Alloantigens and Their Role in Immune Cytopenias

  • Ajit Gorakshakar
  • Harita Gogri


Immune cytopenia is a reduction in the number of mature blood cells. This can be caused by alloantigens present on the surface of blood cells i.e. red blood cells or erthyrocytes, white blood cells or leucocytes and platelets or thromobocytes. Alloantigens stimulate the immune system of host against foreign antigens causing alloimmunization and subsequent production of alloantibodies which caused decreased survival of blood cells in vivo. This chapter focuses on red blood cell antigens, human platelet antigens, human neutrophil antigens and human leucocyte antigens and their role in immune cytopenias.


  1. 1.
    Storry JR, Castilho L, Chen Q, Daniels G, Denomme G, Flegel WA, Gassner C, Haas M, Hyland C, Keller M, Lomas‐Francis C. International Society of Blood Transfusion Working Party on red cell immunogenetics and terminology: report of the Seoul and London meetings. ISBT Sci Ser. 2016;11(2):118–22.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cartron JP. Elute quantitative et thermo dynamique des phenotypes erythrocytaires “Afaible”. Rev franc Transfus Immunohaemat. 1976;19:35.CrossRefGoogle Scholar
  3. 3.
    Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group system. Nature. 1990;345:229–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Levine P, Stetson RE. An unusual case of intragroup agglutination. JAMA. 1939;13:126–7.CrossRefGoogle Scholar
  5. 5.
    Tippett P. A speculative model for Rh blood groups. Ann Hum Genet. 1986;50:241–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Shao CP, Maas JH, Su YQ, Köhler M, Legler TJ. Molecular background of Rh Dpositive, D-negative, D(el) and weak D phenotypes in Chinese. Vox Sang. 2002;83:156–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Patnaik SK, Helmberg W, Blumenfeld OO. BGMUT database of allelic variants of genes encoding human blood group antigens. Transfus Med Hemother. 2014;41(5):346–51.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Silberstein LE, Naryshkin S, Haddad JJ, Strauss JF. Calcium homeostasis during therapeutic plasma exchange. Transfusion. 1986;26:151.PubMedCrossRefGoogle Scholar
  9. 9.
    Cox JV, Steane E, Cunningham G, Frenkel EP. Risk of alloimmunization and delayed hemolytic transfusion reactions in patients with sickle cell disease. Arch Intern Med. 1988;148:2488.CrossRefGoogle Scholar
  10. 10.
    Singerb ST, Wu V, Mignacca R, et al. Alloimmunisation and erythrocyte autoimmunisation in transfusion-dependent thalassemia patients of predominant Asian descent. Blood. 2000;96:3369–73.Google Scholar
  11. 11.
    Hoeltge GA, Domen RE, Rybicki LA, Schaffer PA. Multiple red cell transfusions and alloimmunization. Experiences with 6996 antibodies detected in a total of 159,262 patients from 1985-1993. Arch Pathol Lab Med. 1995;119:42–5.PubMedGoogle Scholar
  12. 12.
    Makarovska-Bojadzieva T, Blagoevska M, Kolevski P, Kostovska S. Optimal blood gouping and antibody screenining for safe transfusion. Contrib Sec Biol Med Sci MASA. 2009;30:119–28.Google Scholar
  13. 13.
    Seltsam A, Wagner FF, Salama A, et al. Antibodies to high-frequency antigens may decrease the quality of transfusion support: an observational study. Transfusion. 2003;43:1563–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Schonewille H, Van De Watering LM, Brand A. Additional red blood cell alloantibodies after blood transfusions in a nonhematologic alloimmunized patient cohort: is it time to take precautionary measures? Transfusion. 2006;46:630–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Holland PV. The diagnosis and management of transfusion reactions and other adverse effects of transfusion. In: Petz LD, Swisher SN, editors. Clinical practice of transfusion medicine. 2nd ed. New York: Churchill Livingstone; 1989. p. 714.Google Scholar
  16. 16.
