Advertisement

Molecular Genetics of Inherited Red Cell Membrane Disorders

  • Anu Aggarwal
  • Manu Jamwal
  • Reena DasEmail author
Chapter

Abstract

Inherited red cell membrane disorders constitute a diverse group of disorders which are characterized by wide clinical and molecular heterogeneity. They are nonimmune hereditary hemolytic anemia, and patients present with variable degrees of pallor, episodic jaundice, splenomegaly, and elevated lactate dehydrogenase (LDH) levels. The underlying cause is the defects either in the organization of membrane structure or membrane transport function arising because of mutations in genes encoding erythrocyte membrane proteins essential for stable structure and function. The commonest disorder is hereditary spherocytosis (HS) followed by relatively uncommon conditions such as hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP). Disorders of alterations of hydration include hereditary stomatocytosis (HSt) where cation permeability in the red cell membrane is disturbed, leading to overhydrated HSt and hereditary xerocytosis with dehydrated HSt. Extensive biochemical, biophysical, and genetic studies of the red cell membrane in the decades have provided detailed molecular insights into the structural basis for normal red cell membrane function and for altered function in various inherited red cell membrane disorders.

Keywords

Red cell membrane disorders Hemolytic anemia Hereditary spherocytosis Hereditary elliptocytosis Hereditary pyropoikilocytosis Overhydrated hereditary stomatocytosis Xerocytosis Mediterranean stomatocytosis/macrothrombocytopenia 

