Applications and Patents of Bacillus spp. in Agriculture

  • Estibaliz Sansinenea


Biological control using biopesticides has been an environmentally friendly solution in recent years. Bacillus spp. was discovered as a soil bacterium, which has been used as a biopesticide in agriculture, forestry, and mosquito control. Specifically, B. thuringiensis has been widely applied in the control of crops insect pests due to insecticidal proteins produced by the bacterium during sporulation. To fight against the phytopathogens, Bacillus spp. bacteria produce secondary metabolites which have several biological activities that make it possible that bacterium can survive in the natural environment. These developments have amplified the target range of Bacillus spp. in special B. thuringiensis, for better understanding its role in soil ecosystem.


Biological control Biopesticides Bacillus Secondary metabolites Cry(crystal) proteins 


  1. Abad AR, Dong H, Lo S, Shi X (2008a) Bacillus thuringiensis toxin with anti-coleopteran activity. WO2008011586Google Scholar
  2. Abad A, Dong H, Lo SB, McCutchen BF, Shi X (2008b) Method for identifying novel genes. WO2008011565Google Scholar
  3. Abdullah MAF (2012) Use and efficacy of Bt compared to less environmentally safe alternatives. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, pp 19–39Google Scholar
  4. Adams LF, Thomas MD, Sloma AP, Widner WR (1995) Formation of and methods for the production of large Bacillus thuringiensis crystals with increased pesticidal activity. WO9502695Google Scholar
  5. Arachchilage APW, Wang F, Feyer V, Plekan O, Prince KCJ (2012) Photoelectron spectra and structures of three cyclic dipeptides: PhePhe, TyrPro, and HisGly. Chem Phys 135:1243301–1243301Google Scholar
  6. Aroian R, Li X-Q (2007) Methods and compositions for controlling parasitic infections with Bt crystal proteins. WO2007062064Google Scholar
  7. Baum J, Donovan J, Donovan W, Engleman JT, Krasomil-Osterfeld K, Pitkin JW, Roberts JK (2006) Insecticidal proteins secreted from Bacillus species and uses therefor. WO2005019414Google Scholar
  8. Becker N, Mercatoris P (1999) Ice granules containing endotoxins of Bacillus thuringiensisisraelensis (Bti) or Bacillussphaericus (Bs). EP0948259Google Scholar
  9. Bie X, Zhaoxin L, Lu F (2009) Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J Microbiol Methods 79:272–278CrossRefGoogle Scholar
  10. Bradfisch G, Thompson M, Schwab G (1992) Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens. US5128130Google Scholar
  11. Brar SK, Tyagi VRD, Valéro JR (2006) Recent advances in downstream processes and formulations of Bacillus thuringiensis based biopesticide. Process Biochem 41:323–342CrossRefGoogle Scholar
  12. Brookes G, Barfoot P (2008) Global impact of biotech crops: socio-economic and environ-mental effects 1996–2006. AgBioForum 11:21–38Google Scholar
  13. Carozzi N, Hargiss T, Koziel M, Duck N, Carr B (2008) Delta-endotoxin genes and methods for their use. EP1947184Google Scholar
  14. Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321CrossRefGoogle Scholar
  15. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97CrossRefGoogle Scholar
  16. Chaaboni I, Guesmi A, Cherif A (2012) Secondary metabolites of Bacillus: potentials in biotechnology. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, pp 347–366CrossRefGoogle Scholar
  17. Dean DH, Abdullah MA (2005) Modified insecticidal crystal proteins derived from Bacillus thuringiensisδ-endotoxin Cry19Aa and Cry4Ba with enhanced toxicity. US 20050124803 A1 20050609Google Scholar
  18. Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by test a characteristics and embryonic abscisic acid. Plant Physiol 122:415–424CrossRefGoogle Scholar
  19. Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model membranes. Biophys J 94:2679–2667CrossRefGoogle Scholar
  20. Federici B, Siegel J (2008) Safety assessment of Bacillus thuringiensis and Bt crops used in insect control. In: Hammond BG (ed) Food safety of proteins in agricultural biotechnology. CRC Press, Boca RatonGoogle Scholar
  21. Fernandez MF, Sanchez JV, Garcia JBA, Sanchez AT (2015) A Bacillus subtilis strain deposited under deposit number CECT 8258 and method for protecting or treating plants. EP 2871245 A1Google Scholar
  22. Florez AM, Osorio C, Alzate O (2012) Protein engineering of Bacillus thuringiensis δ-endotoxins. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, The Netherlands, pp 19–39Google Scholar
  23. Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359CrossRefGoogle Scholar
  24. George Z, Crickmore N (2012) Bacillus thuringiensis applications in agriculture. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, The Netherlands, pp 19–39CrossRefGoogle Scholar
  25. Gilbert P, McBain AJ (2003) Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 16(2):189–208CrossRefGoogle Scholar
  26. Gomi K, Matsuoka M (2003) Gibberellin signaling pathway. Curr Opin Plant Biol 6:489–493CrossRefGoogle Scholar
  27. Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, Yoo ID, Yang YY, Suh JW (2005) Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol 99:213–221CrossRefGoogle Scholar
  28. Handelsman J, Raffel S, Mester EH, Wunderlich L, Grau CR (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718PubMedPubMedCentralGoogle Scholar
  29. Handelsman J, Nesmith WS, Raffel SJ (1991a) Microassay for biological and chemical control of infection of tobacco by Plrytophthara parasitica var. nicotianae. Curr Microbiol 22:317–319CrossRefGoogle Scholar
  30. Handelsman J, Halverson LJ, Balandyk PJ (1991b) Fungicidal toxin and method and inoculum for controlling root rot and damping off. US patent 5,049,379Google Scholar
  31. Heins SD, Manker DC, Jimenez DR, McCoy RJ, Marrone PG, Orjala JE (2000) Strain of Bacillus for controlling plant diseases and corn rootworm. US006060051AGoogle Scholar
  32. Hinarejos E, Del Val R, Tarancon N, Riquelme E (2014) New strain of Bacillus subtilis for combating plant diseases. EP 2 781 592 A1Google Scholar
  33. Hirsch AM, Kaplan D (2016) Plant growth-promoting microorganisms and methods of use thereof. US20160143295 A1Google Scholar
  34. Hu LB, Shi ZO, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FSO1 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC38932. FEMS Microbiol Lett 272:91–98CrossRefGoogle Scholar
  35. Kaur S (2007) Deployment of Bt transgenic crops: development of resistance and management strategies in the Indian scenario. Biopest Int 3:23–42Google Scholar
  36. Keswani C, Sarma BK, Singh HB (2016a) Synthesis of policy support, quality control and regulatory management of biopesticides in sustainable agriculture. In: Singh HB, Sarma BK, Keswani C (eds) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, pp 3–122016CrossRefGoogle Scholar
  37. Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016b) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52Google Scholar
  38. Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24© Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr 1:72–93Google Scholar
  39. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Frank P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096CrossRefGoogle Scholar
  40. Labuschagne N, Hassen AI, Pretorius T (2015) Plant growth promoting rhizobacterial strains and their uses. WO2015114552 A1Google Scholar
  41. Lee Y-J, Lee S-J, Kim SH, Lee SJ, Kim B-C, Lee H-S, Jeong H, Lee D-W (2012) Draft genome sequence of Bacillusendophyticus 2102. J Bacteriol 194:5705–5706CrossRefGoogle Scholar
  42. Lehman LJ, McCoy RJ, Messenger BJ, Manker DC, Orjala JE, Lndhard D, Marrone PG (2001) Strain of Bacillus pumilus for controlling plant diseases caused by fungi. US 6245551 B1Google Scholar
  43. Leifert C, Epton HAS, Sigee DC (1997) Antibiotics for biological control of post harvest diseases. US 5597565 AGoogle Scholar
  44. Lysyk TJ, Selinger LB, Kalischuk-Tymensen LD, Lancaster RC, Baines DDS (2006) Method for controlling insects of the order diptera using a Bacillus thuringiensis strain. WO2006042404Google Scholar
  45. Madonna AJ, Voorhees KJ, Taranenko NI, Laiko VV, Doroshenko VM (2003) Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 75:1628–1637CrossRefGoogle Scholar
  46. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174CrossRefGoogle Scholar
  47. Marrone PG, Heins SD, Manker DC, Jimenez DR, Chilcott CN, Wigley P, Broadwell A (1999) Strain of Bacillus for controlling plant disease. US005919447AGoogle Scholar
  48. Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol 43:685–691CrossRefGoogle Scholar
  49. Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49CrossRefGoogle Scholar
  50. Narva KE, Payne JM, Schwab GE, Hickle LA, Galasan T, Sick AJ (2007) Novel Bacillus thuringiensis microbes active against nematodes, and genes encoding novel nematode–active toxins cloned from Bacillus thuringiensis isolates. JP2007006895Google Scholar
  51. Narva KE, Schnepf HE, Knuth M, Pollard MR, Cardineau GA, Schwab GE, Michaels TE (2008) Genes encoding pesticidal toxins of Bacillus thuringiensis and uses in control of plant pests. US 6127180 A 20001003Google Scholar
  52. Nihorimbere V, Cawoy H, Sayer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191CrossRefGoogle Scholar
  53. Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. II. structure of fatty acid residue and amino acid sequence. J Antibiot 39:745–754CrossRefGoogle Scholar
  54. Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38CrossRefGoogle Scholar
  55. Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci U S A 108:7253–7258CrossRefGoogle Scholar
  56. Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 10:1716–1728CrossRefGoogle Scholar
  57. Pecci Y, Rivardo F, Martinotti MG, Allegrone G (2010) LC/ESI-MS/MS characterization of lipopeptide biosurfactants produced by Bacillus licheniformis V9T14 strain. J Mass Spectrom 45:772–778CrossRefGoogle Scholar
  58. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563CrossRefGoogle Scholar
  59. Pyoung IK, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20(1):138–145Google Scholar
  60. Ramarathnam R, Bo S, Chem Y, Fernando WGD, Xuewen G, de Kievit T (2007) Molecular and biochemical detection of fengycin and bacillomycin D producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911CrossRefGoogle Scholar
  61. Riazuddin S (2000) Novel Bacillus thuringiensis isolates active against sucking insects. EP0983362Google Scholar
  62. Romero D, Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers O, Paquot M, Garcia AP (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol Plant-Microbe Interact 118(2):323–327Google Scholar
  63. Sanchis V, Bourguet D (2008) Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agron Sustain Dev 28:11–20CrossRefGoogle Scholar
  64. Sansinenea E (2016) Regulatory issues in commercialization of Bacillus thuringiensis- based biopesticides. In: Singh HB et al (eds) Agriculturally important microorganisms. Springer, Singapore, pp 69–80CrossRefGoogle Scholar
  65. Sansinenea E, Ortiz A (2011) Secondary metabolites of soil bacillus spp. Biotechnol Lett 33:1523–1538CrossRefGoogle Scholar
  66. Sansinenea E, Ortiz A (2015) Melanin: a photoprotection for Bacillus thuringiensis based biopesticides. Biotechnol Lett 37:483–490CrossRefGoogle Scholar
  67. Sansinenea E, Salazar F, Ramirez M, Ortiz A (2015) An ultraviolet tolerant wild-type strain of melanin-producing Bacillus thuringiensis. Jundishapur J Microbiol 8(7):e20910PubMedPubMedCentralGoogle Scholar
  68. Savich MH, Olson GS, Clark EW (2009) Superabsorbent polymer suspension for use in agriculture. US 20090019905 A1 20090122Google Scholar
  69. Schnepf HE (2012) Bacillus thuringiensis recombinant insecticidal protein production. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, The Netherlands, pp 19–39Google Scholar
  70. Schnepf HE, Stockhoff B, Knuth M (1994) Bacillus thuringiensis toxin enhancer. US 08/340563Google Scholar
  71. Shelton AM, Romeis J, Kennedy GG (2008) IPM and insect protected transgenic plants: thoughts for the future. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM programs. Springer, Dordrecht, pp 419–429CrossRefGoogle Scholar
  72. Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J et al (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030PubMedPubMedCentralGoogle Scholar
  73. Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11CrossRefGoogle Scholar
  74. Singh HB, Jha A, Keswani C (eds) (2016a) Intellectual property issues in biotechnology. CABI, Oxfordshire, p 304Google Scholar
  75. Singh HB, Sarma BK, Keswani C (eds) (2016b) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, p 336Google Scholar
  76. Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR research. CABI, Oxfordshire, p 408Google Scholar
  77. Smith KP, Havey M, Handelsman (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis 77:139–142CrossRefGoogle Scholar
  78. Soberon-Chavez M, Bravo de la Parra A (2007) Novel bacterial proteins with pesticidal activity. WO2007007147Google Scholar
  79. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857CrossRefGoogle Scholar
  80. Suenaga S, Miyazaki H, Inada M (2001) JP2001010915Google Scholar
  81. Sun M, Yu Z, Chen S, Zhang Z, Ruan L, Guo S, Dai J, Li L, Liu Z (2008) Gene Cry7bal encoding an insecticidal crystal protein of Bacillus thuringiensis. EP1937818Google Scholar
  82. Tendulkar SR, Saikuman YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103:2331–2339CrossRefGoogle Scholar
  83. Thompson B, Thompson K, Angle B (2014) Plant growth-promoting bacteria and methods of use. US20140274691 A1Google Scholar
  84. Tirado-Montiel ML, Tyagi RD, Valero JR (2001) Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides. Water Res 35:3807–3816CrossRefGoogle Scholar
  85. Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611CrossRefGoogle Scholar
  86. Van RJ, Meulewaeter F, Van EG (2007) Novel genes encoding insecticidal proteins. WO2007107302Google Scholar
  87. Wulff EG, Mguni CM, Mansfeld-Giese K, Fels J, Lübeck M, Hockenhull J (2002) Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 51:574–584CrossRefGoogle Scholar
  88. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Estibaliz Sansinenea
    • 1
  1. 1.Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMéxico

Personalised recommendations