Advertisement

Thioamide-Containing Peptides and Proteins

  • Taylor M. Barrett
  • Kristen E. Fiore
  • Chunxiao Liu
  • E. James PeterssonEmail author
Chapter

Abstract

Thioamidation of the peptide backbone can have both subtle and profound effects on peptide and protein properties. Oxoamide-to-thioamide substitutions can alter hydrogen bonding networks, metal interactions, peptide folding, and photophysical properties. Thioamides are found in a small number of natural products with intriguing antibiotic and anticancer activities. A thioamide residue is also found in a natural protein that is essential to biological methane metabolism. Recent genetic scanning has shed light on the biosynthesis of these molecules and indicated that many other thioamide-containing peptides and proteins exist. Thioamide modifications have been installed synthetically to investigate the biosynthesis and biological activity of these thioamide natural products, as well as to serve as biophysical probes or to enhance the stability and activity of medicinally relevant peptides. The synthesis of these molecules has required the development of methods for the incorporation of thioamides by solid-phase peptide synthesis and through native chemical ligation of protein fragments. The expanding number of known thioamide natural products, the ability to gain detailed insights into protein folding mechanisms, and recent demonstrations of valuable in vivo activity for thioamide-modified peptides highlight the impact of thioamides in peptide and protein chemistry.

Keywords

Thioviridamide Methyl-coenzyme M reductase Closthioamide Native chemical ligation Thioprotein 

References

  1. 1.
    A. Choudhary, R.T. Raines, ChemBioChem 12, 1801 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Nomenclature and symbolism for amino acids and peptides. Eur. J. Biochem. 138, 9 (1984)Google Scholar
  3. 3.
    T. Sifferlen, M. Rueping, K. Gademann, B. Jaun, D. Seebach, Helv. Chim. Acta 82, 2067 (1999)CrossRefGoogle Scholar
  4. 4.
    F.G. Bordwell, D.J. Algrim, J.A. Harrelson, J. Am. Chem. Soc. 110, 5903 (1988)CrossRefGoogle Scholar
  5. 5.
    K.B. Wiberg, D.J. Rush, J. Am. Chem. Soc. 123, 2038 (2001)PubMedCrossRefGoogle Scholar
  6. 6.
    M. Hollósi, Z. Majer, M. Zewdu, F. Ruff, M. Kajtár, K.E. Kövér, Tetrahedron 44, 195 (1988)CrossRefGoogle Scholar
  7. 7.
    E.P. Dudek, G.O. Dudek, J. Org. Chem. 32, 823 (1967)CrossRefGoogle Scholar
  8. 8.
    H.-J. Lee, Y.-S. Choi, K.-B. Lee, J. Park, C.-J. Yoon, J. Phys. Chem. A 106, 7010 (2002)CrossRefGoogle Scholar
  9. 9.
    T.S. Jagodzinski, Chem. Rev. 103, 197 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    T.F.M. La Cour, H.a.S. Hansen, K.I.M. Clausen, S.O. Lawesson, Int. J. Pept. Protein Sci. 22, 509 (1983)Google Scholar
  11. 11.
    S.K. Misra, U.C. Tewari, Transition Met. Chem. 27, 120 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Helbing et al., J. Am. Chem. Soc. 126, 8823 (2004)CrossRefGoogle Scholar
  13. 13.
    E.J. Petersson, J.M. Goldberg, R.F. Wissner, Phys. Chem. Chem. Phys. 16, 6827 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Pan, T.J. Mabry, J.M. Beale, B.M. Mamiyat, Phytochemistry 45, 517 (1997)PubMedCrossRefGoogle Scholar
  15. 15.
    N. Yutin, M.Y. Galperin, Environ. Microbiol. 15, 2631 (2013)PubMedPubMedCentralGoogle Scholar
  16. 16.
    T. Lincke, S. Behnken, K. Ishida, M. Roth, C. Hertweck, Angew. Chem. Int. Ed. 49, 2011 (2010)Google Scholar
  17. 17.
    S. Behnken, T. Lincke, F. Kloss, K. Ishida, C. Hertweck, Angew. Chem. Int. Ed. 51, 2425 (2012)PubMedCrossRefGoogle Scholar
  18. 18.
