Advertisement

Introduction

Chapter

Abstract

Land-use and land-cover change (LUCC) plays a pivotal role in global environmental change and significantly affects Earth-atmosphere interactions, ecosystem services, climate change, biogeochemical cycles, and biodiversity. Understanding their dynamic processes and impacts is crucial to better use and manage precious land resources and to realize sustainable development. Global mountain regions cover one fourth of the Earth’s land surface and are most vulnerable and sensitive to environmental change and global warming, which provide unique opportunities to monitor and study environmental change processes and consequences. Meanwhile, remote sensing provides spatially continuous observations on the Earth’s surface from space. The integration with geographic information systems (GIS) is an effective approach to characterize, map, and monitor land-use and land-cover change and dynamic processes. With the advancement in remote sensing, GIS, and computer technology, it is now possible to monitor, map, and assess land cover and land-cover changes at multiple spatial and temporal scales with more spatially and temporally explicit ways.

Keywords

LUCC Global significance Remote sensing Mountain region 

References

  1. Abrol, Y.P., S. Sangwan, and M.K. Tiwari. 2002. Land Use Historical Perspective–Focus on Indo-Gangetic Plains, 182. New Delhi: Allied Publishers Pvt. Limited. ISBN 81-7764-274-X.Google Scholar
  2. Agarwal, C., G.M. Green, and J.M. Grove et al. 2001. A Review and Assessment of Land-Use Change Models. Dynamics of Space, Time, and Human Choice. Bloomington and South Burlington, Center for the Study of Institutions, Population, and Environmental Change, Indiana University and USDA Forest Service. CIPEC Collaborative Report Series 1.Google Scholar
  3. Alkama, R., and A. Cescatti. 2016. Biophysical climate impacts of recent changes in global forest cover. Science 351 (6273): 600–604.CrossRefGoogle Scholar
  4. Allen, J.C., and D.F. Barnes. 1985. The causes of deforestation in developing countries. Annals of the Association of American Geographers 75: 163–184.CrossRefGoogle Scholar
  5. Anderson, J.R., E. Hardy, J. Roach, and R. Witmer. 1976. A Land Use and Land Cover Classification System for Use with Remote Sensor Data. United States Geological Survey Professional Paper 964.Google Scholar
  6. Baccini, A., S.J. Goetz, W.S. Walker, et al. 2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change 2: 182–185.CrossRefGoogle Scholar
  7. BAHC. 1993. Biospheric Aspects of the Hydrological Cycle (BAHC): The Operational Plan. IGBP Report No. 27. BAHC Core Project Office, Berlin.Google Scholar
  8. Bajracharya S.R., P.K. Mool, B.R. Shrestha. 2007. Impact of Climate Change on Himalayan Glaciers and Glacial Lakes: Case Studies on GLOF and Associated Hazards in Nepal and Bhutan. ICIMOD and UNEP/ROAP, Kathmandu, Nepal.Google Scholar
  9. Ball, J.B. 2001. Global forest resources: History and dynamics. In The Forests Handbook, ed. J. Evans, vol. 1, 3, 418 pp–22. Oxford: Blackwell Science.CrossRefGoogle Scholar
  10. Ban, Y., and A. Jacob. 2013. Object-based fusion of multitemporal multiangle ENVISAT ASAR and HJ-1 multispectral data for urban land-cover mapping. IEEE Transactions on Geoscience and Remote Sensing 51 (4): 1998–2006.CrossRefGoogle Scholar
  11. Banskota, K., B.S. Karky, and M. Skutsch. 2007. Reducing Carbon Emissions Through Community-Managed Forests in The Himalaya. Kathmandu: ICIMOD.Google Scholar
  12. Barnes, A.D., M. Jochum, S. Mumme, et al. 2014. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications 5: 5351.CrossRefGoogle Scholar
  13. Bartalev, S., A.S. Belward, D. Erchov, et al. 2003. A new SPOT4-VEGETATION derived land cover map of Northern Eurasia. International Journal of Remote Sensing 24: 1977–1982.CrossRefGoogle Scholar
  14. Bartholomé, E., and A.S. Belward. 2005. GLC 2000: A new approach to global land cover mapping from earth observation data. International Journal of Remote Sensing 26 (9): 1959–1977.CrossRefGoogle Scholar
  15. Becker, A., and H. Bugmann., eds. 1997. Predicting Global Change Impacts on Mountain Hydrology and Ecology: Integrated Catchment Hydrology/Altitudinal Gradient Studies, IGBP Report 43, Stockholm.Google Scholar
  16. ———, eds. 2001. Global Change and Mountain Regions: The Mountain Research Initiative. IGBP Report 49, Stockholm.Google Scholar
  17. Beniston, M. 2003. Climatic change in mountain regions: A review of possible impacts. Climatic Change 59: 5–31.CrossRefGoogle Scholar
  18. Bennett, E.M., S.R. Carpenter, and N.F. Caraco. 2001. Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience 51 (3): 227–234.CrossRefGoogle Scholar
  19. Bilsborrow, R.E., and H.W.O. Ogondo. 1992. Population-driven changes in land use in developing countries. Ambio 21: 37–45.Google Scholar
  20. Bonan, G.B., and S.C. Doney. 2018. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359: eaam8328.CrossRefGoogle Scholar
  21. Bruzzone, L., and S.B. Serpico. 1997. An iterative technique for the detection of land-cover transitions in multitemporal remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 35 (4): 858–867.CrossRefGoogle Scholar
  22. Charney, J., and P.H. Stone. 1975. Drought in the Sahara: A biogeophysical feedback mechanism. Science 187: 434–435.CrossRefGoogle Scholar
  23. Chase, T.N., R.A. Pielke, T.G.F. Kittel, et al. 1999. Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dynamics 16: 93–105.CrossRefGoogle Scholar
  24. Chen, J., J. Chen, A. Liao, X. Cao, L. Chen, X. Chen, et al. 2015a. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing 103: 7–27.CrossRefGoogle Scholar
  25. Chen, D., B. Xu, and T. Yao. 2015b. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin 60 (32): 3025–3035.  https://doi.org/10.1360/N972014-01370.CrossRefGoogle Scholar
  26. Chinn, T. 1996. New Zealand glacier responses to climate change of the past century. New Zealand Journal of Geology and Geophysics 39: 415–428.CrossRefGoogle Scholar
  27. Chu, D., L. Lu, and T. Zhang. 2007. Sensitivity of normalized difference vegetation index (NDVI) to seasonal and interannual climate conditions in the Lhasa area, Tibetan plateau, China. Arctic, Antarctic, and Alpine Research 39 (4): 635–641.CrossRefGoogle Scholar
  28. Chu, D., Y. Yang, J. Luobo, et al. 2015. The variations of snow cover days over the Tibetan Plateau during 1981–2010. Journal of Glaciology and Geocryology 37 (6): 1461–1472.Google Scholar
  29. Chuvieco, E., and A. Huete. 2009. Fundamentals of Satellite Remote Sensing. Boca Raton: CRC Press.CrossRefGoogle Scholar
  30. Costanza, R., and M. Ruth. 1998. Using dynamic modeling to scope environmental problems and build consensus. Environmental Management 22: 183–195.CrossRefGoogle Scholar
  31. Crutzen, P.J., and M.O. Andreae. 1990. Biomass burning in the tropics: Impacts on atmospheric chemistry and biogeochemical cycles. Science 25: 1669–1678.CrossRefGoogle Scholar
  32. Cui, X.F., and H.F. Graf. 2009. Recent land cover changes on the Tibetan Plateau: A review. Climatic Change 94: 47–61.CrossRefGoogle Scholar
  33. De Almeida, C.M., M. Batty, A.M. Vieira Monteiro, et al. 2003. Stochastic cellular automata modeling of urban land use dynamics: Empirical development and estimation. Computers, Environment and Urban Systems 27: 481–509.CrossRefGoogle Scholar
  34. DeFries, R.S., and J.R.G. Townshend. 1994. NDVI-derived land-cover classifications at a global scale. International Journal of Remote Sensing 15: 3567–3586.CrossRefGoogle Scholar
  35. Defries, R.S., J.A. Foley, and G.P. Asner. 2004. Land-use choices: Balancing human needs and ecosystem function. Frontiers in Ecology and the Environment 2 (5): 249–257.CrossRefGoogle Scholar
  36. Dhar, T.N. 1999. Land Policies, Land Management and Land Degradation in the Hindu Kush-Himalayas: India Study Report. Kathmandu: ICIMOD.Google Scholar
  37. Donnay, J.P., M.J. Barnsley, and P.A. Longley. 2001. Remote sensing and urban analysis. In Remote Sensing and Urban Analysis, 3–18. London: Taylor and Francis.CrossRefGoogle Scholar
  38. Ehlers, M., M.A. Jadkowski, R.R. Howard, et al. 1990. Application of SPOT data for regional growth analysis and local planning. Photogrammetric Engineering and Remote Sensing 56: 175–180.Google Scholar
  39. Eichelmann, E., K.S. Hemes, S.H. Knox, et al. 2018. The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the Sacramento–San Joaquin River Delta, California. Agricultural and Forest Meteorology 256: 179–195.CrossRefGoogle Scholar
  40. Eltahir, E.A.B., and R.L. Bras. 1996. Precipitation recycling. Reviews of Geophysics 34 (3): 367–378.CrossRefGoogle Scholar
  41. FAO. 2001a. FAO Statistical Databases. http://apps.fao.org.
  42. ———. 2001b. Global Forest Resources Assessment 2000 (FRA 2000): Main Report, FAO Forestry Paper, 140. Rome: FAO.Google Scholar
  43. Findell, K.L., A. Berg, P. Gentine, et al. 2017. The impact of anthropogenic land use and land cover change on regional climate extremes. Nature Communications 8 (1): 1–10.CrossRefGoogle Scholar
  44. Fitzharris, B.B., I. Allison, R.J. Braithwaite et al. 1996. The Cryosphere: Changes and their Impacts, in Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Chapter 5, Cambridge University Press, 241–265.Google Scholar
  45. Foley, J.A., J.E. Kutzbach, M.T. Coe, and S. Levis. 1994. Feedbacks between climate and boreal forests during the holocene epoch. Nature 371: 52–54.CrossRefGoogle Scholar
  46. Foley, J.A., R. DeFries, G.P. Asner, et al. 2005. Global consequences of land use. Science 309: 570–574.CrossRefGoogle Scholar
  47. Foody, G.M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment 80: 185–201.CrossRefGoogle Scholar
  48. Friedl, M.A., D.K. McIver, J.C.F. Hodges, et al. 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment 83: 287–302.CrossRefGoogle Scholar
  49. Fuchs, R., P.H. Verburg, J.G.P.W. Clevers, et al. 2015. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Applied Geography 59: 43–55.CrossRefGoogle Scholar
  50. Future Earth. 2013. Future Earth Initial Design: Report of the Transition Team. Paris: International Council for Science.Google Scholar
  51. Gautam, A.P., E.L. Webb, G.P. Shivakoti, et al. 2003. Land use dynamics and landscape change pattern in a mountain watershed in Nepal. Agriculture, Ecosystems and Environment 99: 83–96.CrossRefGoogle Scholar
  52. Geist, H.J., and E.F. Lambin. 2002. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52 (2): 143–150.CrossRefGoogle Scholar
  53. Gilbert, N. 2012. Palm-oil boom raises conservation concerns. Nature 487: 14–15.CrossRefGoogle Scholar
  54. Giri, C.P., ed. 2012. Remote Sensing of Land Use and Land Cover: Principles and Applications. Boca Raton: CRC Press.Google Scholar
  55. Grekousis, G., G. Mountrakis, and M. Kavouras. 2015. An overview of 21 global and 43 regional land-cover mapping products. International Journal of Remote Sensing 36: 5309–5335.CrossRefGoogle Scholar
  56. Gurung, H. 2004. Landscape Changes in the Nepal Hills. Kathmandu: ICIMOD.Google Scholar
  57. Haeberli, W., and M. Beniston. 1998. Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27: 258–265.Google Scholar
  58. Han, G., J. Chen, C. He, S. Li, H. Wu, A. Liao, and S. Peng. 2015. A web-based system for supporting global land cover data production. ISPRS Journal of Photogrammetry and Remote Sensing 103: 66–80.CrossRefGoogle Scholar
  59. Hansen, M.C., R.S. DeFries, J.R.G. Townshend, et al. 2000. Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing 21: 1331–1364.CrossRefGoogle Scholar
  60. Hodge, S.M., D.C. Trabant, R.M. Krimmel, et al. 1998. Climate variations and changes in mass of three glaciers in western North America. Journal of Climate 11: 2161–2179.CrossRefGoogle Scholar
  61. Holligan, P.M., and de H. Boois. 1993. Land-Ocean Interactions in the Coastal Zone (LOICZ). IGBP Report No. 25. Stockholm: International Geosphere-Biosphere Program.Google Scholar
  62. Houghton, R.A., and J.L. Hackler. 2001. ORNL/CDIAC-131, NDP-050/R1. Oak Ridge: Oak Ridge National Laboratory.Google Scholar
  63. Houghton, R.A., and A. Nassikas. 2017. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochemical Cycles 31: 456–472.CrossRefGoogle Scholar
  64. Houghton, R.A., R.D. Boone, J.M. Melillo, et al. 1985. Net flux of CO2 from tropical forests in 1980. Nature 316: 617–209.CrossRefGoogle Scholar
  65. Houghton, R.A., J.L. Hackler, and K.T. Lawrence. 1999. The U.S. carbon budget: Contribution from land-use change. Science 285: 574–578.CrossRefGoogle Scholar
  66. Houghton, R.A., B. Byers, and A.A. Nassikas. 2015. A role for tropical forests in stabilizing atmospheric CO2. Nature Climate Change 5: 1022–1023.CrossRefGoogle Scholar
  67. ICIMOD. 2006. Securing Sustainable Livelihoods in the Hindu Kush-Himalayas: Directions for Future Research, Development and Cooperation (ICIMOD 21st Anniversary Symposium). Kathmandu, Nepal.Google Scholar
  68. IPCC. 2013. Climate Change 2013: The Physical Science Basis, 1–50. Cambridge: Cambridge University Press.Google Scholar
  69. ———. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang, 151 pp. Geneva: IPCC.Google Scholar
  70. Kalnay, E., and M. Cai. 2003. Impact of urbanization and land-use change on climate. Nature 423: 528.CrossRefGoogle Scholar
  71. Kerkhoff, E., and E. Sharma, eds. 2006. Debating Shifting Cultivation in the Eastern Himalayas. Kathmandu: ICIMOD.Google Scholar
  72. Lambin, E., and P. Meyfroidt. 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences 108: 3465–3472.CrossRefGoogle Scholar
  73. Lambin, E.F., X. Baulies, and N. Bockstael, et al. 1999. Land-Use and Land-Cover Change Implementation Strategy. IGBP Report 48. IHDP Report 10. Stockholm: Royal Swedish Academy of Sciences.Google Scholar
  74. Lambin, E.F., Turner II, B.L. Geist, H.J. et al. 2001. The causes of land-use and land-cover change: Moving beyond myths. Global Environmental Change, 11, 261–269.Google Scholar
  75. Lambin, E.F., H.J. Geist, and E. Lepers. 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28: 205–241.CrossRefGoogle Scholar
  76. Lawler, J.J., D.J. Lewis, E. Nelson, et al. 2014. Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences of the United States of America 111 (20): 7492.CrossRefGoogle Scholar
  77. Leemans, R., W. Cramer, and J.G. van Minnen. 1995. Prediction of global biome distribution using bioclimatic equilibrium models. In Effects of Global Change on Coniferous Forests and Grassland, ed. J.M. Melillo and A. Breymeyer. New York: Wiley.Google Scholar
  78. Lesschen, J.P., P.H. Verburg, S.J. Staal, 2005. Statistical Methods for Analysing the Spatial Dimension of Changes in Land Use and Farming Systems. LUCC Report Series No. 7, LUCC Focus 3 Office and ILRI 2005.Google Scholar
  79. Liu, J., H. Tian, M. Liu, D. Zhuang, et al. 2005. China’s changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophysical Research Letters 32: L02405.Google Scholar
  80. Liu, X., X. Liang, X. Li, et al. 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning 168: 94–116.CrossRefGoogle Scholar
  81. Loveland, T.R., J.W. Merchant, D.O. Ohlen, and J.F. Brown. 1991. Development of a land-cover characteristics database for the conterminous U.S. Photogrammetric Engineering and Remote Sensing 57 (11): 1453–1463.Google Scholar
  82. Loveland, T.R., B.C. Reed, J.F. Brown, et al. 2000. Development of global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21: 1303–1330.CrossRefGoogle Scholar
  83. Mahmood, R., R.A. Pielke, and K.G. Hubbard. 2014. Land cover changes and their biogeophysical effects on climate. International Journal of Climatology 34 (4): 929–953.CrossRefGoogle Scholar
  84. Messerli, B., and J.D. Ives, eds. 1997. Mountains of the World: A Global Priority. New York: The Parthenon Publishing Group.Google Scholar
  85. Meyer, W.B., and B.L. Turner. 1992. Human-population growth and global land-use cover change. Annual Review of Ecology and Systematics 23: 39–61.CrossRefGoogle Scholar
  86. Mittermeier, R., C.G. Mittermeier, P.R. Gil, et al. 2003. Wilderness: Earth’s Last Wild Places, 576 pp. Chicago: University Chicago Press.Google Scholar
  87. Morain, S.A. 1991. Observations on Transferring Earth Observing Technology to the Developing World, vol. 3. Technical Papers of the ACSM-ASPRS Annual Convention, Baltimore, MD, 282–293.Google Scholar
  88. Newbold, T., L.N. Hudson, S.L.L. Hill, et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520 (7545): 45–50.CrossRefGoogle Scholar
  89. Newbold, T., L.N. Hudson, A.P. Arnell, et al. 2016. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353 (6296): 288–291.CrossRefGoogle Scholar
  90. Ning, J., J. Liu, W. Kuang, et al. 2018. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. Journal of Geographical Sciences 28 (5): 547–562.CrossRefGoogle Scholar
  91. Ojima, D., E. Moran, W. McConnell, et al. 2005. Global Land Project: Science Plan and Implementation Strategy. IGBP Report No. 53/IHDP Report No. 19. Stockholm: IGBP, 64 pp.Google Scholar
  92. Otterman, J. 1974. Baring high-albedo soils by overgrazing: A hypothesised desertification mechanism. Science 86: 531–533.CrossRefGoogle Scholar
  93. Paudel, B., Y.L. Zhang, S.C. Li, et al. 2016. Review of studies on land use and land cover change in Nepal. Journal of Mountain Science 13 (4): 643–660.CrossRefGoogle Scholar
  94. Paudel, B., Y. Zhang, S. Li, et al. 2018. Spatiotemporal changes in agricultural land cover in Nepal over the last 100 years. Journal of Geographical Sciences 28 (10): 1519–1537.CrossRefGoogle Scholar
  95. Penner, J. 1994. Atmospheric chemistry and air quality. In Changes in Land Use and Land Cover: A Global Perspective, ed. W.B. Meyer and B.L. Turner II, 175–210. Cambridge: Cambridge University Press.Google Scholar
  96. Pielke, R.A., Sr. 2001. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Reviews of Geophysics 39: 151–177.CrossRefGoogle Scholar
  97. Pijanowski, B.C., S. Pithadia, B.A. Shellito, and K. Alexandridis. 2005. Calibrating a neural network-based urban change model for two metropolitan areas of the upper Midwest of the United States. International Journal of Geographical Information Science 19 (2): 197–216.CrossRefGoogle Scholar
  98. Price, M.F., and N. Butt, eds. 2000. Forests in Sustainable Mountain Development: A State-of-Knowledge Report for 2000. Wallingford: CAB International.Google Scholar
  99. Prinn, R.G. 1994. The interactive atmosphere: Global atmospheric-biospheric chemistry. Ambio 23: 50–61.Google Scholar
  100. Quattrochi, D.A., and M.K. Ridd. 1998. Analysis of vegetation within a semi-arid urban environment using high spatial resolution airborne thermal infrared remote sensing data. Atmospheric Environment 32 (1): 19–33.CrossRefGoogle Scholar
  101. Richards, J.A. 1993. Remote Sensing Digital Image Analysis. 2nd ed. New York: Springer.CrossRefGoogle Scholar
  102. Roy, P.S., A. Roy, P.K. Josh, et al. 2015. Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sensing 7: 2401–2430.CrossRefGoogle Scholar
  103. Sagan, C., O.B. Toon, and J.B. Pollack. 1979. Anthropogenic albedo changes and the earth’s climate. Science 206: 1363–1368.CrossRefGoogle Scholar
  104. Sala, O.E., F.S. Chapin, J.J. Armesto, et al. 2000. Biodiversity: Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.CrossRefGoogle Scholar
  105. Schulze, E.D., and H.A. Mooney. 1993. Biodiversity and Ecosystem Function. New York: Springer.CrossRefGoogle Scholar
  106. Shekhar, M., A. Bhardwaj, S. Singh, et al. 2017. Himalayan glaciers experienced significant mass loss during later phases of little ice age. Scientific Reports 7 (1): 10305.CrossRefGoogle Scholar
  107. Shukla, J., C. Nobre, and P. Sellers. 1990. Amazon deforestation and climate change. Science 247: 1322–1325.CrossRefGoogle Scholar
  108. Sillman, S., and P.J. Samson. 1995. Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. Journal of Geophysical Research: Atmospheres 100: 11,497–11,508.CrossRefGoogle Scholar
  109. Skole, D.L. 1994. Data on global land-cover change: Acquisition, assessment and analysis. In Changes in Land Use and Land Cover: A Global Perspective, ed. W.B. Meyer and B.L. Turner II, 437–471. Cambridge: Cambridge University Press.Google Scholar
  110. Smith, R.B. 2001. Introduction to Remote Sensing of Environment. Lincoln: TNTmips, MicroImages, Inc.Google Scholar
  111. Smith, P., J.I. House, M. Bustamante, et al. 2016. Global change pressures on soils from land use and management. Global Change Biology 22 (3): 1008–1028.CrossRefGoogle Scholar
  112. Snyder, P.K. 2010. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interactions 14: 1–32.CrossRefGoogle Scholar
  113. Song, X., M.C. Hansen, S.V. Stehman, et al. 2018. Global land change from 1982 to 2016. Nature 560: 639–643.CrossRefGoogle Scholar
  114. Stefanov, W.L., M.S. Ramsey, and P.R. Christensen. 2001. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment 77: 173–185.CrossRefGoogle Scholar
  115. Steffen, W.L., B.H. Walker, and J.S. Ingram, et al. 1992. Global Change and Terrestrial Ecosystems: The Operational Plan, 93. IGBP Report No. 21. Stockholm: International Geosphere-Biosphere Program.Google Scholar
  116. Sun, L., J. Wei, D.H. Duan, et al. 2016. Impact of land-use and land-cover change on urban air quality in representative cities of China. Journal of Atmospheric and Solar-Terrestrial Physics 142: 43–54.CrossRefGoogle Scholar
  117. Tang, Y., and P.M. Tulachan, eds. 2003. Mountain Agriculture in the Hindu Kush-Himalayan Region: Proceeding of An International Symposium Held May 21 to 24, 2001 in ICIMOD, Kathmandu, Nepal.Google Scholar
  118. Thompson, L.G., E. Mosley-Thompson, and K.A. Henderson. 2000. Ice core paleoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science 15: 377–394.CrossRefGoogle Scholar
  119. Tolba, M.K., and O.A. El-Kholy, eds. 1992. The World Environment 1972–1992: Two Decades of Challenge. London: Chapman & Hall.Google Scholar
  120. Townshend, J.R.G., C.O. Justice, and V.T. Kalb. 1987. Characterization and classification of South American land cover types using satellite data. International Journal of Remote Sensing 8: 1189–1207.CrossRefGoogle Scholar
  121. Tucker, C.J., J.R. Townshend, and T. Goff. 1985. African land-cover classification using satellite data. Science 227: 369–375.CrossRefGoogle Scholar
  122. Turner, B.L., II, W.C. Clark, R.W. Kates, et al., eds. 1990a. The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years. Cambridge: Cambridge University Press.Google Scholar
  123. Turner, B.L., II, R.E. Kasperson, W.B. Meyer, et al. 1990b. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions. Global Environmental Change 1 (1): 14–22.CrossRefGoogle Scholar
  124. Turner II, B.L., Ross, R.H. and Skole, D.L. 1993. Relating Land Use and Global Land Cover Change. IGBP Report No. 24; HDP Report No. 5.Google Scholar
  125. Turner, B.L., II, W.B. Meyer, and D.L. Skole. 1994. Global land-use/land-cover change: Towards an integrated study. Ambio 23 (1): 91–95.Google Scholar
  126. Turner II, B.L., Skole, D. et al. 1995. Land-Use and Land-Cover Change Science/Research Plan. IGBP Global Change Report No. 35 and HDP Report No. 7.Google Scholar
  127. United Nations. 2016. Sustainable Mountain Development. Report of the Secretary-General.Google Scholar
  128. United Nations. Agenda 21. Rio de Janeiro, 3-14 June 1992.Google Scholar
  129. Veldkamp, A., and L.O. Fresco. 1996. CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecological Modelling 91: 231–248.CrossRefGoogle Scholar
  130. Verburg, P.H., and A. Veldkamp. 2005. Introduction to the special issue on spatial modeling to explore land use dynamics. International Journal of Geographical Information Science 19 (2): 99–102.CrossRefGoogle Scholar
  131. Verburg, P.H., W.T. de Groot, and A. Veldkamp. 2003. Methodology for multi-scale land-use change modelling: Concepts and challenges. In Global Environmental Change and Land Use, ed. A.J. Dolman, A. Verhagen, and C.A. Rovers. Dordrecht: Kluwer Academic Publishers.Google Scholar
  132. Verburg, P.H., P. Schot, M.J. Dijst, et al. 2004. Land use change modeling: Current practice and research priorities. GeoJournal 61: 309–324.CrossRefGoogle Scholar
  133. Verburg, P. H., Crossman, N., Ellis, E. et al. 2016. Global Land Programme: Science Plan and Implementation Strategy for 2016–2021. 2–9.Google Scholar
  134. Victoria, R.L., L.A. Martinelli, J. Mortatti, and J. Richey. 1991. Mechanisms of water recycling in the Amazon basin: Isotopic insights. Ambio 20: 384–387.Google Scholar
  135. Vitousek, P.M. 1994. Beyond global warming: Ecology and global change. Ecology 75: 1861–1876.CrossRefGoogle Scholar
  136. Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of earth’s ecosystems. Science 277: 494–499.CrossRefGoogle Scholar
  137. Vörösmarty, C.J., P. Green, J. Salisbury, and R.B. Lammers. 2000. Global water resources: Vulnerability from climate change and population growth. Science 289: 284–288.CrossRefGoogle Scholar
  138. Wang, J., F.J.F. Chagnon, E.R. Williams, et al. 2009. Impact of deforestation in the Amazon basin on cloud climatology. Proceedings of the National Academy of Sciences of the United States of America 106: 3670–3674.CrossRefGoogle Scholar
  139. Weng, Q. 2002. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling. Journal of Environmental Management 64: 273–284.CrossRefGoogle Scholar
  140. Weng, Q.H., ed. 2011. Advances in Environmental Remote Sensing–Sensors, Algorithms, and Applications, 525–543. Boca Raton, FL: CRC Press.Google Scholar
  141. Wentz, E.A., W.L. Stefanov, C. Gries, et al. 2006. Land use and land cover mapping from diverse data sources for an arid urban environments. Computers, Environment and Urban Systems 30 (3): 320–346.CrossRefGoogle Scholar
  142. Wester, P., A. Mishra, A. Mukherji, and A.B. Shrestha, eds. 2019. The Hindu Kush Himalaya Assessment—Mountains, Climate Change, Sustainability and People. Cham: Springer Nature Switzerland AG.Google Scholar
  143. Wilson, E.O. 1992. The effect of complex social life of evolution and biodiversity. Oikos 63: 13–18.CrossRefGoogle Scholar
  144. Woodwell, G.M., J.E. Hobbie, R.A. Houghton, et al. 1983. Global deforestation: Contribution to atmospheric carbon dioxide. Science 222: 1081–1086.CrossRefGoogle Scholar
  145. Yan, L., and D. Roy. 2015. Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction. Remote Sensing of Environment 158: 478–491.CrossRefGoogle Scholar
  146. Yao, T., L. Thompson, W. Yang, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2: 663–667.CrossRefGoogle Scholar
  147. Yin, H., D. Pflugmacher, A. Li, et al. 2018. Land use and land cover change in inner Mongolia-understanding the effects of china’s re-vegetation programs. Remote Sensing of Environment 204: 918–930.CrossRefGoogle Scholar
  148. Zhang, Y., X. Li, X. Fu, et al. 2000. Urban land use change in Lhasa. Acta Geographica Sinica 55 (4): 395–406.Google Scholar
  149. Zhu, G., and D.G. Blumberg. 2002. Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel. Remote Sensing of Environment 80: 233–240.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Duo Chu
    • 1
  1. 1.Tibet Institute of Plateau Atmospheric and Environmental SciencesTibet Meteorological BureauLhasaChina

Personalised recommendations