine and β-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study. Proteomics 9(10):2695–2710PubMedCrossRefGoogle Scholar
  100. Popat R, Comforth DM, McNally L et al (2015) Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface 12(103):20140882PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rastogi NK, Raghavarao K, Balasubramaniam VM et al (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47(1):69–112PubMedCrossRefGoogle Scholar
  102. Remus DM, Bongers RS, Meijerink M et al (2013) Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195(3):502–509PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ruiz L, Sánchez B, Clara G et al (2009) Coculture of bifidobacterium longum and bifidobacterium breve alters their protein expression profiles and enzymatic activities. Int J Food Microbiol 133(1):148–153PubMedCrossRefGoogle Scholar
  104. Rul F, Monnet V (2015) How microbes communicate in food: a review of signaling molecules and their impact on food quality. Curr Opin Food Sci 2:100–105CrossRefGoogle Scholar
  105. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):705–709CrossRefGoogle Scholar
  106. Sánchez B, Champomier-Vergès MC, Anglade P et al (2005) Proteomic analysis of global changes in protein expression during bile salt exposure of bifidobacterium longum NCIMB 8809. J Bacteriol 187(16):5799–5808PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sánchez B, Champomier-Vergès MC, del Collado MC et al (2007a) Low-pH adaptation and the acid tolerance response of bifidobacterium longum biotype longum. Appl Environ Microbiol 73(20):6450–6459PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sánchez B, Champomier-Vergès MC, Stuer-Lauridsen B et al (2007b) Adaptation and response of bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microbiol 73(21):6757–6767PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sánchez B, Champomier-Vergès MC, Anglade P et al (2008) A preliminary analysis of bifidobacterium longum exported proteins by two-dimensional electrophoresis. J Mol Microbiol Biotechnol 14(1–3):74–79PubMedCrossRefGoogle Scholar
  110. Scheper MA, Shirtliff ME, Meiller TF et al (2008) Farnesol, a fungal quorum-sensing molecule triggers apoptosis in human oral squamous carcinoma cells. Neoplasia 10(9):954–963PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shevchenko A, Yang Y, Knaust A et al (2014) Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. J Proteome 105:363–371CrossRefGoogle Scholar
  112. Siciliano RA, Cacace G, Mazzeo MF et al (2008) Proteomic investigation of the aggregation phenomenon in lactobacillus crispatus. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1784(2):335–342CrossRefGoogle Scholar
  113. Sieuwerts S, De Bok FAM, Hugenholtz J et al (2008) Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 74(16):4997–5007PubMedPubMedCentralCrossRefGoogle Scholar
  114. Steele J, Broadbent J, Kok J (2013) Perspectives on the contribution of lactic acid bacteria to cheese flavor development. Curr Opin Biotechnol 24(2):135–141PubMedCrossRefGoogle Scholar
  115. Streit F, Corrieu G, Béal C (2007) Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1. J Biotechnol 128(3):659–667PubMedCrossRefGoogle Scholar
  116. Streit F, Delettre J, Corrieu G et al (2008) Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appl Microbiol 105(4):1071–1080PubMedCrossRefGoogle Scholar
  117. Tonon T, Bourdineaud JP, Lonvaud-Funel A (2001) The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol 152(7):653–661PubMedCrossRefGoogle Scholar
  118. van de Guchte M, Serror P, Chervaux C et al (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82(1–4):187–216PubMedCrossRefGoogle Scholar
  119. Vandenplas Y, Salvatore S, Devreker T et al (2007) Gastro-oesophageal reflux disease: oesophageal impedance versus pH monitoring. Acta Paediatr 96(7):956–962PubMedCrossRefGoogle Scholar
  120. Ventimiglia G, Alfonzo A, Galluzzo P et al (2015) Codominance of lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol 51:57–68PubMedCrossRefGoogle Scholar
  121. von Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190(13):4377–4391CrossRefGoogle Scholar
  122. Wang Y, Delettre J, Guillot A et al (2005) Influence of cooling temperature and duration on cold adaptation of lactobacillus acidophilus RD758. Cryobiology 50(3):294–307PubMedCrossRefGoogle Scholar
  123. Wang S, Wu X, Hao L et al (2006) Mutation effect of ultra high pressure on microbe. Acta Microbiol Sin 45(6):970–973Google Scholar
  124. Wang LH et al (2008) Quorum quenching: impact and mechanisms. American Society of Microbiology, Washington, DC, pp 379–392Google Scholar
  125. Wei X, Yan X, Chen X et al (2014) Proteomic analysis of the interaction of bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. J Proteome 108:89–98CrossRefGoogle Scholar
  126. Wolken WAM, Lucas PM, Lonvaud-Funel A et al (2006) The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. J Bacteriol 188(6):2198–2206PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wu R, Zhang W, Sun T et al (2011) Proteomic analysis of responses of a new probiotic bacterium lactobacillus casei Zhang to low acid stress. Int J Food Microbiol 147(3):181–187PubMedCrossRefGoogle Scholar
  128. Xie Y, Chou L, Cutler A et al (2004) DNA macroarray profiling of lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70(11):6738–6747PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yan F, Cao H, Cover TL et al (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575PubMedCrossRefGoogle Scholar
  130. Yuan J, Wang B, Sun Z et al (2007) Analysis of host-inducing proteome changes in bifidobacterium longum NCC2705 grown in vivo. J Proteome Res 7(1):375–385PubMedCrossRefGoogle Scholar
  131. Yvon M, Gitton C, Chambellon E et al (2008) Responses of lactococcus to stresses encountered during cheese-making process are strain-dependent. Egmond aan Zee: 9th symposium on lactic acid bacteria, p 4589Google Scholar
  132. Zhai Z, Douillard FP, An H et al (2014) Proteomic characterization of the acid tolerance response in lactobacillus delbrueckii subsp. bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ Microbiol 16(6):1524–1537PubMedCrossRefGoogle Scholar
  133. Zhao Y, Zhang W, Sun T et al (2014) Research on the molecular mechanisms of Lactic acid bacteria responding to environmental stress. Dairy Ind 42(4):42–45Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Jiangnan UniversityWuxiChina

Personalised recommendations