    K.L. Dunbar, H. Büttner, E.M. Molloy, M. Dell, J. Kumpfmüller, C. Hertweck, Angew. Chem. Int. Ed. 57, 14080 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    P.G. Arnison et al., Nat. Prod. Rep. 30, 108 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    J.D. Semrau et al., Environ. Microbiol. 15, 3077 (2013)PubMedGoogle Scholar
  21. 21.
    H.J. Kim et al., Science 305, 1612 (2004)PubMedCrossRefGoogle Scholar
  22. 22.
    Y. Hayakawa, K. Sasaki, H. Adachi, K. Furihata, K. Shin-Ya, K. Nagai, J. Antibiot. 59, 1 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Hayakawa, K. Sasaki, K. Nagai, K. Shin-Ya, K. Furihata, J. Antibiot. 59, 6 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    M. Izumikawa et al., J. Antibiot. 68, 533 (2015)PubMedCrossRefGoogle Scholar
  25. 25.
    L. Kjaerulff, A. Sikandar, N. Zaburannyi, S. Adam, J. Herrmann, J. Koehnke, R. Müller, ACS Chem. Biol. 12, 2837 (2017)PubMedCrossRefGoogle Scholar
  26. 26.
    L. Frattaruolo, R. Lacret, A.R. Cappello, A.W. Truman, ACS Chem. Biol. 12, 2815 (2017)PubMedCrossRefGoogle Scholar
  27. 27.
    T. Kawahara et al., J. Nat. Prod. 81, 264 (2018)PubMedCrossRefGoogle Scholar
  28. 28.
    U. Ermler, W. Grabarse, S. Shima, M. Goubeaud, R.K. Thauer, Science 278, 1457 (1997)Google Scholar
  29. 29.
    J. Kahnt, B. Buchenau, F. Mahlert, M. Krüger, S. Shima, R.K. Thauer, FEBS J. 274, 4913 (2007)PubMedCrossRefGoogle Scholar
  30. 30.
    W. Grabarse, F. Mahlert, S. Shima, R.K. Thauer, U. Ermler, J. Mol. Biol. 303, 329 (2000)PubMedCrossRefGoogle Scholar
  31. 31.
    D.D. Nayak, N. Mahanta, D.A. Mitchell, W.W. Metcalf, eLIFE (2017)Google Scholar
  32. 32.
    B.J. Burkhart, C.J. Schwalen, G. Mann, J.H. Naismith, D.A. Mitchell, Chem. Rev. 117, 5389 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    M. Izawa, T. Kawasaki, Y. Hayakawa, Appl. Environ. Microbiol. 79, 7110 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    B.T. Breil, J. Borneman, E.W. Triplett, J. Bacteriol. 178, 4150 (1996)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    K.L. Dunbar, J.R. Chekan, C.L. Cox, B.J. Burkhart, S.K. Nair, D.A. Mitchell, Nat. Chem. Biol. 10, 823 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    N. Mahanta, A. Liu, S. Dong, S.K. Nair, D.A. Mitchell, Proc. Natl. Acad. Sci. USA 115, 3030 (2018)Google Scholar
  37. 37.
    C.J. Schwalen, G.A. Hudson, B. Kille, D.A. Mitchell, J. Am. Chem. Soc. 140, 9494 (2018)PubMedCrossRefGoogle Scholar
  38. 38.
    G.E. Kenney, A.C. Rosenzweig, BMC Biol. 11 (2013)Google Scholar
  39. 39.
    G.E. Kenney et al., Science 359, 1411 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    V.V. Richter, in Chemistry of the Carbon Compounds (P. Blakiston, son & co., Philadelphia, 1886)Google Scholar
  41. 41.
    R.N. Hurd, G. Delamater, Chem. Rev. 61, 45 (1961)CrossRefGoogle Scholar
  42. 42.
    J.W. Scheeren, P.H.J. Ooms, R.J.F. Nivard, Synthesis 149 (1973)Google Scholar
  43. 43.
    S. Scheibye, B.S. Pedersen, S.O. Lawesson, B. Soc. Chim. Belg. 87, 229 (1978)Google Scholar
  44. 44.
    T. Guntreddi, R. Vanjari, K.N. Singh, Tetrahedron 70, 3887 (2014)CrossRefGoogle Scholar
  45. 45.
