Advertisement

Evolutional Equations

  • Mitsuhiro T. Nakao
  • Michael Plum
  • Yoshitaka Watanabe
Chapter
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 53)

Abstract

In the present chapter, we extend the verification principle described up to now to the nonlinear parabolic problems. As you can see, from the previous arguments, in order to verify the solution of elliptic problems, the constructive error estimates for the approximation of the Poisson equations play an essential role.

References

  1. 14.
    Arioli, G., Koch, H.: Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst. 9(3), 1119–1133 (2010)MathSciNetCrossRefGoogle Scholar
  2. 21.
    Barbu, V.: Partial Differential Equations and Boundary Value Problems. Volume 441 of Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1998). Translated and revised from the 1993 Romanian original by the authorGoogle Scholar
  3. 67.
    Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007)MathSciNetCrossRefGoogle Scholar
  4. 83.
    Gameiro, M., Lessard, J.-P.: A posteriori verification of invariant objects of evolution equations: periodic orbits in the Kuramoto-Sivashinsky PDE. SIAM J. Appl. Dyn. Syst. 16(1), 687–728 (2017)MathSciNetCrossRefGoogle Scholar
  5. 100.
    Hashimoto, K., Nakao, M.T.: Numerical verification of solutions for nonlinear parabolic problems. Preprint archives (2018). https://urldefense.proofpoint.com/v2/url?u=https-3A__arxiv.org_abs_arXiv-3A1811.04261&d=DwICAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=7L1aTXSqJtvj9tf4l2-eZ5ZGEm_WlHwHoJgOoXjUsjk&m=qLtCS66FCpL9nclHaBGHI3ft0bTCjfwuGzhv6tsl-Ls&s=VfNDznpI02KdGoJGkFB_nXe3_mNdN1VFObbPV4fNQXU&e= Google Scholar
  6. 101.
    Hashimoto, K., Kimura, T., Minamoto, T., Nakao, M.T.: Constructive error analysis of a full-discrete finite element method for the heat equations. Jpn. J. Ind. Appl. Math. 36(3), 777–790 (2019). https://doi.org/10.1007/s13160-019-00362-6 MathSciNetCrossRefGoogle Scholar
  7. 120.
    Kinoshita, T., Kimura, T., Nakao, M.T.: A posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations. J. Comput. Appl. Math. 236(6), 1622–1636 (2011)MathSciNetCrossRefGoogle Scholar
  8. 121.
    Kinoshita, T., Kimura, T., Nakao, M.T.: On the a posteriori estimates for inverse operators of linear parabolic equations with applications to the numerical enclosure of solutions for nonlinear problems. Numer. Math. 126(4), 679–701 (2014)MathSciNetCrossRefGoogle Scholar
  9. 147.
    Luskin, M., Rannacher, R.: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19(1), 93–113 (1982)MathSciNetCrossRefGoogle Scholar
  10. 154.
    Minamoto, T.: Numerical existence and uniqueness proof for solutions of semilinear parabolic equations. Appl. Math. Lett. 14(6), 707–714 (2001)MathSciNetCrossRefGoogle Scholar
  11. 165.
    Mizuguchi, M., Takayasu, A., Kubo, T., Oishi, S.: A method of verified computations for solutions to semilinear parabolic equations using semigroup theory. SIAM J. Numer. Anal. 55(2), 980–1001 (2017)MathSciNetCrossRefGoogle Scholar
  12. 166.
    Mizuguchi, M., Takayasu, A., Kubo, T., Oishi, S.: Numerical verification for existence of a global-in-time solution to semilinear parabolic equations. J. Comput. Appl. Math. 315, 1–16 (2017)MathSciNetCrossRefGoogle Scholar
  13. 183.
    Nakao, M.T., Hashimoto, K., Watanabe, Y.: A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems. Computing 75(1), 1–14 (2005)MathSciNetCrossRefGoogle Scholar
  14. 190.
    Nakao, M.T.: Solving nonlinear parabolic problems with result verification. I. One-space-dimensional case. In: Proceedings of the International Symposium on Computational Mathematics (Matsuyama, 1990), vol. 38, pp. 323–334 (1991)Google Scholar
  15. 196.
    Nakao, M.T., Hashimoto, K.: A numerical verification method for solutions of nonlinear parabolic problems. J. Math-for-Ind. 1, 69–72 (2009)MathSciNetzbMATHGoogle Scholar
  16. 198.
    Nakao, M.T., Kimura, T., Kinoshita, T.: Constructive a priori error estimates for a full discrete approximation of the heat equation. SIAM J. Numer. Anal. 51(3), 1525–1541 (2013)MathSciNetCrossRefGoogle Scholar
  17. 201.
    Nakao, M.T., Kinoshita, T., Kimura, T.: On a posteriori estimates of inverse operators for linear parabolic initial-boundary value problems. Computing 94(2–4), 151–162 (2012)MathSciNetCrossRefGoogle Scholar
  18. 214.
    Nakao, M.T., Yamamoto, N., Kimura, S.: On the best constant in the error bound for the \(H^1_0\)-projection into piecewise polynomial spaces. J. Approx. Theory 93(3), 491–500 (1998)Google Scholar
  19. 224.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Volume 44 of Applied Mathematical Sciences. Springer, New York (1983)Google Scholar
  20. 250.
    Rump, S.M.: INTLAB – INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). https://urldefense.proofpoint.com/v2/url?u=http-3A__www.ti3.tuhh.de_rump_&d=DwICAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=7L1aTXSqJtvj9tf4l2-eZ5ZGEm_WlHwHoJgOoXjUsjk&m=qLtCS66FCpL9nclHaBGHI3ft0bTCjfwuGzhv6tsl-Ls&s=4fN8jSzzyjMehkBnbr4on4X4vcRsGqlMI6mA13ne4ZY&e= CrossRefGoogle Scholar
  21. 261.
    Schultz, M.H.: Spline Analysis. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  22. 266.
    Takayasu, A., Mizuguchi, M., Kubo, T., Oishi, S.: Accurate method of verified computing for solutions of semilinear heat equations. Reliab. Comput. 25, 74–99 (2017)MathSciNetzbMATHGoogle Scholar
  23. 315.
    Zeidler, E.: Nonlinear functional analysis and its applications. II/A. Springer, New York (1990). Linear monotone operators, Translated from the German by the author and Leo F. BoronCrossRefGoogle Scholar
  24. 319.
    Zgliczyński, P.: Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs. Topol. Methods Nonlinear Anal. 36(2), 197–262 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mitsuhiro T. Nakao
    • 1
  • Michael Plum
    • 2
  • Yoshitaka Watanabe
    • 3
  1. 1.Faculty of MathematicsKyushu UniversityFukuokaJapan
  2. 2.Faculty of MathematicsKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Research Institute for Information TechnologyKyushu UniversityFukuokaJapan

Personalised recommendations