Advertisement

Introduction

  • Fengwei TianEmail author
Chapter

Abstract

Lactic acid bacteria (LAB) is a general term for a class of bacteria that use the metabolism of carbohydrates in the external environment to produce lactic acid. Lactic acid bacteria are widely distributed in nature and exist in a variety of habitats. Extremely rich in biodiversity, they are closely related to human production and life and have important social and economic value. They are valuable biological resources for human beings. The utilization of lactic acid bacteria by human beings has a very long history. According to reliable archaeological evidence, it can be dated back to more than 10,000 years ago. In the long historical process, the utilization of lactic acid bacteria has made outstanding contributions to the development and practice of human society. In the great development of human natural science and engineering science in the late nineteenth century and early twentieth century, along with the rapid development of biological science, microbiology, and other related disciplines, the science and technology of lactic acid bacteria also achieved unprecedented development. On the one hand, in terms of basic science, lactic acid fermentation is adopted as a model metabolic method. Lactic acid bacteria are mode research organisms of basic biological sciences such as microbiology, biochemistry, genetics, and molecular biology, which have important theoretical research significance. On the other hand, in practical application, lactic acid bacteria have a wide range of application significance in industrial biomanufacturing, food production and processing, high-efficiency agriculture, high-efficiency livestock breeding, medical health, and other important fields closely related to human beings. In recent years, the application of new technologies and new methods such as microbiome, proteomics, bioinformatics, and big data analysis technology has further revealed the great importance of lactic acid bacteria in related fields and attracted the researchers from different research fields. In Fig. 1.1, the number of publications on the research of lactic acid bacteria science and technology has grown significantly during the last 10 years of the twentieth century to the first 10 years of the twenty-first century. It has become a major research and application development hotspot of modern science and application technology.