    Zupanska B, Thomson EE, Merry AH. Fc receptors for IgG1 and IgG3 on human mononuclear cells and evaluation with known levels of erythrocyte bound IgG. Vox Sang. 1986;50:97–103.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Tahhan HR, Holbrook CT, Braddy LR, et al. Antigen matched donor blood in the transfusion management of patients with sickle-cell disease. Transfusion. 1994;34:562–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Singer ST, Wu V, Mignacca R, Kuypers FA, Morel P, Vichinsky EP. Alloimmunization and erythrocyte autoimmunization in transfusion-dependent thalassemia patients of predominantly Asian descent. Blood. 2000;96:3369–73.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Pujani M, Pahuja S, Dhingra B, Chandra J, Jain M. Alloimmunisation in thalassaemics: a comparison between recipients of usual matched and partial better matched blood. An evaluation at a tertiary care centre in India. Blood Transfus. 2014;12:s100.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Castro O, Sandler SG, Houston‐Yu P, Rana S. Predicting the effect of transfusing only phenotype‐matched RBCs to patients with sickle cell disease: Theoretical and practical implications. Transfusion. 2002;42:684–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Shirey RS, Boyd JS, Parwani AV, Tanz WS, Ness PM, King KE. Prophylactic antigen‐matched donor blood for patients with warm autoantibodies: an algorithm for transfusion management. Transfusion. 2002;42:1435–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Novotny VM. Prevention and management of platelet transfusion refractoriness. Vox Sang. 1999;76:1–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Peterson JA, Gitter ML, Kanack A, et al. New low-frequency platelet glycoprotein polymorphisms associated with neonatal alloimmune thrombocytopenia. Transfusion. 2010;50:324–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Kroll H, Kiefel V, Santoso S. Clinical aspects and typing of platelet alloantigens. Vox Sang. 1998;74:s345–54.CrossRefGoogle Scholar
  25. 25.
    Davoren A, Curtis BR, Aster RH, McFarland JG. Human platelet antigen-specific alloantibodies implicated in 1162 cases of neonatal alloimmune thrombocytopenia. Transfusion. 2004;44:1220–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Knight M, Pierce M, Allen D, Kurinczuk JJ, Spark P, Roberts DJ, Murphy MF. The incidence and outcomes of fetomaternal alloimmune thrombocytopenia: a UK national study using three data sources. Br J Haematol. 2011;152:460–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Lalezari P, Bernard GE. An isologous antigen-antibody reaction with human neutrophils, related to neonatal neutropenia. J Clin Invest. 1966;45:1741–50.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lalezari P, Radel E. Neutrophil-specific antigens: immunology and clinical significance. Semin Hematol. 1974;11:281–90.PubMedGoogle Scholar
  29. 29.
    Lalezari P, Murphy GB, Allen FH. NB1, a new neutrophil antigen involved in the pathogenesis of neonatal neutropenia. J Clin Invest. 1971;50:1108–15.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Huang ST, Lin J, McGowan EL, et al. NB2, a new allele of NB1 antigen involved in febrile transfusion reaction (abstract). Transfusion. 1982;22:426.Google Scholar
  31. 31.
    Lalezari P, Petrosova M, Jiang AF. NB2, an allele of NB1 neutrophil specific antigen: relationship to 9a (abstract). Transfusion. 1982;22:433.Google Scholar
  32. 32.
    Lalezari P, Thelenfeld B, Weinstein WJ. The third neutrophil antigen. In: Terasaki PI, editor. Histocompatibility testing. Baltimore: Williams & Wilkins; 1970. p. 319–22.Google Scholar
  33. 33.
    Verheugt FWA, von dem Borne AE, van Noord-Bokhorst JC, et al. ND1, a new neutrophil granulocyte antigen. Vox Sang. 1978;35:13–7.PubMedGoogle Scholar
  34. 34.