    B. Kaboudin, V. Yarahmadi, J. Kato, T. Yokomatsu, RSC Adv. 3, 6435 (2013)CrossRefGoogle Scholar
  46. 46.
    M. Muhlberg, K.D. Siebertz, B. Schlegel, P. Schmieder, C.P.R. Hackenberger, Chem. Commun. 50, 4603 (2014)PubMedCrossRefGoogle Scholar
  47. 47.
    A. Pourvali, J.R. Cochrane, C.A. Hutton, Chem. Commun. 50, 15963 (2014)CrossRefGoogle Scholar
  48. 48.
    Y.D. Sun, H.F. Jiang, W.Q. Wu, W. Zeng, J.X. Li, Org. Biomol. Chem. 12, 700 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    X. Wang, M. Ji, S. Lim, H.Y. Jang, J. Org. Chem. 79, 7256 (2014)CrossRefGoogle Scholar
  50. 50.
    A.K. Yadav, V.P. Srivastava, L.D.S. Yadav, Tetrahedron Lett. 53, 7113 (2012)CrossRefGoogle Scholar
  51. 51.
    U. Pathak, S. Bhattacharyya, S. Mathur, RSC Adv. 5, 4484 (2015)CrossRefGoogle Scholar
  52. 52.
    B.V. Varun, A. Sood, K.R. Prabhu, RSC Adv. 4, 60798 (2014)CrossRefGoogle Scholar
  53. 53.
    H.L. Xu, H. Deng, Z.K. Li, H.F. Xiang, X.G. Zhou, Eur. J. Biochem. 2013, 7054 (2013)Google Scholar
  54. 54.
    J. Bergman, B. Pettersson, V. Hasimbegovic, P.H. Svensson, J. Org. Chem. 76, 1546 (2011)PubMedCrossRefGoogle Scholar
  55. 55.
    S.V. Ley, A.G. Leach, R.I. Storer, J. Chem. Soc. Perkin 1, 358 (2001)Google Scholar
  56. 56.
    Z. Kaleta, B.T. Makowski, T. Soos, R. Dembinski, Org. Lett. 8, 1625 (2006)PubMedCrossRefGoogle Scholar
  57. 57.
    Z. Kaleta, G. Tarkanyi, A. Gomory, F. Kalman, T. Nagy, T. Soos, Org. Lett. 8, 1093 (2006)PubMedCrossRefGoogle Scholar
  58. 58.
    E.S. Gatewood, T.P. Johnson, J. Am. Chem. Soc. 48, 2900 (1926)CrossRefGoogle Scholar
  59. 59.
    W.C. Jones, J.J. Nestor, V. Du Vigneaud, J. Am. Chem. Soc. 95, 5677 (1973)PubMedCrossRefGoogle Scholar
  60. 60.
    O.E. Jensen, S.O. Lawesson, R. Bardi, A.M. Piazzesi, C. Toniolo, Tetrahedron 41, 5595 (1985)CrossRefGoogle Scholar
  61. 61.
    J. Lehmann, A. Linden, H. Heimgartner, Tetrahedron 54, 8721 (1998)CrossRefGoogle Scholar
  62. 62.
    J. Lehmann, A. Linden, H. Heimgartner, Tetrahedron 55, 5359 (1999)CrossRefGoogle Scholar
  63. 63.
    N. Shangguan, S. Katukojvala, R. Greenberg, L.J. Williams, J. Am. Chem. Soc. 125, 7754 (2003)PubMedCrossRefGoogle Scholar
  64. 64.
    M. Mühlberg, K.D. Siebertz, B. Schlegel, P. Schmieder, C.P.R. Hackenberger, Chem. Commun. 50, 4603 (2014)PubMedCrossRefGoogle Scholar
  65. 65.
    T. Hoegjensen, M.H. Jakobsen, C.E. Olsen, A. Holm, Tetrahedron Lett. 32, 7617 (1991)CrossRefGoogle Scholar
  66. 66.
    H.T. Le, J.F. Gallard, M. Mayer, E. Guittet, R. Michelot, Bioorg. Med. Chem. 4, 2201 (1996)PubMedCrossRefGoogle Scholar
  67. 67.
    B. Zacharie, R. Martel, G. Sauve, B. Belleau, Bioorg. Med. Chem. Lett. 3, 619 (1993)CrossRefGoogle Scholar
  68. 68.
    B. Zacharie, M. Lagraoui, M. Dimarco, C.L. Penney, L. Gagnon, J. Med. Chem. 42, 2046 (1999)PubMedCrossRefGoogle Scholar
  69. 69.
    C.T. Brain, A. Hallett, S.Y. Ko, J. Org. Chem. 62, 3808 (1997)CrossRefGoogle Scholar
  70. 70.
    S. Batjargal, Y. Huang, Y.J. Wang, E.J. Petersson, J. Pept. Sci. 20, 87 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    S. Batjargal, Y.J. Wang, J.M. Goldberg, R.F. Wissner, E.J. Petersson, J. Am. Chem. Soc. 134, 9172 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    J.M. Goldberg, S. Batjargal, B.S. Chen, E.J. Petersson, J. Am. Chem. Soc. 135, 18651 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    J.M. Goldberg, S. Batjargal, E.J. Petersson, J. Am. Chem. Soc. 132, 14718 (2010)PubMedCrossRefGoogle Scholar
  74. 74.
    J.M. Goldberg, X. Chen, N. Meinhardt, D.C. Greenbaum, E.J. Petersson, J. Am. Chem. Soc. 136, 2086 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    J.M. Goldberg, L.C. Speight, M.W. Fegley, E.J. Petersson, J. Am. Chem. Soc. 134, 6088 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    J.M. Goldberg, R.F. Wissner, A.M. Klein, E.J. Petersson, Chem. Commun. 48, 1550 (2012)CrossRefGoogle Scholar
  77. 77.
    R.F. Wissner, S. Batjargal, C.M. Fadzen, E.J. Petersson, J. Am. Chem. Soc. 135, 6529 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    R.F. Wissner, A.M. Wagner, J.B. Warner, E.J. Petersson, Synlett 24, 2454 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    S. Mukherjee, J. Chatterjee, J. Pept. Sci. 22, 664 (2016)PubMedCrossRefGoogle Scholar
  80. 80.
    S. Mukherjee, H. Verma, J. Chatterjee, Org. Lett. 17, 3150 (2015)PubMedCrossRefGoogle Scholar
  81. 81.
    H. Verma, B. Khatri, S. Chakraborti, J. Chatterjee, Chem. Sci. 9, 2443 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    J.H. Miwa, L. Pallivathucal, S. Gowda, K.E. Lee, Org. Lett. 4, 4655 (2002)PubMedCrossRefGoogle Scholar
  83. 83.
    J.H. Miwa, A.K. Patel, N. Vivatrat, S.M. Popek, A.M. Meyer, Org. Lett. 3, 3373 (2001)PubMedCrossRefGoogle Scholar
  84. 84.
    X. Chen et al., J. Am. Chem. Soc. 139, 16688 (2017)PubMedCrossRefGoogle Scholar
  85. 85.
    C.R. Walters, D.M. Szantai-Kis, Y. Zhang, Z.E. Reinert, W.S. Horne, D.M. Chenoweth, E.J. Petersson, Chem. Sci. 8, 2868 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    D.M. Szantai-Kis, C.R. Walters, T.M. Barrett, E.M. Hoang, E.J. Petersson, Synlett 28, 1789 (2017)CrossRefGoogle Scholar
  87. 87.
    C. Unverzagt, A. Geyer, H. Kessler, Angew. Chem. Int. Ed. 31, 1229 (1992)Google Scholar
  88. 88.
    K.L. Dunbar, D.A. Mitchell, J. Am. Chem. Soc. 135, 8692 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    S. Kent, Y. Sohma, S. Liu, D. Bang, B. Pentelute, K. Mandal, J. Pept. Sci. 18, 428 (2012)PubMedCrossRefGoogle Scholar
  90. 90.
    C.T.T. Wong, C.L. Tung, X. Li, Mol. Biosyst. 9, 826–833 (2013)PubMedCrossRefGoogle Scholar
  91. 91.
    D. Wildemann, C. Schiene-Fischer, T. Aumüller, A. Bachmann, T. Kiefhaber, C. Lücke, G. Fischer, J. Am. Chem. Soc. 129, 4910 (2007)PubMedCrossRefGoogle Scholar
  92. 92.