References

  1. Andrewes FW, Horder TJ (1906) A study of the streptococci pathogenic for man. Lancet 168(4333):708–713CrossRefGoogle Scholar
  2. Axelsson L, Salminen S, Von Wright A et al (2004) Lactic acid bacteria: classification and physiology. In: Dillon VM (ed) Lactic acid bacteria microbiology & functional aspects. Marcel Dekker/CRC Press, New YorkGoogle Scholar
  3. Beijerinck M (1901) Sur les ferments lactiques de l’industrie. Archives Néerlandaises des Sciences Exactes et Naturelles 6:212–243Google Scholar
  4. Bergey’s Manual Trust (2015) Bergey’s manual of systematics of archaea and bacteria. Wiley, in association with Bergey’s Manual Trust, New YorkGoogle Scholar
  5. Blondeau C (1847) Des fermentations. J Pharm 312:244–261Google Scholar
  6. Bryan-Jones DG, Whittenbury R (1969) Haematin-dependent oxidative phosphorylation in Streptococcus faecalis. J Gen Microbiol 58(2):247–260CrossRefGoogle Scholar
  7. Buchner E (1907) Cell-free fermentation. Nobel Lecture: 103–120Google Scholar
  8. Buchner E, Rapp R (1897) Alkoholische gährung ohne hefezellen. Ber Dtsch Chem Ges 30(3):2668–2678CrossRefGoogle Scholar
  9. Cahn D (1901) Über die nach Gram färbbarenBacillen des Säulingsstuhles Bacilli of infant stools stainable according to Gram. CentralblattfürBakteriologie I Abteilung Originale 30:721–726Google Scholar
  10. Cantani A (1885) Un tentativo di batterioterapia. Gior Int Sci Med 7:493Google Scholar
  11. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370CrossRefGoogle Scholar
  12. Chen Gong (2011) Chinese Kimchi processing technology. China Light Industry Press, BeijingGoogle Scholar
  13. Cheplin HA, Rettger LF (1920) Studies on the Transformation of the intestinal flora, with special reference to the implantation of Bacillus acidophilus: II. Feeding experiments on man. Proc Natl Acad Sci USA 6(12):704–705CrossRefGoogle Scholar
  14. Chomakow H (1973) The dairy industry in the People’s Republic of Bulgaria. Center for Scientific, Technical and Economic Information in Agriculture and Forestry, Agricultural Academy, BulgariaGoogle Scholar
  15. Davis J (1939) The nutritional requirements of the lactic acid bacteria. J Dairy Res 10(02):186–195CrossRefGoogle Scholar
  16. de Vries W, Stouthamer AH (1968) Fermentation of glucose, lactose, galactose, mannitol, and xylose by Bifidobacteria. J Bacteriol 96(2):472–478PubMedPubMedCentralGoogle Scholar
  17. DeMoss RD, Bard RC, Gunsalus IC (1951) The mechanism of the heterolactic fermentation: a new route of ethanol formation. J Bacteriol 62(4):499–511PubMedPubMedCentralGoogle Scholar
  18. Döderlein A (1892) Uber Scheidensekrete und Scheidenkeime [Vaginal secretions and vaginal microbes]. Die Verhandlungen der deutschen Gesellschaftfür Gynäkologie 4:35–50Google Scholar
  19. Douglas LMQ (1911) The Bacillus of long life. G. P. Putnam’s Sons, New YorkGoogle Scholar
  20. Dunne J, Evershed RP, Salque M et al (2012) First dairying in green Saharan Africa in the Fifth Millennium BC. Nature 486(7403):390–394CrossRefGoogle Scholar
  21. Eggerth AH (1935) The Gram-positive non-spore-bearing anaerobic bacilli of human feces. J Bacteriol 30(3):277–299PubMedPubMedCentralGoogle Scholar
  22. Eggerth AH, Gagnon BH (1933) The bacteroides of human feces. J Bacteriol 25(4):389–413PubMedPubMedCentralGoogle Scholar
  23. Farnworth ER (2008a) The evidence to support health claims for probiotics. J Nutr 138(6):1250S–1254SCrossRefGoogle Scholar
  24. Farnworth ER (2008b) Handbook of fermented functional foods, 2nd edn. Taylor & Francis, LondonGoogle Scholar
  25. Florey HW (1945) Use of micro-organisms for therapeutic purposes. Br Med J 2(4427):635CrossRefGoogle Scholar
  26. Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44(1):106–139PubMedPubMedCentralGoogle Scholar
  27. Ghaffar T, Irshad M, Anwar Z et al (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229CrossRefGoogle Scholar
  28. Gorbach SL, Goldin BR (1989) Lactobacillus strains and methods of selection, Google PatentsGoogle Scholar
  29. Grigoroff S (1905) Etude sur le laitfermenté comestible: le Kissélo-mléko de Bulgarie. Revue Médicale de la Suisse Romande (in French). Libraires-éditeurs. Librairie de L’Université, GenéveGoogle Scholar
  30. Hall RH (1963) Production of nisin: US, US 3093551AGoogle Scholar
  31. Holzapfel WHN, Wood BJB (1995) The genera of lactic acid bacteria. Springer, New YorkGoogle Scholar
  32. Hui YH, Meunier-Goddik L, Josephsen J et al (2004) Handbook of food and beverage fermentation technology. Taylor & Francis, LondonCrossRefGoogle Scholar
  33. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49(3):209–224CrossRefGoogle Scholar
  34. Kitay E, Snell EE (1950) Some additional nutritional requirements of certain lactic acid bacteria. J Bacteriol 60(1):49–56PubMedPubMedCentralGoogle Scholar