    Claas FHJ, Langerak J, Sabbe LJM, et al. NE1, a new neutrophil specific antigen. Tissue Antigens. 1979;13:129–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Bux J, Sohn M, Hachmann R, et al. Quantitation of granulocyte antibodies in sera and determination of their binding sites. Br J Haematol. 1992;82:20–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Huizinga TW, van der Schoot CE, Jost C, et al. The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature. 1988;333:667–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Huizinga TW, van Kemenade F, Koenderman L, et al. The 40-kDa Fc gamma receptor (FcRII) on human neutrophils is essential for the IgG-induced respiratory burst and IgG-induced phagocytosis. J Immunol. 1989;142:2365–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Unkeless JC, Shen Z, Lin CW, et al. Function of human Fc gamma RIIA and Fc gamma RIIIB. Semin Immunol. 1995;7:37–44.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bux J, Behrens G, Jäger G, Welte K. Diagnosis and clinical course of autoimmune neutropenia in infancy: analysis 240 cases. Blood. 1997;89:1027–34.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Huizinga TW, Kleijer M, Tetteroo PA, et al. Biallelic neutrophil Na-antigen system is associated with a polymorphism on the phospho-inositol-linked Fcc Receptor III (CD16). Blood. 1990;75:213–7.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV. Organization of the human and mouse low-affinity FcgR genes: Duplication and recombination. Science. 1990;248:732.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ravetch JV, Perussia B. Alternative membrane forms of FcRIII (CD16) on human natural killer cells and neutrophils. J Exp Med. 1989;170:481–97.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM. Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils. J Clin Invest. 1989;84:1688–91.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ory PA, Goldstein IM, Kwoh EE, Clarkson SB. Characterization of polymorphic forms of Fc receptor III on human neutrophils. J Clin Invest. 1989;83:1676–81.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    De Haas M, Kleijer M, Van Zwieten R, Roos D, Von Dem Borne AE. Neutrophil Fcγ RIIIb deficiency, nature and clinical consequences: a study of 21 individuals from 14 families. Blood. 1995;86:2403–13.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Huizinga TW, Kuijpers RWA, Kleijer M, Schulpen TW, Cuypers HTM, Roos D, Von Dem Borne AE. Maternal genomic FcRIII deficiency leading to neonatal isoimmune neutropenia. Blood. 1990;76:1927–32.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Reil A, Sachs UJ, Siahanidou T, Flesch BK, Bux J. HNA‐1d: a new human neutrophil antigen located on Fcγ receptor IIIb associated with neonatal immune neutropenia. Transfusion. 2013;53:2145–51.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Bux J, Hartmann C, Mueller-Eckhart C. Alloimmune neonatal neutropenia resulting from immunization to a high-frequency antigen on the granulocyte Fc g receptor III. Transfusion. 1994;34:608–11.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bux J, Kissel K, Nowak K, et al. Autoimmune neutropenia: clinical and laboratory studies in 143 patients. Ann Hematol. 1991;63:249–52.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Stroncek DF, Skubitz KM, Plachta LB, et al. Alloimmune neonatal neutropenia due to an antibody to the neutrophil Fc-greceptor III with maternal deficiency of CD16 antigen. Blood. 1991;77:1572–80.PubMedGoogle Scholar
  51. 51.
    Fung YL, Goodison KA, Wong JK, et al. Investigating transfusion-related acute lung injury (TRALI). Intern Med J. 2003;33:286–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Lucas GF, Rogers S, Evans R, et al. Transfusion-related acute lung injury associated with interdonor incompatibility for the neutrophil-specific antigen HNA-1a. Vox Sang. 2000;79:112–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Bux J, Dickmann JO, Stockert U, et al. Influence of granulocyte antibodies on granulocyte function. Vox Sang. 1993;64:220–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Goldschmeding R, van Dalen CM, Faber N, Calafat J, Huizinga TWJ, van der Schoot CE, et al. Further characterization of the NB1 antigen as a variably expressed 56–62 kD GPI-linked glycoprotein of plasma membranes and specific granules of neutrophils. Br J Haematol. 1992;81:336–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Kissel K, Scheffler S, Kerowgan M, et al. Molecular basis of NB1 (HNA-2a, CD177) deficiency. Blood. 2002;99:4231–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Stroncek D. Granulocyte antigens and antibody detection. Vox Sang. 2004;87(S1):91–4.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Bux J, Jung KD, Kauth T, et al. Serological and clinical aspects of granulocyte antibodies leading to alloimmune neonatal neutropenia. Transfus Med. 1992;2:143–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bux J. Granulocyte antibody mediated neutropenias and transfusion reactions. Infus Ther Transfus Med. 1999;26:152–7.Google Scholar
  59. 59.