    J. Kang, D. Macmillan, Org. Biomol. Chem. 8, 1993 (2010)PubMedCrossRefGoogle Scholar
  93. 93.
    T. Kawakami, S. Shimizu, S. Aimoto, J. Pept. Sci. 16, 50 (2010)Google Scholar
  94. 94.
    J.B. Blanco-Canosa, P.E. Dawson, Angew. Chem. Int. Ed. 47, 6851 (2008)PubMedCrossRefGoogle Scholar
  95. 95.
    P. Grieco, P.M. Gitu, V.J. Hruby, J. Pept. Res. 57, 250 (2001)Google Scholar
  96. 96.
    S.K. Mahto, C.J. Howard, J.C. Shimko, J.J. Ottesen, ChemBioChem 12, 2488 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    P. Botti, M. Villain, S. Manganiello, H. Gaertner, Org. Lett. 6, 4861 (2004)PubMedCrossRefGoogle Scholar
  98. 98.
    E.A. George, R.P. Novick, T.W. Muir, J. Am. Chem. Soc. 130, 4914 (2008)PubMedCrossRefGoogle Scholar
  99. 99.
    Y.J. Wang, in Chemical Modification Methods for Protein Misfolding Studies (University of Pennsylvania, Pennsylvania, 2015)Google Scholar
  100. 100.
    J.-S. Zheng, S. Tang, Y.-K. Qi, Z.-P. Wang, L. Liu, Nat. Protoc. 8, 2483 (2013)PubMedCrossRefGoogle Scholar
  101. 101.
    D. Bang, B.L. Pentelute, S.B. Kent, Angew. Chem. Int. Ed. 45, 3985 (2006)PubMedCrossRefGoogle Scholar
  102. 102.
    V. Muralidharan, T.W. Muir, Nat. Methods 3, 429 (2006)PubMedCrossRefGoogle Scholar
  103. 103.
    C.R. Walters, J.J. Ferrie, E.J. Petersson, Chem. Commun. 54, 1766 (2018)CrossRefGoogle Scholar
  104. 104.
    L.R. Malins, R.J. Payne, Curr. Opin. Chem. Biol. 22, 70 (2014)Google Scholar
  105. 105.
    Y.J. Wang, D.M. Szantai-Kis, E.J. Petersson, Org. Biomol. Chem. 14, 6262 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    J. Chen, Q. Wan, Y. Yuan, J. Zhu, S.J. Danishefsky, Angew. Chem. Int. Ed. 47, 8521 (2008)PubMedCrossRefGoogle Scholar
  107. 107.
    M.A. Raftery, R.D. Cole, J. Biol. Chem. 241, 3457 (1966)PubMedGoogle Scholar
  108. 108.
    S. Marincean, M. Rabago Smith, L. Beltz, B. Borhan, J. Mol. Model 18, 4547 (2012)Google Scholar
  109. 109.
    A. Aitken, M. Learmonth, Carboxymethylation of cysteine using iodoacetamide/iodoacetic acid, in The Protein Protocols Handbook, ed. by J.M. Walker (Humana Press, Totowa, NJ, 2002), p. 455.  https://doi.org/10.1385/1-59259-169-8:455
  110. 110.
    Q.-Q. He, G.-M. Fang, L. Liu, Chin. Chem. Lett. 24, 265 (2013)CrossRefGoogle Scholar
  111. 111.
    T. Tanaka, A.M. Wagner, J.B. Warner, Y.J. Wang, E.J. Petersson, Angew. Chem. Int. Ed. 52, 6210 (2013)Google Scholar
  112. 112.
    R.E. Connor, K. Piatkov, A. Varshavsky, D.A. Tirrell, ChemBioChem 9, 366 (2008)PubMedCrossRefGoogle Scholar
  113. 113.
    E. Graciet, R.G. Hu, K. Piatkov, J.H. Rhee, E.M. Schwarz, A. Varshavsky, Proc. Natl. Acad. Sci. USA 103, 3078 (2006)Google Scholar
  114. 114.
    A. Varshavsky, Nat. Struct. Mol. Biol. 15, 1238 (2008)Google Scholar
  115. 115.
    S. Dery, P.S. Reddy, L. Dery, R. Mousa, R.N. Dardashti, N. Metanis, Chem. Sci. 6, 6207 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    J. Liu, F. Zheng, R. Cheng, S. Li, S. Rozovsky, Q. Wang, L. Wang, J. Am. Chem. Soc. 140, 8807 (2018)PubMedCrossRefGoogle Scholar
  117. 117.
    H. Xiong, N.M. Reynolds, C.G. Fan, M. Englert, D. Hoyer, S.J. Miller, D. Soll, Angew. Chem. Int. Ed. 55, 4083 (2016)PubMedCrossRefGoogle Scholar
  118. 118.
    F. Kloss, S. Pidot, H. Goerls, T. Friedrich, C. Hertweck, Angew. Chem. Int. Ed. 52, 10745 (2013)PubMedCrossRefGoogle Scholar
  119. 119.
    F. Kloss, A.I. Chiriac, C. Hertweck, Chem. Eur. J. 20, 15451 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    A.I. Chiriac, F. Kloss, J. Krämer, C. Vuong, C. Hertweck, H.-G. Sahl, J. Antimicrob. Chemother. 70, 2576 (2015)PubMedCrossRefGoogle Scholar
  121. 121.
    K. Manzor, K.Ó. Proinsias, F. Kelleher, Tetrahedron Lett. 58, 2959 (2017)CrossRefGoogle Scholar
  122. 122.
    M. De Zotti et al., Beilstein J. Org. Chem. 8, 1161 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    K.R. Wang, B.Z. Zhang, W. Zhang, J.X. Yan, J. Li, R. Wang, Peptides 29, 963 (2008)PubMedCrossRefGoogle Scholar
  124. 124.
    W. Zhang, J. Li, L.W. Liu, K.R. Wang, J.J. Song, J.X. Yan, Peptides 31, 1832 (2010)PubMedCrossRefGoogle Scholar
  125. 125.
    A. Chevalier, C. Massif, P.Y. Renard, A. Romieu, Chem. Eur. J. 19, 1686 (2013)PubMedCrossRefGoogle Scholar
  126. 126.
    M.-M. Carlos, R. Florian, A. Horst, Anti-Cancer Agents Med. Chem. 10, 753 (2010)CrossRefGoogle Scholar
  127. 127.
    J.-P. Xiong, T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S.L. Goodman, M.A. Arnaout, Science 296, 151 (2002)PubMedCrossRefGoogle Scholar
  128. 128.
    J.E. Bock, J. Gavenonis, J.A. Kritzer, ACS Chem. Biol. 8, 488 (2013)PubMedCrossRefGoogle Scholar
  129. 129.
    J.S. Laursen, J. Engel-Andreasen, P. Fristrup, P. Harris, C.A. Olsen, J. Am. Chem. Soc. 135, 2835 (2013)PubMedCrossRefGoogle Scholar
  130. 130.
    R.W. Newberry, B. Vanveller, I.A. Guzei, R.T. Raines, J. Am. Chem. Soc. 135, 7843 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    R.W. Newberry, B. Vanveller, R.T. Raines, Chem. Commun. 51, 9624 (2015)CrossRefGoogle Scholar
  132. 132.
    B.C. Gorske, R.C. Nelson, Z.S. Bowden, T.A. Kufe, A.M. Childs, J. Org. Chem. 78, 11172 (2013)PubMedCrossRefGoogle Scholar
  133. 133.
    A. Okano, R.C. James, J.G. Pierce, J. Xie, D.L. Boger, J. Am. Chem. Soc. 134, 8790 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    B.M. Crowley, D.L. Boger, J. Am. Chem. Soc. 128, 2885 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    A. Okano, A. Nakayama, A.W. Schammel, D.L. Boger, J. Am. Chem. Soc. 136, 13522 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    J. Xie, A. Okano, J.G. Pierce, R.C. James, S. Stamm, C.M. Crane, D.L. Boger, J. Am. Chem. Soc. 134, 1284 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    A. Okano, N.A. Isley, D.L. Boger, Proc. Natl. Acad. Sci. USA 114, E5052 (2017)Google Scholar
  138. 138.
    K.C. Nicolaou et al., J. Am. Chem. Soc. 127, 11159 (2005)CrossRefGoogle Scholar
  139. 139.
