Acute Myeloid Leukemia: An Update

  • Deepshi Thakral
  • Ritu GuptaEmail author


Acute myeloid leukemia (AML) is a rapidly progressing aggressive malignancy of the hematopoietic myeloid progenitor cells most commonly found in older adults. It is characterized by an impaired differentiation and aberrant clonal proliferation of immature myeloid precursors in the bone marrow that result in the accumulation of nonfunctional myeloblasts, impaired hematopoiesis, bone marrow failure, and peripheral blood cytopenias, thus increasing the risk of severe infections, anemia, bleeding, and other complications in patients [1, 2]. Classically, morphology, immunophenotyping, and cytogenetic approaches have been used for the diagnosis and classification of AML (French-American-British (FAB) classification) [3, 4]. With the advent of whole genome sequencing, the complexity of AML emerged wherein heterogeneous and competent clones evolve and coexist at any time during the disease course [5–8]. Recurrent somatic mutations have been identified in AML, and the number of leukemia-associated genes is increasingly comprehensive [9, 10]. Henceforth, the WHO incorporated molecular alterations, in addition to the conventional methods for AML classification to establish clonality, identify molecular translocations and risk stratification of patients (2008–2009) and further revised in 2016 [11–14]. Thereafter, a paradigm shift from a morphologic classification of AML to one guided by causative genomic changes has been witnessed [15]. For the past four decades, the standard of care for AML has been 3 + 7 combination chemotherapy, with 3 days of anthracycline and 7 days of cytarabine [16, 17]. Although many patients with AML respond to induction chemotherapy, refractory disease is common, and relapse represents the major cause of treatment failure despite intensive therapy. Targeted therapies are emerging as treatment modalities and several clinical trials are ongoing [18, 19].


Acute myeloid leukemia AML Cytogenetic Molecular genetics RUNX1-RUNX1T1 CBFB-MYH11 PML-RARA NPM1 CEBPA FLT3 Next-generation sequencing Genomic classification of AML Targeted therapies 


  1. 1.
    Hartmut Döhner MD, Daniel J, Weisdorf MD, Clara D, Bloomfield MD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1036–52.Google Scholar
  2. 2.
    Estey E, Döhner H. Acute myeloid leukaemia. Lancet. 2006;368(9550):1894–907.PubMedCrossRefGoogle Scholar
  3. 3.
    Bennett JM, Catovsky D, Daniel M-T, Flandrin G, Galton DAG, Gralnick HR, et al. Proposals for the classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. Br J Haematol. 1976;33(4):451–8.CrossRefGoogle Scholar
  4. 4.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British cooperative group. Ann Intern Med. 1985;103(4):620–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–10.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O’Laughlin M, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014;25(3):379–92.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66–72.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Martelli MP, Sportoletti P, Tiacci E, Martelli MF, Falini B. Mutational landscape of AML with normal cytogenetics: biological and clinical implications. Blood Rev. 2013;27(1):13–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman J. WHO classification of tumours of haematopoietic and lymphoid tissues. In: WHO classification of tumours, vol. 2. 4th ed; 2008. p. 439.Google Scholar
  13. 13.
    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–302.PubMedCrossRefGoogle Scholar
  14. 14.
    Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House, Virginia, November 1997. J Clin Oncol. 1999;17(12):3835–49.PubMedCrossRefGoogle Scholar
  15. 15.
    Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, Van P, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Komanduri KV, Levine RL. Diagnosis and therapy of acute myeloid leukemia in the era of molecular risk stratification. Annu Rev Med. 2016;67(1):59–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Roboz GJ. Current treatment of acute myeloid leukemia. Curr Opin Oncol. 2012;24:711–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Lichtenegger FS, Krupka C, Haubner S, Köhnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol. 2017;10(1):142.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Nagler E, Xavier MF, Frey N. Updates in immunotherapy for acute myeloid leukemia. Transl Cancer Res. 2017;6(1):86–92. Scholar
  20. 20.; Accessed 10 Dec 2017.