    Bux J, Becker F, Seeger W, et al. Transfusion-related acute lung injury due to HLR-A2-specific antibodies in recipient and NB1-specific antibodies in donor blood. Br J Haematol. 1996;93:707–13.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Stroncek DF, Shankar RH, Herr GP. Quininedependent antibodies to neutrophils react with a 60kD glycoprotein on which neutrophil-specific antigenNB1 is located and an 85 kD glycosylphosphatidylinositol– linked N-glycosylated plasma membrane protein. Blood. 1993;81:2758–66.PubMedGoogle Scholar
  61. 61.
    van Leeuwen A, Eernisse JG, van Rood JJ. A new leucocyte group with two alleles: leucocyte group five. Vox Sang. 1964;9:431–46.CrossRefGoogle Scholar
  62. 62.
    De Haas M, Muniz-Dias E, Alonso LG, Van Der Kolk K, Kos M, Buddelmeijer L, Porcelijn L, Von Dem Borne AE. Neutrophil antigen 5b is carried by a protein, migrating from 70 to 95 kDa, and may be involved in neonatal alloimmune neutropenias. Transfusion. 2000;40:222–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Curtis BR, Cox NJ, Sullivan MJ, Konkashbaev A, Bowens K, Hansen K, Aster RH. The neutrophil alloantigen HNA-3a (5b) is located on choline transporter-like protein 2 and appears to be encoded by an R> Q154 amino acid substitution. Blood. 2010;115(10):2073–6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Huvard MJ, Schmid P, Stroncek DF, et al. Frequencies of SLC44A2 alleles encoding human neutrophil antigen-3 variants in the African American population. Transfusion. 2011;52:1106–11.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Flesch BK, Reil A, Bux J. Genetic variation of the HNA-3a encoding gene. Transfusion. 2011;51:2391–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Lalezari P, Bernard GE. Identification of a specific leukocyte antigen: another presumed example of 5b. Transfusion. 1965;5(2):135–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Davoren A, Curtis BR, Shukman IA, Mohrbacher AF, Bux J, Kwiatkowska BJ, Mcfarland JG, Aster RH. TRALI due to granulocyte-agglutinating human neutrophil antigen-3a (5b) alloantibodies in dnor plasma: a report of 2 fatalities. Transfusion. 2003;43:641–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Simsek S, van der Schoot CE, Daams M, et al. Molecular characterization of antigenic polymorphisms (Ond(a) and Mart(a)) of the beta 2 family recognized by human leukocyte alloantisera. Blood. 1996;88:1350–8.PubMedGoogle Scholar
  69. 69.
    Fung YL, Pitcher LA, Willett JE, et al. Alloimmune neonatal neutropenia linked to anti-HNA-4a. Transfus Med. 2003;13:49–52.PubMedCrossRefGoogle Scholar
  70. 70.
    Porcelijn L, Abbink F, Terraneo L, Onderwater-vd Hoogen L, Huiskes E, de Hass M. Neonatal alloimmune neutropenia due to immunoglobulin G antibodies against human neutrophil antigen-5a. Transfusion. 2011;51:574–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Moritz E, Norcia AM, Cardone JD, et al. Human neutrophil alloantigens systems. An Acad Bras Cienc. 2009;81:559–69.PubMedCrossRefGoogle Scholar
  72. 72.
    Fung YL, Minchinton RM. The fundamentals of neutrophil antigen and antibody investigations. ISBT Sci Ser. 2011;6:381–6.CrossRefGoogle Scholar
  73. 73.
    Middelburg RA, Porcelijn L, Lardy N, Briët E, Vrielink H. Prevalence of leucocyte antibodies in the Dutch donor population. Vox Sang. 2011;100:327–35.PubMedCrossRefGoogle Scholar
  74. 74.
    Lucas G, Win N, Calvert A, et al. Reducing the incidence of TRALI in the UK: the results of screening for donor leucocyte antibodies and the development of national guidelines. Vox Sang. 2012;103:10–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Gottschall JL, Triulzi DJ, Curtis B, et al. The frequency and specificity of human neutrophil antigen antibodies in a blood donor population. Transfusion. 2011;51:820–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Reil A, Keller-Stanislawski B, Günay S, Bux J. Specificities of leucocyte alloantibodies in transfusion-related acute lung injury and results of leucocyte antibody screening of blood donors. Vox Sang. 2008;95:313–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang X, Araki N, Ito K. Post-transfusion alloimmunization to granulocytes and platelets in Japanese patients as determined by the MPHA method. Transfus Apher Sci. 2001;25:163–72.PubMedCrossRefGoogle Scholar
  78. 78.
    Densmore TL, Goodnough LT, Ali S, Dynis M, Chaplin H. Prevalence of HLA sensitization in female apheresis donors. Transfusion. 1999;39:103–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Sachs UJ, Link E, Hofmann C, Wasel W, Bein G. Screening of multiparous women to avoid transfusion-related acute lung injury: a single centre experience. Transfus Med. 2008;18(6):348–54.PubMedCrossRefGoogle Scholar
  80. 80.
    Dausset H. Leukoagglutinins: leukoagglutinins and blood transfusion. J Vox Sang. 1954;4:190.Google Scholar
  81. 81.
    Dausset J. Iso-leuco-anticorps. Acta Haematol. 1958;20:156.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5:889–99.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bjorkman PJ, et al. Structure of the HLA class I histocompatibility antigen, HLA-A2. Nature. 1987;329:506.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Brown JH, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364:33.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Colombani J. Blood platelets in HL-A serology. Transplant Proc. 1971;3:1078.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Svejgaard A, Kissemeyer-Nielson F, Thorsby E. HL-A typing of platelets. In: Terasaki PI, editor. Histocompatibility testing 1970. Copenhagen: Munksgaard; 1970. p. 160.Google Scholar
  87. 87.
    Leibert M, Aster RH. Expression of HLA-B12 on platelets, on lymphocytes, and in serum: a quantitative study. Tissue Antigens. 1977;9:199.CrossRefGoogle Scholar
  88. 88.
    Aster RH, Szatkowski N, Liebert M. Expression of HLAB12, HLA-B8, W4, and W6 on platelets. Transplant Proc. 1977;9:1965.Google Scholar
  89. 89.
    Duquesnoy RJ, Testin J, Aster RH. Variable expression of W4 and W6 on platelets: Possible relevance to platelet transfusion therapy of alloimmunized thrombocytopenic patients. Transplant Proc. 1977;9:1827.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Popovski MA, Moore SB. Diagnostic and pathogenic considerations in transfusion-related acute lung injury. Transfusion. 1985;25:573.CrossRefGoogle Scholar
  91. 91.
    Kopko PM, et al. HLA class II antibodies in transfusion-related acute lung injury. Transfusion. 2001;41:1244.PubMedCrossRefGoogle Scholar
  92. 92.
    Eder AF, et al. Transfusion-related acute lung injury surveillance (2003–2005) and the potential impact of the selective use of plasma from male donors in the American Red Cross. Transfusion. 2007;47:599.PubMedCrossRefGoogle Scholar
  93. 93.
    Tiercy JM, Jannet M, Mach B. A new approach for the analysis of HLA class II polymorphism: HLA oligo typing. Blood Rev. 1990;4:9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ajit Gorakshakar
    • 1
  • Harita Gogri
    • 1
  1. 1.ICMR-National Institute of ImmunohaematologyMumbaiIndia

Personalised recommendations