    C.R. Walters, J.J. Ferrie, E.J. Petersson, Thioamide labeling of proteins through a combination of semisynthetic methods, in Chemical Ligation: Tools for Biomolecule Synthesis and Modification, ed. by L.D. D’Andrea, A. Romanelli, 2nd edn. (Wiley, Hoboken, 2017), p. 355CrossRefGoogle Scholar
  140. 140.
    M. Hollósi, E. Kollát, J. Kajtár, M. Kajtár, G.D. Fasman, Biopolymers 30, 1061 (1990)CrossRefGoogle Scholar
  141. 141.
    R. Frank, M. Jakob, F. Thunecke, G. Fischer, M. Schutkowski, Angew. Chem. Int. Ed. 39, 1120 (2000)PubMedCrossRefGoogle Scholar
  142. 142.
    J. Zhao, J.-C. Micheau, C. Vargas, C. Schiene-Fischer, Chem. Eur. J. 10, 6093 (2004)PubMedCrossRefGoogle Scholar
  143. 143.
    Y. Huang, Z. Cong, L. Yang, S. Dong, J. Pept. Sci. 14, 1062 (2008)PubMedCrossRefGoogle Scholar
  144. 144.
    W.M. Wiczk, I. Gryczynski, H. Szmacinski, M.L. Johnson, M. Kruszynski, J. Zboinska, J. Biophys. Chem. 32, 43 (1988)CrossRefGoogle Scholar
  145. 145.
    Y. Huang, J.J. Ferrie, X. Chen, Y. Zhang, D.M. Szantai-Kis, D.M. Chenoweth, E.J. Petersson, Chem. Commun. 52, 7798 (2016)CrossRefGoogle Scholar
  146. 146.
    S.H.L. Verhelst, FEBS J. 284, 1489 (2017)PubMedCrossRefGoogle Scholar
  147. 147.
    M. Drag, G.S. Salvesen, Nat. Rev. Drug Discov. 9, 690 (2010)Google Scholar
  148. 148.
    P.A. Bartlett, K.L. Spear, N.E. Jacobsen, Biochemistry 21, 1608 (1982)PubMedCrossRefGoogle Scholar
  149. 149.
    P. Campbell, N.T. Nashed, J. Am. Chem. Soc. 104, 5221 (1982)CrossRefGoogle Scholar
  150. 150.
    M.D. Bond, B. Holmquist, B.L. Vallee, J. Inorg. Biochem. 28, 97 (1986)PubMedCrossRefGoogle Scholar
  151. 151.
    W.L. Mock, J.-T. Chen, J.W. Tsang, Biochem. Biophys. Res. Commun. 102, 389 (1981)Google Scholar
  152. 152.
    K. Cho, Anal. Biochem. 164, 248 (1987)Google Scholar
  153. 153.
    M. Roberts, D. Guthrie, C. Williams, S. Martin, in The Effects of Several Aminopeptidases Towards Thionopeptides (Portland Press Limited, 1994)Google Scholar
  154. 154.
    K.L. Foje, R.P. Hanzlik, Biochim. Biophys. Acta Gen. Subj. 1201, 447 (1994)Google Scholar
  155. 155.
    M. Schutkowski, K. Neubert, G. Fischer, Eur. J. Biochem. 221, 455 (1994)PubMedCrossRefGoogle Scholar
  156. 156.
    A. Kathleen et al., Protein Sci. 13, 412 (2004)CrossRefGoogle Scholar
  157. 157.
    G. Lowe, Y. Yuthavong, Biochem. J. 124, 107 (1971)PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    S.A. Thompson, P.R. Andrews, R.P. Hanzlik, J. Med. Chem. 29, 104 (1986)PubMedCrossRefGoogle Scholar
  159. 159.
    J.C. Kelly, D. Cuerrier, L.A. Graham, R.L. Campbell, P.L. Davies, Biochim. Biophys. Acta Proteins Proteomics 1794, 1505 (2009)Google Scholar
  160. 160.
    R.E. Beattie, C.H. Williams, D.T. Elmore, in L-Leucine Thioamide as an Inhibitor of Leucine Aminopeptidase (Portland Press Limited, 1988)Google Scholar
  161. 161.
    J. Mcelroy, D.J. Guthrie, N.M. Hooper, C.H. Williams, in 40 gly-(csnh)-phe Resists Hydrolysis by Membrane Dipeptidase (Portland Press Limited, 1998)Google Scholar
  162. 162.
    A. Stöckel-Maschek, C. Mrestani-Klaus, B. Stiebitz, H.-U. Demuth, K. Neubert, Biochim. Biophys. Acta Protein Struct. 1479, 15 (2000)Google Scholar
  163. 163.
    S. Yao, R. Zutshi, J. Chmielewski, Bioorg. Med. Chem. Lett. 8, 699 (1998)PubMedCrossRefGoogle Scholar
  164. 164.
    M. Schutkowski, M. Jakob, G. Landgraf, I. Born, K. Neubert, G. Fischer, Eur. J. Biochem. 245, 381 (1997)PubMedCrossRefGoogle Scholar
  165. 165.
    A.A. Kaspar, J.M. Reichert, Drug. Discov. Today 18, 807 (2013)PubMedCrossRefGoogle Scholar
  166. 166.
    K. Fosgerau, T. Hoffmann, Drug. Discov. Today 20, 122 (2015)PubMedCrossRefGoogle Scholar
  167. 167.
    L. Gentilucci, R. De Marco, L. Cerisoli, Curr. Pharm. Design 16, 3185 (2010)CrossRefGoogle Scholar
  168. 168.
    J.H. Weiss, D.W. Choi, Science 241, 973 (1988)PubMedCrossRefGoogle Scholar
  169. 169.
    G. Pasut, F.M. Veronese, J. Control. Release 161, 461 (2012)PubMedCrossRefGoogle Scholar
  170. 170.
    J.K. Dozier, M.D. Distefano, Int. J. Mol. Sci. 16, 25831 (2015)Google Scholar
  171. 171.
    B.D. Larsen, in Pharmacologically Active Peptide Conjugates Having a Reduced Tendency Towards Enzymatic Hydrolysis (Google Patents, 2008)Google Scholar
  172. 172.
    M.E. Houston, A.P. Campbell, B. Lix, C.M. Kay, B.D. Sykes, R.S. Hodges, Biochemistry 35, 10041 (1996)PubMedCrossRefGoogle Scholar
  173. 173.
    P. Timmerman et al., Open Vaccine J. 2, 56 (2009)CrossRefGoogle Scholar
  174. 174.
    S. Sim, Y. Kim, T. Kim, S. Lim, M. Lee, J. Am. Chem. Soc. 134, 20270 (2012)PubMedCrossRefGoogle Scholar
  175. 175.
    A.O. Subtelny, M.C. Hartman, J.W. Szostak, J. Am. Chem. Soc. 130, 6131 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    J.-K. Bang, Y.-H. Nan, E.-K. Lee, S.-Y. Shin, Bull. Korean Chem. Soc. 31, 2509 (2010)Google Scholar
  177. 177.
    P. Claudon et al., Angew. Chem. Int. Ed. 49, 333 (2010)CrossRefGoogle Scholar
  178. 178.
    R.C. Elgersma, T. Meijneke, R. De Jong, A.J. Brouwer, G. Posthuma, D.T. Rijkers, R.M. Liskamp, Org. Biomol. Chem. 4, 3587 (2006)PubMedCrossRefGoogle Scholar
  179. 179.
    R. Maini, L.M. Dedkova, R. Paul, M.M. Madathil, S.R. Chowdhury, S. Chen, S.M. Hecht, J. Am. Chem. Soc. 137, 11206 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    L.S. Victorova, V.V. Kotusov, A.V. Azhaev, A.A. Krayevsky, M.K. Kukhanova, B.P. Gottikh, FEBS Lett. 68, 215 (1976)Google Scholar
  181. 181.
    K.L. Dunbar, D.H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 117, 5521 (2017)PubMedCrossRefGoogle Scholar
  182. 182.
    A. Bondi, J. Phys. Chem. 68, 441 (1964)CrossRefGoogle Scholar
  183. 183.
    L. Pauling, in The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, 1960)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Taylor M. Barrett
    • 1
  • Kristen E. Fiore
    • 1
  • Chunxiao Liu
    • 1
    • 2
  • E. James Petersson
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Applied ChemistryChina Agricultural UniversityBeijingChina

Personalised recommendations