  21. 21.
    Fircanis S, Merriam P, Khan N, Castillo JJ. The relation between cigarette smoking and risk of acute myeloid leukemia: an updated meta-analysis of epidemiological studies. Am J Hematol. 2014;89(8):E125.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang P, Liu H, Jiang T, Yang J. Cigarette smoking and the risk of adult myeloid disease: a meta-analysis. PLoS One. 2015;10(9).PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Godley LA, Larson RA. Therapy-related myeloid leukemia. Semin Oncol. 2008;35(4):418–29.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Yin CC, Medeiros LJ, Bueso-Ramos CE. Recent advances in the diagnosis and classification of myeloid neoplasms—comments on the 2008 WHO classification. Int J Lab Hematol. 2010;32:461–76.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mezei G, Sudan M, Izraeli S, Kheifets L. Epidemiology of childhood leukemia in the presence and absence of Down syndrome. Cancer Epidemiol. 2014;38:479–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Thalhammer-Scherrer R, Wieselthaler G, Knoebl P, Schwarzinger I, Simonitsch I, Mitterbauer G, et al. Post-transplant acute myeloid leukemia (PT-AML). Leukemia. 1999;13(3):321–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Morton LM, Gibson TM, Clarke CA, Lynch CF, Anderson LA, Pfeiffer R, et al. Risk of myeloid neoplasms after solid organ transplantation. Leukemia. 2014;28(12):2317–23.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Nazha A, Ravandi F. Acute myeloid leukemia in the elderly: do we know who should be treated and how? Leuk Lymphoma. 2014;55:979–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Kantarjian H, Ravandi F, O’Brien S, Cortes J, Faderl S, Garcia-Manero G, et al. Intensive chemotherapy does not benefit most older patients (age 70 years or older) with acute myeloid leukemia. Blood. 2010;116(22):4422–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zeichner SB, Arellano ML. Secondary adult acute myeloid leukemia: a review of our evolving understanding of a complex disease process. Curr Treat Options Oncol. 2015;16:37.PubMedCrossRefGoogle Scholar
  31. 31.
    Rozovski U, Ohanian M, Ravandi F, Garcia-Manero G, Faderl S, Pierce S, et al. Incidence of and risk factors for involvement of the central nervous system in acute myeloid leukemia. Leuk Lymphoma. 2015;56(5):1392–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9:257–68.PubMedCrossRefGoogle Scholar
  33. 33.
    Tacke D, Buchheidt D, Karthaus M, Krause SW, Maschmeyer G, Neumann S, et al. Primary prophylaxis of invasive fungal infections in patients with haematologic malignancies. 2014 update of the recommendations of the infectious diseases working Party of the German Society for Haematology and Oncology. Ann Hematol. 2014;93:1449–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Falini B, Lenze D, Hasserjian R, Coupland S, Jaehne D, Soupir C, et al. Cytoplasmic mutated nucleophosmin (NPM) defines the molecular status of a significant fraction of myeloid sarcomas. Leukemia. 2007;21:1566–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Pileri SA, Ascani S, Cox MC, Campidelli C, Bacci F, Piccioli M, et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia. 2007;21(2):340–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Rowley JD. Chromosomal translocations: revisited yet again. Blood. 2008;112(6):2183–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301(22):2349–61.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cammenga J. Gatekeeper pathways and cellular background in the pathogenesis and therapy of AML. Leukemia. 2005;19:1719–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Koeffler HP, Leong G. Preleukemia: one name, many meanings. Leukemia. 2017;31:534–42.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Naegeli O. Ueber rothes Knochenmark und Myeloblasten. Dtsch Med Wochenschr. 1900;26(18):287–90.CrossRefGoogle Scholar
  41. 41.
    Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92(7):2322–33.PubMedGoogle Scholar
  42. 42.
    Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene. 2002;21(21 REV. ISS. 2):3422–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Huret JL, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, et al. Atlas of genetics and cytogenetics in oncology and haematology peer reviewed internet encyclopedia/journal/database. Chromosome Res. 2009;17:S14–5. Scholar
  44. 44.