  35. Kluyver A, Donker H (1924) The unity in the chemistry of the fermentative sugar dissimilation processes of microbes. Proc Akad v Wetenschappen Amsterdam 28:297–313Google Scholar
  36. Lash AF, Kaplan B (1926) A study of Doderlein’s vaginal Bacillus. J Infect Dis 38(4):333–340CrossRefGoogle Scholar
  37. Lister J (1873) On the lactic fermentation and its bearings on pathology. Trans Pathol Soc Lond 29:425–467Google Scholar
  38. McElhatton A, Marshall R (2007) Food safety: a practical and case study approach. Springer, New YorkCrossRefGoogle Scholar
  39. Metchnikoff E, Mitchell PC (1908) The prolongation of life: optimistic studies. G. P. Putnam’s Sons, New YorkGoogle Scholar
  40. Milth (1884) Milth. a. d. kaiserl. Gesundh. Amt 2:309Google Scholar
  41. Mitsuoka T (1978) Intestinal bacteria and health: an introductory narrative. Harcourt Brace Jovanovich, CaliforniaGoogle Scholar
  42. Mitsuoka T (1990) Bifidobacteria and their role in human health. J Ind Microbiol 6(4):263–267CrossRefGoogle Scholar
  43. Mitsuoka T, Sega T, Yamamoto S (1965) Eine verbesserte Methodik der qualitativen und quantitativen Analyse der Darmflora von Menschen und Tieren. Zentralbl Bakteriol Orig 195(4):455–469PubMedGoogle Scholar
  44. Moro E (1900) Ueber den Bacillus acidophilus. Jahrb Kinderh 52:38–55Google Scholar
  45. Nelson ME, Werkman CH (1935) Dissimilation of glucose by heterofermentative lactic acid bacteria. J Bacteriol 30(6):547–557PubMedPubMedCentralGoogle Scholar
  46. Newman D (1915) The treatment of cystitis by intravesical injections of lactic Bacillus cultures. Lancet 186(4798):330–332CrossRefGoogle Scholar
  47. Orla-Jensen S (1919) The lactic acid bacteria. A.F. Host &Son, CopenhagenGoogle Scholar
  48. Orla-Jensen S, Otte NC, Snog-kjaer A (1936) The vitamin and nitrogen requirements of the lactic acid bacteria. Zentralbl Bakteriolii 6(5):1–52Google Scholar
  49. Orla-Jensen S, Snog-kjaer A (1940) Factors which promote or inhibit the development of lactic acid bacteria. Reprinted [in full] from: K. danskevidensk. Selsk biol Skr 12:5–19Google Scholar
  50. Pasteur L (1857) Mémoiresur la fermentation appeléelactique. C R Chim 45:913–916Google Scholar
  51. Pasteur L (1995) Mémoiresur la fermentation appeléelactique Extraitparl’auteur. Mol Med 1(6):599–601CrossRefGoogle Scholar
  52. Reed G, Nagodawithana TW (1996) Biotechnology, Enzymes, Biomass, Food and Feed. Wiley, New JerseyGoogle Scholar
  53. Rettger LF, Cheplin HA (1921) A Treatise on the Transformation of the Intestinal Flora, with Special Reference to the Implantation of Bacillus acidophilus. Yale University Press, New HavenCrossRefGoogle Scholar
  54. Rogers LA, Whittier EO (1928) Limiting factors in the lactic fermentation. J Bacteriol 16(4):211–229PubMedPubMedCentralGoogle Scholar
  55. Scheele CW (1780) Om Mjölkochdesssyra, about milk and its acid. Kongliga Vetenskaps Academiens Nya Handlingar New Proceedings of the Royal Academy of Science, vol. 1, pp 116–124Google Scholar
  56. Sijpesteijn AK (1970) Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Van Leeuwenhoek 36(3):335–348CrossRefGoogle Scholar
  57. Snell EE (1945) The nutritional requirements of the lactic acid bacteria and their application to biochemical research. J Bacteriol 50(4):373–382PubMedPubMedCentralGoogle Scholar
  58. Steinkraus K (1995) Handbook of Indigenous fermented foods, 2nd edn, revised and expanded. Taylor & Francis, LondonGoogle Scholar
  59. Stephenson M (1928) On lactic dehydrogenase: a cell-free enzyme preparation obtained from bacteria. Biochem J 22(2):605–614CrossRefGoogle Scholar
  60. Tamang JP, Kailasapathy K (2010) Fermented foods and beverages of the world. CRC Press, FloridaCrossRefGoogle Scholar
  61. Thomas TD, Ellwood DC, Longyear VMC (1979) Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138(1):109–117PubMedPubMedCentralGoogle Scholar
  62. Thompson J (1987) Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol Lett 46(3):221–231CrossRefGoogle Scholar
  63. Tissier H (1906) Traitement des infections intestinalespar la mthode de la transformation de la florebactrienne de lintestin. CR SocBiol 60:359–361Google Scholar
  64. Tittsler RP, Pederson CS, Snell EE et al (1952) Symposium on the lactic acid bacteria. Bacteriol Rev 16(4):227PubMedPubMedCentralGoogle Scholar
  65. vanIterson G, de Jong LDD, Kluyver AJ (2013) Martinus Willem Beijerinck: his life and his work. Springer, New YorkGoogle Scholar
  66. Wood BJB, Holzapfel WH (1995) The genera of lactic acid bacteria. Blackie Academic and Professional, GlasgowCrossRefGoogle Scholar
  67. World-Gastroenterology-Organisation (2009) World gastroenterology organisation practice guideline: probiotics and prebiotics. Arab J Gastroenterol 10(1):33–42CrossRefGoogle Scholar
  68. Zhang Heping (1994) Ancient Chinese dairy products. Zhonggue Rupin Gongye 22(4):161–167Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Jiangnan UniversityWuxiChina

Personalised recommendations