Advertisement

Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs): Current Practices and Outlook

  • A. Giridhar Babu
  • Shahi I. Reja
  • Nadeem Akhtar
  • Mehar Sultana
  • Prashant S. Deore
  • Farukh I. Ali
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 10)

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are active members of the group of multi-aromatic organic compounds, considered to be the most ubiquitous environmental pollutants, mainly engendered from partial combustion of wood, coal, oil or other organic materials. Currently, more than 500 PAHs are prevalent in the atmosphere; reactions between PAHs and various chemicals such as ozone, sulfur dioxide and nitrogen oxides lead to the formation of more toxic chemicals such as diones, nitro- and dinitro-PAHs and sulfonic acids. Due to high global concern, studies are being carried out by researchers to remove PAHs in an eco-friendly and cost-effective manner. Biodegradation of PAHs is a widely used strategy in which diverse types of bacterial, fungal, algal, earthworms, protozoans, plant species and their derived compounds such as biocatalysts, and biosurfactants are being used. Though the microbial degradation of PAHs has been extensively explored, it is a quite progressive area with many research findings being added to the literature. This chapter focuses on a critical overview of current knowledge around the biodegradation of PAHs. It also discusses the recent advancement including ‘omics’ approaches in bioremediation techniques to illuminate fundamental challenges and future prospects.

Keywords

Bioremediation Polycyclic aromatic hydrocarbons (PAHs) Bacteria Fungi Algae Omics 