References

  1. 1.
    Lux SE, Wolfe LC. Inherited disorders of the red cell membrane skeleton. Pediatr Clin North Am. 1980;27:463–86.CrossRefGoogle Scholar
  2. 2.
    Bruce LJ, Guizouarn H, Burton NM, Gabillat N, Poole J, Flatt JF, et al. The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood. 2009;113:1350–7. http://www.ncbi.nlm.nih.gov/pubmed/18931342.CrossRefGoogle Scholar
  3. 3.
    Andolfo I, Russo R, Gambale A, Iolascon A. New insights on hereditary erythrocyte membrane defects. Haematologica. 2016;101:1284–94.CrossRefGoogle Scholar
  4. 4.
    Narla J, Mohandas N. Red cell membrane disorders. Int J Lab Hematol. 2017;39:47–52.CrossRefGoogle Scholar
  5. 5.
    Delaunay J, Stewart G, Iolascon A. Hereditary dehydrated and overhydrated stomatocytosis: recent advances. Curr Opin Hematol. 1999;6:110–4. http://www.ncbi.nlm.nih.gov/pubmed/10088641.CrossRefGoogle Scholar
  6. 6.
    Agarwal AM, Nussenzveig RH, Reading NS, Patel JL, Sangle N, Salama ME, et al. Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol. 2016;174:806–14.  https://doi.org/10.1111/bjh.14131.CrossRefPubMedGoogle Scholar
  7. 7.
    Perrotta S, Gallagher PG, Mohandas N. Hereditary spherocytosis. Lancet. 2008;372:1411–26.  https://doi.org/10.1016/S0140-6736(08)61588-3.CrossRefPubMedGoogle Scholar
  8. 8.
    Kedar P. Red cell membrane pathology in hereditary spherocytosis in India. Indian J Hematol Blood Transfus. 2013;29(4):245–6.Google Scholar
  9. 9.
    Karan AS, Saxena R, Choudhry VP. Autosomal non-dominant hereditary spherocytosis: does it occur in India? Am J Hematol. 2002;70:266–7.CrossRefGoogle Scholar
  10. 10.
    Das A, Bansal D, Das R, Trehan A, Marwaha RK. Hereditary spherocytosis in children: profile and post-splenectomy outcome. Indian Pediatr. 2014;51:139–41.CrossRefGoogle Scholar
  11. 11.
    Tse WT, Lux SE. Red blood cell membrane disorders. Br J Haematol. 1999;104:2–13.CrossRefGoogle Scholar
  12. 12.
    Eber SW, Gonzalez JM, Lux ML, Scarpa AL, Tse WT, Dornwell M, et al. Ankyrin–1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nat Genet. 1996;13:214–8. http://www.ncbi.nlm.nih.gov/pubmed/8640229.CrossRefGoogle Scholar
  13. 13.
    Del Giudice EM, Nobili B, Francese M, D’Urso L, Iolascon A, Eber S, et al. Clinical and molecular evaluation of non-dominant hereditary spherocytosis. Br J Haematol. 2001;112:42–7.CrossRefGoogle Scholar
  14. 14.
    del Giudice EM, Hayette S, Bozon M, Perrotta S, Alloisio N, Vallier A, et al. Ankyrin Napoli: a de novo deletional frameshift mutation in exon 16 of ankyrin gene (ANK1) associated with spherocytosis. Br J Haematol. 1996;93:828–34. http://www.ncbi.nlm.nih.gov/pubmed/8703812.CrossRefGoogle Scholar
  15. 15.
    Morlé L, Bozon M, Alloisio N, Vallier A, Hayette S, Pascal O, et al. Ankyrin Bugey: a de novo deletional frameshift variant in exon 6 of the ankyrin gene associated with spherocytosis. Am J Hematol. 1997;54:242–8. http://www.ncbi.nlm.nih.gov/pubmed/9067504.CrossRefGoogle Scholar
  16. 16.
    Hayette S, Carré G, Bozon M, Alloisio N, Maillet P, Wilmotte R, et al. Two distinct truncated variants of ankyrin associated with hereditary spherocytosis. Am J Hematol. 1998;58:36–41. http://www.ncbi.nlm.nih.gov/pubmed/9590147.CrossRefGoogle Scholar
  17. 17.
    Random J, Miraglia Del Giudice E, Bozon M, Perrotta S, De Vivo M, Iolascon A, et al. Frequent de novo mutations of the ANK1 gene mimic a recessive mode of transmission in hereditary spherocytosis: three new ANK1 variants: Ankyrins Bari, Napoli II and Anzio. Br J Haematol. 1997;96:500–6.CrossRefGoogle Scholar
  18. 18.
    Iolascon A, Miraglia del Giudice E, Perrotta S, Alloisio N, Morlé L, Delaunay J. Hereditary spherocytosis: from clinical to molecular defects. Haematologica. 1998;83:240–57. http://www.ncbi.nlm.nih.gov/pubmed/9573679.PubMedGoogle Scholar
  19. 19.
    Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA. Online Mendelian inheritance in man (OMIM). Hum Mutat. 2000;15:57–61.CrossRefGoogle Scholar
  20. 20.
    Bianchi P, Fermo E, Vercellati C, Marcello AP, Porretti L, Cortelezzi A, et al. Diagnostic power of laboratory tests for hereditary spherocytosis: a comparison study in 150 patients grouped according to molecular and clinical characteristics. Haematologica. 2012;97:516–23. http://www.ncbi.nlm.nih.gov/pubmed/22058213.CrossRefGoogle Scholar
  21. 21.
    Kedar PS, Colah RB, Kulkarni S, Ghosh K, Mohanty D. Experience with eosin-5′-maleimide as a diagnostic tool for red cell membrane cytoskeleton disorders. Clin Lab Haematol. 2003;25:373–6.CrossRefGoogle Scholar
  22. 22.
    Kar R, Mishra P, Pati HP. Evaluation of eosin-5-maleimide flow cytometric test in diagnosis of hereditary spherocytosis. Int J Lab Hematol. 2010;32:8–16.CrossRefGoogle Scholar
  23. 23.
    Joshi P, Aggarwal A, Jamwal M, Sachdeva MUS, Bansal D, Malhotra P, et al. A comparative evaluation of Eosin-5′-maleimide flow cytometry reveals a high diagnostic efficacy for hereditary spherocytosis. Int J Lab Hematol. 2016;38:520–6.CrossRefGoogle Scholar
  24. 24.
    Bolton-Maggs PHB, Langer JC, Iolascon A, Tittensor P, King M-J. Guidelines for the diagnosis and management of hereditary spherocytosis - 2011 update. Br J Haematol [Internet]. 2012;156:37–49.  https://doi.org/10.1111/j.1365-2141.2011.08921.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Alfinito F, Calabro V, Cappellini MD, Fiorelli G, Filosa S, Iolascon A, et al. Glucose 6-phosphate dehydrogenase deficiency and red cell membrane defects: additive or synergistic interaction in producing chronic haemolytic anaemia. Br J Haematol. 1994;87:148–52.CrossRefGoogle Scholar
  26. 26.
    del Giudice EM, Perrotta S, Nobili B, Specchia C, d’Urzo G, Iolascon A. Coinheritance of Gilbert syndrome increases the risk for developing gallstones in patients with hereditary spherocytosis. Blood. 1999;94:2259–62.PubMedGoogle Scholar
  27. 27.
    Li CK, Heung-Ling Ng M, Cheung KL, Lam TK, Ming-Kong SM. Interaction of hereditary spherocytosis and alpha thalassaemia: a family study. Acta Haematol. 1994;91:201–5.CrossRefGoogle Scholar
  28. 28.
    Sukumar S, Mukherjee MB, Colah RB, Mohanty D. Molecular basis of G6PD deficiency in India. Blood Cells Mol Dis. 2004;33:141–5.CrossRefGoogle Scholar
  29. 29.
    Lee HJ, Moon HS, Lee ES, Kim SH, Sung JK, Lee BS, et al. A case of concomitant Gilbert’s syndrome and hereditary spherocytosis. Korean J Hepatol. 2010;16:321–4.  https://doi.org/10.3350/kjhep.2010.16.3.321.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Iijima S, Ohzeki T, Maruo Y. Hereditary spherocytosis coexisting with UDP-glucuronosyltransferase deficiency highly suggestive of Crigler-Najjar syndrome type II. Yonsei Med J. 2011;52:369–72.CrossRefGoogle Scholar
  31. 31.
    Rivet C, Caron N, Lachaux A, Morel B, Pracros JP, Francina A, et al. Association of a glucose-6-phosphate deficiency and a Gilbert syndrome as risk factors for a severe choledocholithiasis in a 2-month-old male infant. Pediatr Blood Cancer. 2012;58:316.CrossRefGoogle Scholar
  32. 32.
    Jamwal M, Aggarwal A, Kumar V, Sharma P, Sachdeva MUS, Bansal D, et al. Disease-modifying influences of coexistent G6PD-deficiency, Gilbert syndrome and deletional alpha thalassemia in hereditary spherocytosis: a report of three cases. Clin Chim Acta. 2016;458:51–4. http://linkinghub.elsevier.com/retrieve/pii/S0009898116301450.CrossRefGoogle Scholar
  33. 33.
    Heaton DC, Fellowes AP, George PM. Concurrence of hereditary spherocytosis and alpha thalassaemia. Aust NZ J Med. 1991;21:485–6.CrossRefGoogle Scholar
  34. 34.
    Gallagher PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol. 2004;41:142–64.CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Weed SA, Gallagher PG, Morrow JS. Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain. Blood. 2001;98:1645–53.CrossRefGoogle Scholar
  36. 36.
    Wrong O, Bruce LJ, Unwin RJ, Toye AM, Tanner MJA. Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int. 2002;62:10–9.CrossRefGoogle Scholar
  37. 37.
    Reardon DM, Seymour CA, Cox TM, Pinder JC, Schofield AE, Tanner MJA. Hereditary ovalocytosis with compensated haemolysis. Br J Haematol. 1993;85:197–9.CrossRefGoogle Scholar
  38. 38.
    Jarolim P, Palek J, Amato D, Hassan K, Sapak P, Nurse GT, et al. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A. 1991;88:11022–6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=53065&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  39. 39.
    Picard V, Proust A, Eveillard M, Flatt JF, Couec ML, Caillaux G, et al. Homozygous Southeast Asian ovalocytosis is a severe dyserythropoietic anemia associated with distal renal tubular acidosis. Blood. 2014;123:1963–5.CrossRefGoogle Scholar
  40. 40.
    Glogowska E, Gallagher PG. Disorders of erythrocyte volume homeostasis. Int J Lab Hematol. 2015;37:85–91.CrossRefGoogle Scholar
  41. 41.
    Manzoor F, Bhat S, Bashir N, Geelani S, Rasool J. Hereditary stomatocytosis: first case report from Valley of Kashmir. Med J Dr DY Patil Univ. 2015;8:347. http://www.mjdrdypu.org/text.asp?2015/8/3/347/157083.CrossRefGoogle Scholar
  42. 42.
    Jamwal M, Aggarwal A, Sachdeva MUS, Sharma P, Malhotra P, Maitra A, et al. Overhydrated stomatocytosis associated with a complex RHAG genotype including a novel de novo mutation. J Clin Pathol. 2018;71:648–52.  https://doi.org/10.1136/jclinpath-2018-205018.CrossRefPubMedGoogle Scholar
  43. 43.
    Stewart GW, Amess JA, Eber SW, Kingswood C, Lane PA, Smith BD, et al. Thrombo-embolic disease after splenectomy for hereditary stomatocytosis. Br J Haematol. 1996;93:303–10.CrossRefGoogle Scholar
  44. 44.
    Bruce LJ. Hereditary stomatocytosis and cation leaky red cells—recent developments. Blood Cells Mol Dis. 2009;42:216–22.CrossRefGoogle Scholar
  45. 45.
    Houston BL, Zelinski T, Israels SJ, Coghlan G, Chodirker BN, Gallagher PG, et al. Refinement of the hereditary xerocytosis locus on chromosome 16q in a large Canadian kindred. Blood Cells Mol Dis. 2011;47:226–31.CrossRefGoogle Scholar
  46. 46.
    Grootenboer S, Schischmanoff PO, Laurendeau I, Cynober T, Tchernia G, Dommergues JP, et al. Pleiotropic syndrome of dehydrated hereditary stomatocytosis, pseudohyperkalemia, and perinatal edema maps to 16q23-q24. Blood. 2000;96:2599–605. http://www.ncbi.nlm.nih.gov/pubmed/11001917.PubMedGoogle Scholar
  47. 47.
    Andolfo I, Russo R, Manna F, Shmukler BE, Gambale A, Vitiello G, et al. Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis). Am J Hematol. 2015;90:921–6.CrossRefGoogle Scholar
  48. 48.
    Rapetti-Mauss R, Lacoste C, Picard V, Guitton C, Lombard E, Loosveld M, et al. A mutation in the Gardos channel is associated with hereditary xerocytosis. Blood. 2015;126:1273–80.CrossRefGoogle Scholar
  49. 49.
    Glogowska E, Lezon-Geyda K, Maksimova Y, Schulz VP, Gallagher PG. Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis. Blood. 2015;126:1281–4.CrossRefGoogle Scholar
  50. 50.
    Andolfo I, Alper SL, Delaunay J, Auriemma C, Russo R, Asci R, et al. Missense mutations in the ABCB6 transporter cause dominant familialpseudohyperkalemia. Am J Hematol. 2013;88:66–72.CrossRefGoogle Scholar
  51. 51.
    Rees DC, Iolascon A, Carella M, O’Marcaigh AS, Kendra JR, Jowitt SN, et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br J Haematol. 2005;130:297–309.CrossRefGoogle Scholar
  52. 52.
    Jamwal M, Aggarwal A, Maitra A, Sharma P, Bansal D, Trehan A, et al. First report of Mediterranean stomatocytosis/macrothrombocytopenia in an Indian family: a diagnostic dilemma. Pathology. 2017;49:811.CrossRefGoogle Scholar
  53. 53.
    Sun Y, Ruivenkamp CAL, Hoffer MJV, Vrijenhoek T, Kriek M, van Asperen CJ, et al. Next-generation diagnostics: gene panel, exome, or whole genome? Hum Mutat. 2015;36:648–55.CrossRefGoogle Scholar
  54. 54.
    Roy NBA, Wilson EA, Henderson S, Wray K, Babbs C, Okoli S, et al. A novel 33-gene targeted resequencing panel provides accurate, clinical-grade diagnosis and improves patient management for rare inherited anaemias. Br J Haematol. 2016;175:318–30.CrossRefGoogle Scholar
  55. 55.
    Del Orbe BR, Arrizabalaga B, De la Hoz AB, García-Orad A, Tejada MI, Garcia-Ruiz JC, et al. Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing. Int J Lab Hematol. 2016;38:629–38.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of HematologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations