Pathogenesis and Investigations in Hereditary Red Blood Cell Membrane Disorders

  • Monica SharmaEmail author


Red blood cell (RBC) membrane disorders are chiefly inherited conditions caused by mutations in the genes encoding for cytoskeletal proteins or transmembrane transporters, leading to decreased red cell deformability and permeability leading to premature removal of the erythrocytes from the circulation. RBC membrane disorders can be categorized into two main subgroups: structural and permeability defects. Although clinically they may present as hemolytic anemia with the help of peripheral blood smear and specific biochemical tests the two defects can be diagnosed and differentiated.It is essential to be accurate in the differentiating between the types of defects because the curative treatment splenectomy is not benefical in all types of defects.


Hemolytic anemia Inherited RBC membrane defect Spherocytosis Elliptocytosis Stomatocytosis 


  1. 1.
    Zwaal RFA, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997;89(4):1121–32.PubMedGoogle Scholar
  2. 2.
    Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112(10):3939–48.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Perrotta S, Gallagher PG, Mohandas N. Hereditary spherocytosis. Lancet. 2008;372(9647):1411–26.CrossRefGoogle Scholar
  4. 4.
    Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A. 2009;106(41):17413–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lazarides E, Woods C. Biogenesis of the red blood cell membrane-skeleton and the control of erythroid morphogenesis. Annu Rev Cell Biol. 1989;5:427–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Mariani M, Barcellini W, Vercellati C, et al. Clinical and hematologic features of 300 patients affected by hereditary spherocytosis grouped according to the type of the membrane protein defect. Haematologica. 2008;93(9):1310–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Grace RF, Lux SE. Disorders of red cell membrane. In: Orkin SH, Nathan DG, Ginsburg D, Fisher DE, Lux SE, editors. Hematology of infancy and childhood. Philadelphia: Saunders; 2009. p. 659–838.Google Scholar
  8. 8.
    Michaels LA, Cohen AR, Zaho H, et al. Screening for hereditary spherocytosis by use of automated erythrocyte indexes. J Pediatr. 1997;130(6):957–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Farias MG, Freitas PA. Percentage of hyperdense cells: automated parameter to hereditary spherocytosis screening. Clin Biochem. 2015;48(18):1341–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Broséus J, Visomblain B, Guy J, Maynadié M, Girodon F. Evaluation of mean sphered corpuscular volume for predicting hereditary spherocytosis. Int J Lab Hematol. 2010;32(5):519–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Urrechaga E, Borque L, Escanero JF. Biomarkers of hypochromia: the contemporary assessment of iron status and erythropoiesis. Biomed Res Int. 2013;2013:603786.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rooney S, Hoffmann JJ, Cormack OM, McMahon C. Screening and confirmation of hereditary spherocytosis in children using a CELL-DYN sapphire haematology analyser. Int J Lab Hematol. 2015;37(1):98–104.PubMedCrossRefGoogle Scholar
  13. 13.
    Urrechaga E, Borque L, Escanero JF. Potential utility of the new Sysmex XE 5000 red blood cell extended parameters in the study of disorders of iron metabolism. Clin Chem Lab Med. 2009;47(11):1411–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Mullier F, Lainey E, Fenneteau O, Da Costa L, Schillinger F, Bailly N, et al. Additional erythrocytic and reticulocytic parameters helpful for diagnosis of hereditary spherocytosis: results of a multicentre study. Ann Hematol. 2011;90(7):759–68.PubMedCrossRefGoogle Scholar
  15. 15.
    Lazarova E, Pradier O, Cotton F, Gulbis B. Automated reticulocyte parameters for hereditary spherocytosis screening. Ann Hematol. 2014;93:1809–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Parpart AK, Lorenz PB, Parpart ER, Gregg JR, Chase AM. The osmotic resistance (fragility) of human red cells. J Clin Invest. 1947;26(4):636–40.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    King MJ, Zanella A. Hereditary red cell membrane disorders and laboratory diagnostic testing. Int J Lab Hematol. 2013;35(3):237–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Stoya G, Gruhn B, Vogelsang H, Baumann E, Linss W. Flow cytometry as a diagnostic tool for hereditary spherocytosis. Acta Haematol. 2006;116(3):186–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Warang P, Gupta M, Kedar P, Ghosh K, Colah R. Flow cytometric osmotic fragility—an effective screening approach for red cell membranopathies. Cytometry B Clin Cytom. 2011;80(3):186–90.PubMedCrossRefGoogle Scholar
  20. 20.
    King MJ, Behrens J, Rogers C, Flynn C, Greenwood D, Chambers K. Rapid flow cytometry test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia. Br J Haematol. 2000;111(3):924–33.PubMedGoogle Scholar
  21. 21.
    Yamamoto A, Saito N, Yamauchi Y, Takeda M, Ueki S, Itoga M, et al. Flow cytometric analysis of red blood cell osmotic fragility. J Lab Autom. 2014;19(5):483–7.PubMedCrossRefGoogle Scholar
  22. 22.
    King MJ, Telfer P, MacKinnon H, Langabeer L, McMahon C, Darbyshire P, et al. Using the eosin-5-maleimide binding test in the differential diagnosis of hereditary spherocytosis and hereditary pyropoikilocytosis. Cytometry B Clin Cytom. 2008;74(4):244–50.PubMedCrossRefGoogle Scholar
  23. 23.
    King MJ, Chapman L, Mackinnon H, Mills W, Psiachou-Leonnard E, Murrin R. Examination of flow cytometric histograms of eosin-5-maleimide labelled red cells can assist in differential diagnosis of membranopathy. Br J Haematol. 2003;121(Suppl 1):75.Google Scholar
  24. 24.
    Gottfried EL, Robertson NA. Glycerol lysis time of incubated erythrocytes in the diagnosis of hereditary spherocytosis. J Lab Clin Med. 1974;84(5):746–51.PubMedGoogle Scholar
  25. 25.
    Zanella A, Milani S, Fagnani G, Mariani M, Sirchia G. Diagnostic value of the glycerol lysis test. J Lab Clin Med. 1983;102(5):743–50.PubMedGoogle Scholar
  26. 26.
    Vettore L, Zanella A, Molaro GL, De Matteis MC, Pavesi M, Mariani M. A new test for laboratory diagnosis of spherocytosis. Acta Haematol. 1984;72(4):258–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Streichman S, Gescheidt Y. Cryohemolysis for the detection of hereditary spherocytosis: correlation studies with osmotic fragility and autohemolysis. Am J Hematol. 1998;58(3):206–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Clark MR, Mohandas N, Shohet SB. Osmotic gradient ektacytometry: comprehensive characterization of the red cell volume and surface maintenance. Blood. 1983;61(5):899–910.PubMedGoogle Scholar
  29. 29.
    Iolascon A, Avvisati RA. Genotype/phenotype correlation in hereditary spherocytosis. Haematologica. 2008;93(9):1283–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Delaunay J. The molecular basis of hereditary red cell membrane disorders. Blood Rev. 2007;21(1):1–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Eber SW, Pekrun A, Neufeldt A, Schröter W. Prevalence of increased osmotic fragility of erythrocytes in German blood donors: screening using a modified glycerol lysis test. Ann Hematol. 1992;64(2):88–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Gallagher PG, Jarolim P. Red cell membrane disorders. In: Hoffman R, Benz Jr EJ, Shattil SJ, et al., editors. Hematology: basic principles and practice. 4th ed. Philadelphia: WB Saunders; 2005.Google Scholar
  33. 33.
    Delaunay J, Alloisio N, Morle L, Baklouti F, Dalla Venezia N, et al. Molecular genetics of hereditary elliptocytosis and hereditary spherocytosis. Ann Genet. 1996;39(4):209–21.PubMedGoogle Scholar
  34. 34.
    Tse WT, Lux SE. Red blood cell membrane disorders. Br J Haematol. 1999;104(1):2–13.CrossRefGoogle Scholar
  35. 35.
    Rocha S, Costa E, Ferreira F, Cleto E, Barbot J, Rocha-Pereira P, et al. Hereditary spherocytosis and the (TA)nTAA polymorphism of UGTA1A1 gene promoter region—a comparison of the bilirubin plasmatic levels in the different clinical forms. Blood Cells Mol Dis. 2010;44(2):117–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Bolton-Maggs PH, Stevens RF, Dodd NJ, Lamont G, Tittensor P, King MJ, General Haematology Task Force of the British Committee for Standards in Haematology. Guidelines for the diagnosis and management of hereditary spherocytosis. Br J Haematol. 2004;126(4):455–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Bianchi P, Fermo E, Vercellati C, Marcello AP, Porretti L, Cortelezzi A, et al. Diagnostic power of laboratory tests for hereditary spherocytosis: a comparison study in 150 patients grouped according to molecular and clinical characteristics. Haematologica. 2012;97(4):516–23.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Girodon F, Garçon L, Bergoin E, Largier M, Delaunay J, Fénéant-Thibault M, et al. Usefulness of the eosin-5′-maleimide cytometric method as a first-line screening test for the diagnosis of hereditary spherocytosis: comparison with ektacytometry and protein electrophoresis. Br J Haematol. 2008;140(4):468–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Kar R, Mishra P, Pati HP. Evaluation of eosin-5-maleimide flow cytometric test in diagnosis of hereditary spherocytosis. Int J Lab Hematol. 2010;32(1 pt 2):8–16.CrossRefGoogle Scholar
  40. 40.
    Bolton-Maggs PH, Langer JC, Iolascon A, Tittensor P, King MJ, General Haematology Task Force of the British Committee for Standards in Haematology. Guidelines for the diagnosis and management of hereditary spherocytosis—2011 update. Br J Haematol. 2012;156(1):37–49.PubMedCrossRefGoogle Scholar
  41. 41.
    Gallagher PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol. 2004;41(2):142–64.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Coetzer T, Palek J, Lawler J, et al. Structural and functional heterogeneity of α spectrin mutations involving the spectrin heterodimer self-association site: relationships to hematologic expression of homozygous hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood. 1990;75(11):2235–44.PubMedGoogle Scholar
  43. 43.
    Coetzer T, Lawler J, Prchal JT, Palek J. Molecular determinants of clinical expression of hereditary elliptocytosis and pyropoikilocytosis. Blood. 1987;70(3):766–72.PubMedGoogle Scholar
  44. 44.
    Takakuwa Y, Tchernia G, Rossi M, Benabadji M, Mohandas N. Restoration of normal membrane stability to unstable protein 4.1-deficient erythrocyte membranes by incorporation of purified protein 4.1. J Clin Invest. 1986;78(1):80–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Winardi R, Reid M, Conboy J, Mohandas N. Molecular analysis of glycophorin C deficiency in human erythrocytes. Blood. 1993;81(10):2799–803.PubMedGoogle Scholar
  46. 46.
    Mentzer WC Jr, Iarocci TA, Mohandas N, Lane PA, Smith B, Lazerson J, et al. Modulation of erythrocyte membrane mechanical stability by 2,3-diphosphoglycerate in the neonatal poikilocytosis/elliptocytosis syndrome. J Clin Invest. 1987;79(3):943–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Iolascon A, Perrotta S, Stewart GW. Red blood cell membrane defects. Rev Clin Exp Hematol. 2003;7(1):22–56.PubMedGoogle Scholar
  48. 48.
    Mohandas N, An X. Malaria and human red blood cells. Med Microbiol Immunol. 2012;20(14):593–8.CrossRefGoogle Scholar
  49. 49.
    Liu SC, Zhai S, Palek J, Golan DE, Amato D, Hassan K, et al. Molecular defect of the band 3 protein in southeast Asian ovalocytosis. N Engl J Med. 1990;323(22):1530–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Mohandas N, Winardi R, Knowles D, Leung A, Parra M, George E, et al. Molecular basis for membrane rigidity of hereditary ovalocytosis. J Clin Invest. 1992;89(2):686–92.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mohandas N. Molecular basis for red cell membrane viscoelastic properties. Biochem Soc Trans. 1992;20(4):776–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Stewart GW. Hemolytic disease due to membrane ion channel disorders. Curr Opin Hematol. 2004;11(4):244–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Bruce LJ. Hereditary stomatocytosis and cation-leaky red cells-recent developments. Blood Cells Mol Dis. 2009;42(3):216–22.CrossRefGoogle Scholar
  54. 54.
    Bruce LJ, Burton NM, Gabillat N, Gabillat N, Poole J, Flatt JF, et al. The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood. 2009;113(6):1350–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Andolfo I, Alper SL, De Franceschi L, Auriemma C, Russo R, De Falco L, et al. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood. 2013;121(19):3925–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Zarychanski R, Schulz VP, Houston BL, Maksimova Y, Houston DS, Smith B, et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood. 2012;20(9):1908–15.CrossRefGoogle Scholar
  57. 57.
    Bogdanova A, Goede JS, Weiss E, Bogdanov N, Bennekou P, Bernhardt I, et al. Cryohydrocytosis: increased activity of cation carriers in red cells from a patient with a band 3 mutation. Haematologica. 2010;95(2):189–98.PubMedCrossRefGoogle Scholar
  58. 58.
    Guizouarn H, Martial S, Gabillat N, Borgese F. Point mutations involved in red cell stomatocytosis convert the electroneutral anion exchanger 1 to a nonselective cation conductance. Blood. 2007;110(6):2158–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Coles SE, Ho MM, Chetty M, Nicolaou A, Stewart GW. A variant of hereditary stomatocytosis with marked pseudohyperkalaemia. Br J Haematol. 1999;104(2):275–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Neville AJ, Rand CA, Barr RD, Mohan Pai KR. Drug-induced stomatocytosis and anemia during consolidation chemotherapy of childhood acute leukemia. Am J Med Sci. 1984;287(1):3–7.PubMedCrossRefGoogle Scholar
  61. 61.
    King MJ, Garcon L, Hoyer JD, Iolason A, Picard V, Stewart G, et al; International Council for Standardization in Haematology. ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders. Int J Lab Hematol. 2015;37(3):304–25.PubMedCrossRefGoogle Scholar
  62. 62.
    Andolfo I, Russo R, Gambale A, Iolascon A. New insights on hereditary erythrocyte membrane defects. Haematologica. 2016;101(11):1284–94.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of HematologySafdarjung Hospital and Vardhman Mahavir Medical CollegeNew DelhiIndia

Personalised recommendations