    Downing JR. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol. 1999;106:296–308.PubMedCrossRefGoogle Scholar
  45. 45.
    Licht JD. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene. 2001;20:5660–79.PubMedCrossRefGoogle Scholar
  46. 46.
    Paschka P, Marcucci G, Ruppert AS, Mrózek K, Chen H, Kittles RA, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8,21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24(24):3904–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2(7):502–13.PubMedCrossRefGoogle Scholar
  48. 48.
    de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15,17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature. 1990;347(6293):558–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Melnick A, Licht JD. Deconstructing a disease: RARα, its fusion partners and their roles in pathogenesis of acute promyelocytic leukemia. Blood. 1999;93(10):3167–215.PubMedGoogle Scholar
  50. 50.
    Schlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L, et al. Mutations and treatment outcome in cytogenetically Normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909–18.PubMedCrossRefGoogle Scholar
  51. 51.
    Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254–66.PubMedCrossRefGoogle Scholar
  52. 52.
    Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Rau R, Brown P. Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematol Oncol. 2009;27:171–81.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Verhaak RGW, Goudswaard CS, Van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia. 2017;31:798–807.PubMedCrossRefGoogle Scholar
  56. 56.
    Ghanem H, Tank N, Tabbara IA. Prognostic implications of genetic aberrations in acute myelogenous leukemia with normal cytogenetics. Am J Hematol. 2012;87:69–77.PubMedCrossRefGoogle Scholar
  57. 57.
    Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med. 2012;4(149):149ra118.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013;121:3563–72.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol. 2016;103:62–77.PubMedCrossRefGoogle Scholar
  61. 61.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Gillis S, Smith KA. Long term culture of tumour-specific cytotoxic T cells. Nature. 1977;268(5616):154–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453–62.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ferrara F. New agents for acute myeloid leukemia: is it time for targeted therapies? Expert Opin Investig Drugs. 2012;21(2):179–89.PubMedCrossRefGoogle Scholar
  67. 67.
    Teague RM, Kline J. Immune evasion in acute myeloid leukemia: current concepts and future directions. J Immunother Cancer. 2013;1.Google Scholar
  68. 68.
    Elias S, Yamin R, Golomb L, Tsukerman P, Stanietsky-Kaynan N, Ben-Yehuda D, et al. Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood. 2014;123(10):1535–43.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117(17):4501–10.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hoseini SS, Cheung NK. Acute myeloid leukemia targets for bispecific antibodies. Blood Cancer J. 2017;7:e552.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Köhnke T, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia. 2016;30(2):484–91.PubMedCrossRefGoogle Scholar
  72. 72.
    Kavanagh S, Murphy T, Law A, Yehudai D, Ho JM, Chan S, et al. Emerging therapies for acute myeloid leukemia: translating biology into the clinic. JCI Insight. 2017;2(18):e95679.PubMedCentralCrossRefGoogle Scholar
  73. 73.
    Levis M. Midostaurin approved for FLT3-mutated AML. Blood. 2017;129(26):3403–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Estey EH. Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia. 2013;27:1803–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Cruijsen M, Lübbert M, Wijermans P, Huls G. Clinical results of Hypomethylating agents in AML treatment. J Clin Med. 2014;4(1):1–17.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016;127(1):53–61.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci. 1989;86(24):10024–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13:370–83.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, Lassailly F, Tettamanti S, Spinelli O, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia. 2014;28(8):1596–605.PubMedCrossRefGoogle Scholar
  80. 80.
    Ehninger A, Kramer M, Röllig C, Thiede C, Bornhäuser M, Von Bonin M, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014;4(6):e218.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lam SS-Y, He AB-L, Leung AY-H. Treatment of acute myeloid leukemia in the next decade—towards real-time functional testing and personalized medicine. Blood Rev. 2017;31:418. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory Oncology Unit, Dr. B.R.A. IRCHAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations