Advertisement

Reaction of Thioamides

  • Toshiaki MuraiEmail author
Chapter

Abstract

Thioamides react with a wide range of electrophiles, nucleophiles, radical species, and so on. Reactive sites in thioamides are also broad. The sulfur atom in the C=S group accepts electrophiles and nucleophiles, which is in a marked contrast to the reaction patterns of amides. Not only one molecule but also two molecules of organometallic reagents are introduced to the carbon atom of the C=S group. The reduction of the C=S group to methylene groups and oxidation of the C=S group to the C=O group are also important fundamental processes. The α-protons to the C=S group are more acidic than those in amides, and the generated enols and enolates react at the α-carbon atoms or sulfur atoms depending on the electrophiles used. The nitrogen atom in primary and secondary thioamides also works as nucleophiles. The C=S group is used as directing groups for transition metal-catalyzed functionalizations.

Keywords

Oxidation Reduction Carbon nucleophiles Heteroatom nucleophiles Transition metal-catalyzed reactions 

References

  1. 1.
    M. Nasr-Esfahani, M. Montazerozohori, M. Moghadam, I. Mohammadpoor-Baltork, S. Moradi, J. Sulfur Chem. 30, 17 (2009)CrossRefGoogle Scholar
  2. 2.
    K. Bahrami, M.M. Khodaei, Y. Tirandaz, Synthesis, 369 (2009)Google Scholar
  3. 3.
    K. Bahrami, M.M. Khodaei, V. Shakibaian, D. Khaledian, B.H. Yousefi, J. Sulfur Chem. 33, 155 (2012)CrossRefGoogle Scholar
  4. 4.
    K. Inamoto, M. Shiraishi, K. Hiroya, T. Doi, Synthesis, 3087 (2010)Google Scholar
  5. 5.
    A.K. Yadav, V.P. Srivastava, L.D.S. Yadav, New J. Chem. 37, 4119 (2013)CrossRefGoogle Scholar
  6. 6.
    N. Xu, X. Jin, K. Suzuki, K. Yamaguchi, N. Mizuno, New J. Chem. 40, 4865 (2016)CrossRefGoogle Scholar
  7. 7.
    K. Yamaguchi, K. Yajima, N. Mizuno, Chem. Commun. 48, 11247 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Mineno, Y. Takebe, C. Tanaka, S. Mashimo, Int. J. Org. Chem. 4, 49052 (2014)Google Scholar
  9. 9.
    F.M. Moghaddam, Z. Mirjafary, H. Saeidian, M.J. Javan, Synlett, 892 (2008) Google Scholar
  10. 10.
    M. Witalewska, A. Wrona-Piotrowicz, A. Makal, J. Zakrzewski, J. Org. Chem. 2018, 83 (1933)Google Scholar
  11. 11.
    B. Xu, X. Zhong, X.-C. Wang, Z.J. Quan, Synlett 27, 2237 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Eshghi, G.H. Zohuri, S. Damavandi, Synth. Commun. 42, 516 (2012)CrossRefGoogle Scholar
  13. 13.
    S.S. Mykhaylychenko, N.V. Pikun, Y.G. Shermolovich, J. Fluorine Chem. 140, 76 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Chen, W. Zhang, L. Ren, J. Li, A. Li, Angew. Chem. Int. Ed. 57, 952 (2018)Google Scholar
  15. 15.
    S. Fujita, K. Nishikawa, T. Iwata, T. Tomiyama, H. Ikenaga, K. Matsumoto, M. Shindo, Eur. J. 24, 1539 (2018)Google Scholar
  16. 16.
    W. Zhang, M. Ding, J. Li, Z. Guo, M. Lu, Y. Chen, L. Liu, Y.-H. Shen, A.J. Li, Am. Chem. Soc. 140, 4227 (2018)CrossRefGoogle Scholar
  17. 17.
    N. Wang, J. Liu, C. Wang, L. Bai, X. Jiang, Org. Lett. 20, 292 (2018)Google Scholar
  18. 18.
    E.L. Campbell, C.K. Skepper, K. Sankar, K.K. Duncan, D.L. Boger, Org. Lett. 15, 5306 (2013)CrossRefGoogle Scholar
  19. 19.
    Y.-J. Yu, F.-L. Zhang, J. Heng, J.-H. Hei, W.-T. Deng, Y.-F. Wang, Org. Lett. 20, 24 (2018)Google Scholar
  20. 20.
    K. Fukumoto, A. Sakai, K. Hayasaka, H. Nakazawa, Organometallics 32, 2889 (2013)CrossRefGoogle Scholar
  21. 21.
    K. Fukumoto, A. Sakai, T. Murai, H. Nakazawa, Heteroatom Chem. 25, 607 (2014)CrossRefGoogle Scholar
  22. 22.
    T. Murai, K. Ui, J. Narengerile, Org. Chem. 74, 5703 (2009)CrossRefGoogle Scholar
  23. 23.
    T. Murai, F.J. Asai, Am. Chem. Soc. 129, 780 (2007)Google Scholar
  24. 24.
    T. Murai, F.J. Asai, Org. Chem. 73, 9518 (2008)CrossRefGoogle Scholar
  25. 25.
    T. Murai, N.J. Mutoh, Org. Chem. 81, 8131 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Mercedes, N. Llor, J. Hidalgo, C. Escolano, J. Bosch, J. Org. Chem. 68, 1919 (2003)CrossRefGoogle Scholar
  27. 27.
    P. Mateo, J.E. Cinqualbre, M.M. Mojzes, K. Schenk, P. Renaud, J. Org. Chem. 82, 12318 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Murai, R. Toshio, Y. Mutoh, Tetrahedron 62, 6312 (2006)CrossRefGoogle Scholar
  29. 29.
    E. Augustowska, A. Boiron, J. Deffit, Y. Six, Chem. Comun. 48, 5031 (2012)Google Scholar
  30. 30.
    F. Hermant, E. Urbańska, S.S. de Mazancourt, T. Maubert, E. Nicolas, Y. Six, Organometallics 33, 5643 (2014)CrossRefGoogle Scholar
  31. 31.
    F. Hermant, E. Nicolas, Y. Six, Tetrahedron 70, 3924 (2014)CrossRefGoogle Scholar
  32. 32.
    N.D. Koduri, B. Hileman, J.D. Cox, H. Scott, P. Hoang, A. Robbins, K. Bowers, L. Tsebaot, K. Miao, M. Castaneda, M. Coffin, G. Wei, T.D.W. Claridge, K.P. Roberts, S. Hussaini, RSC Adv. 3, 181 (2013)CrossRefGoogle Scholar
  33. 33.
    N.D. Koduri, H. Scott, B. Hileman, J.D. Cox, M. Coffin, L. Glicksberg, S.R. Hussaini, Org. Lett. 14, 440 (2012)Google Scholar
  34. 34.
    N.D. Koduri, Z.G. Wang, K. Cooley, T.M. Lemma, K. Miao, M. Nguyen, B. Frohock, M. Castaneda, H. Scott, D. Albinescu, S.R.J. Hussaini, Org. Chem. 79, 7405 (2014)CrossRefGoogle Scholar
  35. 35.
    L. Mohammadi, M.A. Zolfigol, M. Ebrahiminia, K.P. Roberts, S. Ansari, T. Azadbakht, S.R. Hussaini, Cat. Commun. 102, 44 (2017)Google Scholar
  36. 36.
    A. Pal, N.D. Koduri, Z. Wang, E.L. Quiroz, A. Chong, M. Vuong, N. Rajagopal, M. Nguyen, K.P. Roberts, S.R. Hussaini, Tetrahedron Lett. 58, 586 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Okano, R.C. James, J.G. Pierce, J. Xie, D.L. Boger, J. Am. Chem. Soc. 134, 8790 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Aswad, J. Chiba, T. Tomohiro, Y. Hatanaka, Chem. Commun. 49, 10242 (2013)CrossRefGoogle Scholar
  39. 39.
    L. Dianova, V. Berseneva, T. Beryozkina, I. Efimov, M. Kosterina, O. Eltsov, W. Dehaen, V. Bakulev, Eur. J. Org. Chem. 6917 (2015)Google Scholar
  40. 40.
    M. Aswad, J. Chiba, T. Tomohiro, Y. Hatanaka, Tetrahedron Lett. 57, 1313 (2016)CrossRefGoogle Scholar
  41. 41.
    J.-S. Li, Y. Xue, P.-Y. Li, Z.-W. Li, C.-H. Lu, W.-D. Liu, H.-L. Pang, D.-H. Liu, M.-S. Lin, B.-B. Luo, W. Jiang, Res. Chem. Intermed. 41, 2235 (2015)CrossRefGoogle Scholar
  42. 42.
    K. Hajibabaei, H. Zali-Boeini, Synlett 25, 2044 (2014)CrossRefGoogle Scholar
  43. 43.
    A. Pourvali, J.R. Cochrane, C.A. Hutton, Chem. Commun. 50, 15936 (2014)CrossRefGoogle Scholar
  44. 44.
    C.A. Hutton, J. Shang, U. Wille, Chem. Eur. J. 22, 3163 (2016)CrossRefGoogle Scholar
  45. 45.
    S.S. Mykhaylychenko, N.V. Pikun, Y.G. Shermolovich, Tetrahedron Lett. 52, 4788 (2011)Google Scholar
  46. 46.
    N.V. Pikun, S.S. Mykhaylychenko, E.B. Rusanov, Y.G. Shermolovich, Russ. J. Org. Chem. 49, 1572 (2013)CrossRefGoogle Scholar
  47. 47.
    A.B. Rozhenko, S.S. Mykhaylychenko, N.V. Pikun, Y. Shermolovich, J. Leszczynski, Int. J. Quantum Chem. 114, 241 (2014)CrossRefGoogle Scholar
  48. 48.
    B. Jiang, L. Han, Y.-L. Li, X.-L. Zhao, Y. Lei, D.-Q. Xie, J.Z.H. Zhang, J. Org. Chem. 77, 1701 (2012)CrossRefGoogle Scholar
  49. 49.
    Z. Liu, S.J. Mehta, K.-S. Lee, B. Grossman, H. Qu, X. Gu, G.S. Nichol, V.J. Hruby, J. Org. Chem. 77, 1289 (2012)CrossRefGoogle Scholar
  50. 50.
    T.S. Jagodziński, J.G. Sośnicki, Ł. Struck, Phosphorus Sulfur Silicon 191, 290 (2016)CrossRefGoogle Scholar
  51. 51.
    M. Li, K.-N. Sun, L.-R. Wen, RSC Adv. 6, 21535 (2016)CrossRefGoogle Scholar
  52. 52.
    T. Murai, Pure Appl. Chem. 82, 541 (2010)CrossRefGoogle Scholar
  53. 53.
    F. Shibahara, S. Kobayashi, T. Maruyama, T. Murai, Chem. Eur. J. 19, 304 (2013)CrossRefGoogle Scholar
  54. 54.
    K. Yamaguchi, T. Murai, S. Hasegawa, Y. Miwa, S. Kutsumizu, T. Maruyama, T. Sasamori, N. Tokitoh, J. Org. Chem. 80, 10742 (2015)CrossRefGoogle Scholar
  55. 55.
    D.M. Hodgson, C.I. Pearson, A.L.J. Thompson, Org. Chem. 78, 1098 (2013)Google Scholar
  56. 56.
    K.E. Jackson, C.L. Mortimer, B.X. Mortimer, J.M. McKenna, T.D.W. Claridge, R.S. Paton, D.M.J. Hodgson, Org. Chem. 80, 9838 (2015)CrossRefGoogle Scholar
  57. 57.
    P.J. Rayner, J.C. Smith, C. Denneval, P. O’Brien, P.A. Clarkea, A.J. Horanb, Chem. Commun. 52, 1354 (2016)CrossRefGoogle Scholar
  58. 58.
    H.Z. Boeini, A. Zali, Synth. Commun. 41, 2421 (2011)CrossRefGoogle Scholar
  59. 59.
    N.M. Tverdokhleb, G.E.I. Khoroshilov, Chem. Heterocycl. Compd. 51, 56 (2015)CrossRefGoogle Scholar
  60. 60.
    P. Villo, G. Kervefors, B. Olofsson, Chem. Commun. 54, 8818 (2018)CrossRefGoogle Scholar
  61. 61.
    H. Yu, X. Liu, L. Dian, Q. Yang, B. Rong, A. Gao, B. Zhao, H. Yang, Tetrahedron Lett. 54, 3060 (2013)CrossRefGoogle Scholar
  62. 62.
    B. Rong, L. Ding, H. Yu, Q. Yang, X. Liu, D. Xu, G. Li, B. Zhao, Tetrahedron Lett. 54, 6501 (2013)Google Scholar
  63. 63.
    B. Rong, Q. Yang, Y. Liu, H. Xu, Y. Hu, X. Cheng, B. Zhao, Tetrahedron Lett. 56, 595 (2015)CrossRefGoogle Scholar
  64. 64.
    G. Song, Z. Zheng, Y. Wang, X. Yu, Org. Lett. 18, 6002 (2016)CrossRefGoogle Scholar
  65. 65.
    Y. Yokoyama, Y. Unoh, R.A. Bohmann, T. Satoh, K. Hirano, C. Bolm, M. Miura, Chem. Lett. 44, 1104 (2015)CrossRefGoogle Scholar
  66. 66.
    T. Yamauchi, F. Shibahara, T. Murai, Org. Lett. 17, 5392 (2015)CrossRefGoogle Scholar
  67. 67.
    F. Shibahara, Y. Asai, T. Murai, Asian. J. Org. Chem. 7, 1323 (2018)Google Scholar
  68. 68.
    K.-X. Tang, T.C.-M. Wang, T.-H. Gao, C. Pan, L.-P. Sun, Org. Chem. Front 4, 2167 (2017)Google Scholar
  69. 69.
    J.E. Spangler, Y. Kobayashi, P. Verma, D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 137, 11876 (2015)CrossRefGoogle Scholar
  70. 70.
    P. Jian, P. Verma, G. Xia, J.-Q. Yu, Nature Chem. 9, 140 (2017)CrossRefGoogle Scholar
  71. 71.
    P.W. Tan, A.M. Mak, M.B. Sullivan, D.J. Dixon, J. Seayad, Angew. Chem. Int. Ed. 56, 16550 (2017)CrossRefGoogle Scholar
  72. 72.
    Y. Wu, Y. Xing, J. Wang, Q. Sun, W. Kong, F. Suzenet, RSC Adv. 5, 48558 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Biomolecular Science, Faculty of EngineeringGifu UniversityYanagido, GifuJapan

Personalised recommendations