Advertisement

ArUcoRSV: Robot Localisation Using Artificial Marker

  • Izwan Azmi
  • Mohamad Syazwan Shafei
  • Mohammad Faidzul Nasrudin
  • Nor Samsiah Sani
  • Abdul Hadi Abd RahmanEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1015)

Abstract

Robot Soccer (RS) vision system is designed for robot soccer competition. Most RS system implemented colour patches as main marker detector for robot localisation and ball detection. It requires complicated procedures for colour and camera calibration and highly affected by light to run smoothly while it suffers parallax issue. This paper aims to improvise the procedures and performance by minimising the calibration process for robot localisation and produces accurate marker detection for robot identification. ArUcoRSV utilises marker detection using ArUco patches to solve light limitation and able to perform camera calibration processes quick and reliable. It applies an automated perspective using marker detection, refining rejected marker and pose estimation. Experimental results for robot calibration and localisation using ArUcoRSV achieved significant improvements in detection rate with high positional accuracy. This system is expandable and robust to deal with various types of robots including low cost robots.

Notes

Acknowledgment

The authors would like to Universiti Kebangsaan Malaysia, grant ID: KRA-2018-007 for the funding and support for this project.

References

  1. 1.
    Lee, J., Chun, H., Dilmurod, Y., Ko, K.: Robot Intelligence Technology and Applications 2012. Advances in Intelligent Systems and Computing, vol. 208. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37374-9CrossRefGoogle Scholar
  2. 2.
    Nadarajah, S., Sundaraj, K.: Vision in robot soccer: a review. Artif. Intell. Rev. 44(3), 289–310 (2015)CrossRefGoogle Scholar
  3. 3.
    Pratomo, A.H., Zakaria, M.S., Prabuwono, A.S., Liong, C.-Y.: Camera calibration: transformation real-world coordinates into camera coordinates using neural network. In: Omar, K., et al. (eds.) FIRA 2013. CCIS, vol. 376, pp. 345–360. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40409-2_30CrossRefGoogle Scholar
  4. 4.
    Pratomo, A.H., Zakaria, M.S., Nasrudin, M.F., Prabuwono, A.S., Liong, C.-Y., Azmi, I.: Robust camera calibration for the MiroSot and the AndroSot vision systems using artificial neural networks. In: Kim, J.-H., Yang, W., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 3. AISC, vol. 345, pp. 571–585. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16841-8_51CrossRefGoogle Scholar
  5. 5.
    Maher, M.M.: Robot Detection Using Gradient and Color Signatures (2016)Google Scholar
  6. 6.
    Chondro, P., Ruan, S.J.: An adaptive background estimation for real-time object localization on a color-coded environment. In: 2016 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2016, pp. 464–469 (2017)Google Scholar
  7. 7.
    Lee, S., Tewolde, G.S., Lim, J., Kwon, J.: Vision based localization for multiple mobile robots using low-cost vision sensor. In: IEEE International Conference on Intelligent Robots and Systems Electro/Information Technology, pp. 280–285 (2015)Google Scholar
  8. 8.
    DeGol, J., Bretl, T., Hoiem, D.: ChromaTag: a colored marker and fast detection algorithm, pp. 1472–1481 (2017)Google Scholar
  9. 9.
    Farazi, H., Allgeuer, P., Behnke, S.: A monocular vision system for playing soccer in low color information environments. In: 10th Workshop on Humanoid Soccer Robot. IEEE-RAS International Conference Humanoid Robots, no. November (2015)Google Scholar
  10. 10.
    Bin Zabawi, N.H., Omar, K.: Robot soccer vision: an overview for new learner. In: 2011 International Conference on Pattern Analysis and Intelligence Robotics, pp. 125–130 (2011)Google Scholar
  11. 11.
    Li, S., Chen, Q.: A real-time robust calibration free color segmentation method for soccer robotsGoogle Scholar
  12. 12.
    Bailey, D., Contreras, M., Sen Gupta, G.: Towards automatic colour segmentation for robot soccer. In: ICARA 2015 – Proceedings of 2015 6th International Conference on Automation, Robotics and Application, pp. 478–483 (2015)Google Scholar
  13. 13.
    Babinec, A., Jurišica, L., Hubinský, P., Duchoň, F.: Visual localization of mobile robot using artificial markers. Proc. Eng. 96, 1–9 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Izwan Azmi
    • 1
  • Mohamad Syazwan Shafei
    • 1
  • Mohammad Faidzul Nasrudin
    • 2
  • Nor Samsiah Sani
    • 2
  • Abdul Hadi Abd Rahman
    • 2
    Email author
  1. 1.Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations