Advertisement

Advancements in the Management of Optic Pathway Gliomas

  • Sahas Narain
  • Ashwini Kini
  • Aparna RamasubramanianEmail author
Chapter
Part of the Current Practices in Ophthalmology book series (CUPROP)

Abstract

Optic pathway gliomas are the most common cause of vision loss in patients with neurofibromatosis and are clinically seen in 1–5% patients and radiologically evident in 15%. Clinical surveillance with MRI is required for diagnosis. Treatment options include surgery, chemotherapy, and radiation with future prospects of targeted treatment involving the mTOR pathway.

Keywords

Optic pathway glioma Optic nerve glioma Pilocytic astrocytoma Neurofibromatosis 1 (NF-1) Chiasm Pediatric oncology 

Notes

Acknowledgment

This work was supported in part by an unrestricted institutional grant from Research to Prevent Blindness, NY, NY.

References

  1. 1.
    Dutton JJ. Gliomas of the anterior visual pathway. Surv Ophthalmol. 1994;38(5):427–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilhelm H. Primary optic nerve tumours. Curr Opin Neurol. 2009;22:11–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Robert-Boire V, Rosca L, Samson Y, Ospina LH, Perreault S. Clinical presentation and outcome of patients with optic pathway glioma. Pediatr Neurol. 2017;75:55–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Toledano H, Muhsinoglu O, Luckman J, Goldenberg-Cohen N, Michowiz S. Acquired nystagmus as the initial presenting sign of chiasmal glioma in young children. Eur J Paediatr Neurol. 2015;19(6):694–700.  https://doi.org/10.1016/j.ejpn.2015.06.007. Epub 2015 Jul 9.PubMedCrossRefGoogle Scholar
  5. 5.
    Silverman B, Listernick R, Charrow J. Precocious puberty in children with neurofibromatosis type 1. J Pediatr. 1995;126:364–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Sani I, Albanese A. Endocrine long-term follow-up of children with neurofibromatosis type 1 and optic pathway glioma. Horm Res Paediatr. 2017;87(3):179–88.  https://doi.org/10.1159/000458525. Epub 2017 Mar 27.PubMedCrossRefGoogle Scholar
  7. 7.
    Parsa CF, Hoyt CS. Spontaneous regression of optic gliomas: thirteen cases documented by serial neuroimaging. Arch Ophthalmol. 2001;119(4):516–2.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu GT, Malloy P, Needle M, Phillips P. Optic gliomas in neurofibromatosis type 1: role of visual evoked potentials. Pediatr Neurol. 1995;12:89–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61:189–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Stokland T, et al. A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702). Neuro-Oncology. 2010;12(12):1257–68. PMC. Web. 8 Jan. 2018.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Diggs KA. Sex is a major determinant of neuronal dysfunction in neurofibromatosis type 1. Ann Neurol. 2014;75(2):309–16. Wiley 2014-2 0364-5134.CrossRefGoogle Scholar
  12. 12.
    Hersh JH, American Academy of Pediatrics Committee on Genetics. Health supervision for children with neurofibromatosis. Pediatrics. 2008;121:633–42.  https://doi.org/10.1542/peds.2007-3364.PubMedCrossRefGoogle Scholar
  13. 13.
    Segal L, Darvish-Zargar M, Dilenge ME, Ortenberg J, Polomeno RC. Optic pathway gliomas in patients with neurofibromatosis type 1: follow-up of 44 patients. J AAPOS. 2010;14:155–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Yeom KW, Lober RM, Andre JB. Prognostic role for diffusion-weighted imaging of pediatric optic pathway glioma. J Neuro-Oncol. 2013;113:479.CrossRefGoogle Scholar
  15. 15.
    Purohit BS, et al. Orbital tumours and tumour-like lesions: exploring the armamentarium of multiparametric imaging. Insights Imaging. 2016;7(1):43–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Kennedy de Blank PM, Jeffrey Berman I, Liu G, Leslie Roberts TP, Fisher M. Fractional anisotropy of the optic radiations is associated with visual acuity loss in optic pathway gliomas of neurofibromatosis type 1. Neuro-Oncology. 2013;15(8):1088–95.CrossRefGoogle Scholar
  17. 17.
    Parsa CF, Hoyt CS, Lesser RL, et al. Spontaneous regression of optic gliomas: thirteen cases documented by serial neuroimaging. Arch Ophthalmol. 2001;119:516–29.PubMedCrossRefGoogle Scholar
  18. 18.
    Fisher M, Loguidice M, Gutmann D, Listernickr R, Liu G. Visual outcomes in children with neurofibromatosis type 1–associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-Oncology. 2012;14(6):790–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Thomas RP, Gibbs IC, Xu LW. Treatment options for optic pathway gliomas. Curr Treat Options Neurol. 2015;17:2.CrossRefGoogle Scholar
  20. 20.
    Stokland T, Liu JF, Ironside JW, Ellison DW, Taylor R, Robinson KJ, Picton SV, Walker DA. A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702). Neuro-Oncology. 2010;12(12):1257–68.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Balcer LJ, Liu GT, Heller G, et al. Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas: relation to tumor location by magnetic resonance imaging. Am J Ophthalmol. 2001;131:442–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Astrup J. Natural history and clinical management of optic pathway glioma. Br J Neurosurg. 2003;17:327–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Shofty B, Ben-Sira K, Jallo G, Isolated Optic Nerve Abnormalities (IONA) Collaboration. Isolated optic nerve gliomas: a multicenter historical cohort study. J Neurosurg Pediatr. 2017;20(6):549–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Stafford P, Abdelwahab MG, do Kim Y, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond). 2010;10(7):74.CrossRefGoogle Scholar
  25. 25.
    Listernick R. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol. 1997;41(2):143–9. Wiley 1997-2;0364-5134.PubMedCrossRefGoogle Scholar
  26. 26.
    Combs SE, Schulz-Ertner D, Moschos D, Thilmann C, Huber PE, Debus J. Fractionated stereotactic radiotherapy of optic pathway gliomas: tolerance and long-term outcome. Int J Radiat Oncol Biol Phys. 2005;62:814–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Müller K. Radiotherapy in pediatric pilocytic astrocytomas. A subgroup analysis within the prospective multicenter study HIT-LGG 1996 by the German Society of Pediatric Oncology and Hematology (GPOH). Strahlenther Onkol. 2013;189(8):647–55. Springer 2013-8;0179-7158.PubMedCrossRefGoogle Scholar
  28. 28.
    Combs SE, Edler L, Rausch R, Welzel T, Wick W, Debus J. Generation and validation of a prognostic score to predict outcome after re-irradiation of recurrent glioma. Acta Oncol. 2013;52(1):147–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Kessel KA, Hesse J, Straube C. Validation of an established prognostic score after re-irradiation of recurrent glioma. Acta Oncol. 2017;56(3):422–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Mirow C, Pietsch T, Berkefeld S, Kwiecien R, Warmuth-Metz M, Falkenstein. Children <1 year show an inferior outcome when treated according to the traditional LGG treatment strategy: a report from the German multicenter trial HIT-LGG 1996 for children with low grade glioma (LGG). Pediatr Blood Cancer. 2014;61:457–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Ater J, Zhou T, Homes E, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:2641–7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ater JL, Holmes E, Zhoy T, et al. Randomized study of two chemotherapy regimens for low grade glioma in young children: results of COG protocol A9952. Pediatr Blood Cancer. 2008;53.Google Scholar
  33. 33.
    Azizi AA, Schouten-van Meeteren AYN. Current and emerging treatment strategies for children with progressive chiasmatic-hypothalamic glioma diagnosed as infants: a web-based survey. J Neuro-Oncol. 2018;136:127.CrossRefGoogle Scholar
  34. 34.
    Packer RJ, Jakacki R, Horn M, Rood B, Vezina G, MacDonald T, Fisher MJ, Cohen B. Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan. Pediatr Blood Cancer. 2009;52(7):791–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Gnekow AK, Walker DA, Kandels D, Picton S. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤16 years) low grade glioma—a final report. Eur J Cancer. 2017;81:206–25.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bavle A, Jones J, Lin FY, Malphrus A, Adesina A, Su J. Dramatic clinical and radiographic response to BRAF inhibition in a patient with progressive disseminated optic pathway glioma refractory to MEK inhibition. Pediatr Hematol Oncol. 2017;34(4):254–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Gururangan S, Fisher MJ, Allen JC, Herndon JE II, Quinn JA, Reardon DA, et al. Temozolomide in children with progressive low-grade glioma. Neuro-Oncology. 2007;9(2):161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Scheinemann K, Bartels U, Tsangaris E, Hawkins C, Huang A, Dirks P, Fried I, Bouffet E, Tabori U. Feasibility and efficacy of repeated chemotherapy for progressive pediatric low-grade gliomas. Pediatr Blood Cancer. 2011;57:84–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Walker DA, Liu J, Kieran M, Jabado N, Picton S, Packer R, et al. A multi-disciplinary consensus statement concerning surgical approaches to low-grade, high-grade astrocytomas and diffuse intrinsic pontine gliomas in childhood (CPN Paris 2011) using the Delphi method. Neuro-Oncology. 2013;15:462–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Liu Y, et al. Analysis of survival prognosis for children with symptomatic optic pathway gliomas who received surgery. World Neurosurg. 2018;109:e1–e15.  https://doi.org/10.1016/j.wneu.2017.09.144.PubMedCrossRefGoogle Scholar
  41. 41.
    Ulrich NH, Burkhardt JK, Serra C, et al. Resection of pediatric intracerebral tumors with the aid of intraoperative real-time 3-D ultrasound. Childs Nerv Syst. 2012;28:101–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Goodden J, Pizer B, Pettorini B, Williams D, Blair J, Didi M, Thorp N, Mallucci C. The role of surgery in optic pathway/hypothalamic gliomas in children. J Neurosurg Pediatr. 2014;13(1):1–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Shah MN, Leonard JR, Inder G. Intraoperative magnetic resonance imaging to reduce the rate of early reoperation for lesion resection in pediatric neurosurgery. J Neurosurg Pediatr. 2012;9:259–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Giordano M, Arraez C, Samii A, et al. Childs Nerv Syst. 2016;32:1915.PubMedCrossRefGoogle Scholar
  45. 45.
    Rodriguez FJ, Ligon AH, Horkayne-Szakaly I, et al. BRAF duplications and MAPK pathway activation are frequent in gliomas of the optic nerve proper. J Neuropathol Exp Neurol. 2012;71(9):789–94.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Segal D, Gardner S, Allen J, Karajannis M. EPT-21 Efficacy of everolimus in pediatric brain tumors: a single-institution patient series. Neuro-Oncology. 2016;18(Suppl 3):iii28.PubMedCentralGoogle Scholar
  47. 47.
    Hütt-Cabezas M, et al. Activation of mTORC1/mTORC2 signaling in pediatric low-grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro-Oncology. 2013;15(12):1604–14.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem. 2016;109:314–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sahas Narain
    • 1
  • Ashwini Kini
    • 2
  • Aparna Ramasubramanian
    • 2
    Email author
  1. 1.University of Louisville School of MedicineLouisvilleUSA
  2. 2.Department of Ophthalmology and Visual SciencesUniversity of LouisvilleLouisvilleUSA

Personalised recommendations