References

  1. Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.Google Scholar
  2. Achten, C., & Andersson, J. T. (2015). Overview of Polycyclic Aromatic Compounds (PAC). Polycyclic Aromatic Compounds, 35, 177–186.Google Scholar
  3. Agrawal, N., & Shahi, S. K. (2017). Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. International Biodeterioration and Biodegradation, 122, 69–81.Google Scholar
  4. Agrawal, N., Verma, P., & Shahi, S. K. (2018). Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresources and Bioprocessing, 5, 11.Google Scholar
  5. Aitken, M. D., & Long, T. C. (2004). Biotransformation, biodegradation, and bioremediation of polycyclic aromatic hydrocarbons. In A. Singh & O. P. Ward (Eds.), Biodegradation and bioremediation (pp. 83–124). Berlin/Heidelberg: Springer.Google Scholar
  6. Alagić, S. Č., Maluckov, B. S., & Radojičić, V. B. (2015). How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technologies and Environmental Policy, 17, 597–614.Google Scholar
  7. Ambrosoli, R., Petruzzelli, L., Luis Minati, J., & Ajmone Marsan, F. (2005). Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere, 60, 1231–1236.Google Scholar
  8. Andersson, B. E., Lundstedt, S., Tornberg, K., Schnürer, Y., Oberg, L. G., & Mattiasson, B. (2003). Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environmental Toxicology and Chemistry, 22, 1238–1243.Google Scholar
  9. Anyakora, C., Ogbeche, A., Palmer, P., Coker, H., Ukpo, G., & Ogah, C. (2005). GC/MS analysis of polynuclear aromatic hydrocarbons in sediment samples from the Niger Delta region. Chemosphere, 60, 990–997.Google Scholar
  10. Arey, J., & Atkinson, R. (2003). Photochemical reactions of PAHs in the atmosphere. In P. E. T. Douben (Ed.), PAHs: An ecotoxicological perspective (pp. 47–63). Chichester: Wiley.Google Scholar
  11. Aydin, S., Karaçay, H. A., Shahi, A., Gökçe, S., Ince, B., & Ince, O. (2017). Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biology Reviews, 31, 61–72.Google Scholar
  12. Baird, W. M., Hooven, L. A., & Mahadevan, B. (2005). Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environmental and Molecular Mutagenesis, 45, 106–114.Google Scholar
  13. Baklanov, A., Hänninen, O., Slørdal, L. H., Kukkonen, J., Bjergene, N., Fay, B., Finardi, S., Hoe, S. C., Jantunen, M., Karppinen, A., Rasmussen, A., Skouloudis, A., Sokhi, R. S., & Sørensen, J. H. (2006). Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmospheric Chemistry and Physics Discussions, 6, 1867–1913.Google Scholar
  14. Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80, 723–736.Google Scholar
  15. Bezza, F. A., & Chirwa, E. M. N. (2017). Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. Journal of Hazardous Materials, 321, 218–227.Google Scholar
  16. Birolli, W. G., de A Santos, D., Alvarenga, N., Garcia, A. C. F. S., Romão, L. P. C., & Porto, A. L. M. (2018). Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Marine Pollution Bulletin, 129, 525–533.Google Scholar
  17. Bishnoi, K., Kumar, R., & Bishnoi, N. R. (2008). Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil.Google Scholar
  18. Callaghan, A. V. (2013). Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Current Opinion in Biotechnology, 24, 506–515.Google Scholar
  19. Carmichael, A. B., & Wong, L. L. (2001). Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. European Journal of Biochemistry, 268, 3117–3125.Google Scholar
  20. Castro-Silva, C., Ruíz-Valdiviezo, V. M., Valenzuela-Encinas, C., Alcántara-Hernández, R., Navarro-Noya, Y., Vázquez-Núñez, E., Luna-Guido, M., Marsch, R., & Dendooven, L. (2013). The bacterial community structure in an alkaline saline soil spiked with anthracene. Electronic Journal of Biotechnology, 16.  https://doi.org/10.2225/vol16-issue5-fulltext-14.
  21. Chang, B.-V., Chang, I. T., & Yuan, S. Y. (2008). Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bulletin of Environmental Contamination and Toxicology, 80, 145–149.Google Scholar
  22. Chigu, N. L., Hirosue, S., Nakamura, C., Teramoto, H., Ichinose, H., & Wariishi, H. (2010). Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 87, 1907–1916.Google Scholar
  23. Coates, J. D., Anderson, R. T., Woodward, J. C., Phillips, E. J. P., & Lovley, D. R. (1996). Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environmental Science & Technology, 30, 2784–2789.Google Scholar
  24. Cobas, M., Ferreira, L., Tavares, T., Sanromán, M. A., & Pazos, M. (2013). Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere, 91, 711–716.Google Scholar
  25. Congress, U. S. (1991). Office of technology assessment, bioremediation for marine oil spills-background paper. Washington, DC: Government Printing Office OTA-BP-O-70.Google Scholar
  26. Covino, S., Svobodová, K., Cvancarová, M., D’Annibale, A., Petruccioli, M., Federici, F., Kresinová, Z., Galli, E., & Cajthaml, T. (2010). Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant. Chemosphere, 79, 855–864.Google Scholar
  27. D’Orazio, V., Ghanem, A., & Senesi, N. (2013). Phytoremediation of pyrene contaminated soils by different plant species. Clean Soil Air Water, 41, 377–382.Google Scholar
  28. Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 941810.Google Scholar
  29. de Lima Souza, H. M., Barreto, L. R., da Mota, A. J., de Oliveira, L. A., dos Santos Barroso, H., & Zanotto, S. P. (2017). Tolerance to polycyclic aromatic hydrocarbons (PAHs) by filamentous fungi isolated from contaminated sediment in the Amazon region. Acta Scientiarum Biological Sciences, 39, 481–488.Google Scholar
  30. de Menezes, A., Clipson, N., & Doyle, E. (2012). Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environmental Microbiology, 14, 2577–2588.Google Scholar
  31. Dean, R. B. (1999). Book review: Biodegradation and Bioremediation (2nd ed., Martin Alexander, 470 pp. $59.95). San Diego: Academic Press. Waste Management & Research 17, 390–391.Google Scholar
  32. Deng, S., & Zeng, D. (2017). Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms. Environmental Science and Pollution Research International, 24, 7565–7571.Google Scholar
  33. Di Gregorio, S., Becarelli, S., Siracusa, G., Ruffini Castiglione, M., Petroni, G., Masini, G., Gentini, A., de Lima e Silva, M. R., & Lorenzi, R. (2016). Pleurotus ostreatus spent mushroom substrate for the degradation of polycyclic aromatic hydrocarbons: The case study of a pilot dynamic biopile for the decontamination of a historically contaminated soil. Journal of Chemical Technology and Biotechnology, 91, 1654–1664.Google Scholar
  34. Di Toro, D. M., McGrath, J. A., & Hansen, D. J. (2000). Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environmental Toxicology and Chemistry, 19, 1951.Google Scholar
  35. Dubrovskaya, E., Pozdnyakova, N., Golubev, S., Muratova, A., Grinev, V., Bondarenkova, A., & Turkovskaya, O. (2017). Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. Chemosphere, 169, 224–232.Google Scholar
  36. El Amrani, A., Dumas, A.-S., Wick, L. Y., Yergeau, E., & Berthomé, R. (2015). “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environmental Science & Technology, 49, 11281–11291.Google Scholar
  37. Eskandari, S., Hoodaji, M., Tahmourespour, A., Abdollahi, A., Baghi, T. M., Eslamian, S., & Ostad-Ali-Askari, K. (2017). Bioremediation of polycyclic aromatic hydrocarbons by Bacillus Licheniformis ATHE9 and Bacillus Mojavensis ATHE13 as newly strains isolated from oil-contaminated soil. Journal of Geography Environment and Earth Science International, 11, 1–11.Google Scholar
  38. Eskandary, S., Tahmourespour, A., Hoodaji, M., & Abdollahi, A. (2017). The synergistic use of plant and isolated bacteria to clean up polycyclic aromatic hydrocarbons from contaminated soil. Journal of Environmental Health Science and Engineering, 15, 12.Google Scholar
  39. Fernández-Luqueño, F., López-Valdez, F., Dendooven, L., Luna-Suárez, S., & Ceballos-Ramírez, J. M. (2016). Why wastewater sludge stimulates and accelerates removal of PAHs in polluted soils? Applied Soil Ecology, 101, 1–4.Google Scholar
  40. Gambino, E., Toscanesi, M., Del Prete, F., Flagiello, F., Falcucci, G., Minutillo, M., Trifuoggi, M., Guida, M., Nastro, R. A., & Jannelli, E. (2017). Polycyclic Aromatic Hydrocarbons (PAHs) degradation and detoxification of water environment in single-chamber air-cathode Microbial Fuel Cells (MFCs). Fuel Cells, 17, 618–626.Google Scholar
  41. Gao, Y., Zong, J., Que, H., Zhou, Z., Xiao, M., & Chen, S. (2017). Inoculation with arbuscular mycorrhizal fungi increases glomalin-related soil protein content and PAH removal in soils planted with Medicago sativa L. Soil Biology and Biochemistry, 115, 148–151.Google Scholar
  42. García de Llasera, M. P., Olmos-Espejel, J. d. J., Díaz-Flores, G., & Montaño-Montiel, A. (2016). Biodegradation of benzo(a)pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: A comparative study useful for bioremediation. Environmental Science and Pollution Research International, 23, 3365–3375.Google Scholar
  43. Govarthanan, M., Fuzisawa, S., Hosogai, T., & Chang, Y.-C. (2017). Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Advances, 7, 20716–20723.Google Scholar
  44. Guo, M., Gong, Z., Miao, R., Su, D., Li, X., Jia, C., & Zhuang, J. (2017). The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure. Ecological Engineering, 99, 22–30.Google Scholar
  45. Gupta, S., Pathak, B., & Fulekar, M. H. (2015). Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: A review. Reviews in Environmental Science and Technology, 14, 241–269.Google Scholar
  46. Gupta, G., Kumar, V., & Pal, A. K. (2016). Biodegradation of polycyclic aromatic hydrocarbons by microbial consortium: A distinctive approach for decontamination of soil. Soil and Sediment Contamination: An International Journal, 25, 597–623.Google Scholar
  47. Gupta, G., Kumar, V., & Pal, A. K. (2017). Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons with emphasis on pyrene. Polycyclic Aromatic Compounds, 1–13.Google Scholar
  48. Hadibarata, T., & Kristanti, R. A. (2012). Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresource Technology, 107, 314–318.Google Scholar
  49. Hadibarata, T., Khudhair, A. B., & Salim, M. R. (2012). Breakdown products in the metabolic pathway of anthracene degradation by a Ligninolytic fungus Polyporus sp. S133. Water, Air, and Soil Pollution Focus, 223, 2201–2208.Google Scholar
  50. Haemmerli, S. D., Leisola, M. S., Sanglard, D., & Fiechter, A. (1986). Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. The Journal of Biological Chemistry, 261, 6900–6903.Google Scholar
  51. Hamdan, H. Z., Salam, D. A., Hari, A. R., Semerjian, L., & Saikaly, P. (2017). Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities. Science of the Total Environment, 575, 1453–1461.Google Scholar
  52. Han, M.-J., Choi, H.-T., & Song, H.-G. (2004). Degradation of phenanthrene by Trametes versicolor and its laccase. Journal of Microbiology, 42, 94–98.Google Scholar
  53. Han, X., Hu, H., Shi, X., Zhang, L., & He, J. (2017). Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. Chemosphere, 172, 286–293.Google Scholar
  54. Hansen, L. D., Nestler, C., Ringelberg, D., & Bajpai, R. (2004). Extended bioremediation of PAH/PCP contaminated soils from the POPILE wood treatment facility. Chemosphere, 54, 1481–1493.Google Scholar
  55. Harford-Cross, C. F., Carmichael, A. B., Allan, F. K., England, P. A., Rouch, D. A., & Wong, L.-L. (2000). Protein engineering of cytochrome P450cam (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Engineering, Design & Selection, 13, 121–128.Google Scholar
  56. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169, 1–15.Google Scholar
  57. Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9, 177–192.Google Scholar
  58. Hautefort, I., & Hinton, J. C. (2000). Measurement of bacterial gene expression in vivo. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355, 601–611.Google Scholar
  59. Herbst, F.-A., Bahr, A., Duarte, M., Pieper, D. H., Richnow, H. -H., von Bergen, M., Seifert, J., & Bombach, P. (2013). Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics, 10.  https://doi.org/10.1002/pmic.201200569.
  60. Hesham, A. E.-L., Mohamed, E. A., Mawad, A. M. M., Elfarash, A., Abd El-Fattah, B. S., & El-Rawy, M. A. (2017). Molecular characterization of degrades a mixture of low and high molecular weight polycyclic aromatic hydrocarbons. Open Biotechnology Journal, 11, 27–35.Google Scholar
  61. Hidayat, A., & Yanto, D. H. Y. (2018). Biodegradation and metabolic pathway of phenanthrene by a new tropical fungus, Trametes hirsuta D7. Journal of Environmental Chemical Engineering, 6, 2454–2460.Google Scholar
  62. Hong, Y.-W., Yuan, D.-X., Lin, Q.-M., & Yang, T.-L. (2008). Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollution Bulletin, 56, 1400–1405.Google Scholar
  63. Ibraheem, I. B. M. (2010). Biodegradability of hydrocarbons by Cyanobacteria1. Journal of Phycology, 46, 818–824.Google Scholar
  64. Jauhari, N., Mishra, S., Kumari, B., Singh, S. N., Chauhan, P. S., & Upreti, D. K. (2018). Bacteria induced degradation of anthracene mediated by catabolic enzymes. Polycyclic Aromatic Compounds, 1–13.Google Scholar
  65. Jové, P., Olivella, M. À., Camarero, S., Caixach, J., Planas, C., Cano, L., & De Las Heras, F. X. (2016). Fungal biodegradation of anthracene-polluted cork: A comparative study. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 51, 70–77.Google Scholar
  66. Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45, 57–88.Google Scholar
  67. Kachieng’a, L., & Momba, M. N. B. (2018). The synergistic effect of a consortium of protozoan isolates (Paramecium sp., Vorticella sp., Epistylis sp. and Opercularia sp.) on the biodegradation of petroleum hydrocarbons in wastewater. Journal of Environmental Chemical Engineering, 6, 4820–4827.Google Scholar
  68. Kadri, T., Rouissi, T., Kaur Brar, S., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74.Google Scholar
  69. Kamil, N. A. F., & Talib, S. A. (2016). Biodegradation of PAHs in soil: Influence of initial PAHs concentration. IOP Conference Series: Materuals Science Engineering, 136, 012052.Google Scholar
  70. Keum, Y. S., Seo, J. S., Li, Q. X., & Kim, J. H. (2008). Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Applied Microbiology and Biotechnology, 80, 863–872.Google Scholar
  71. Kim, S.-J., Kweon, O., & Cerniglia, C. E. (2009). Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways. Current Opinion in Microbiology, 12, 301–309.Google Scholar
  72. Kong, L., Gao, Y., Zhou, Q., Zhao, X., & Sun, Z. (2018). Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. Journal of Hazardous Materials, 343, 276–284.Google Scholar
  73. Košnář, Z., Mercl, F., & Tlustoš, P. (2018). Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil. Ecotoxicology and Environmental Safety, 153, 16–22.Google Scholar
  74. Kotoky, R., Rajkumari, J., & Pandey, P. (2018). The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. Journal of Environmental Management, 217, 858–870.Google Scholar
  75. Kumari, S., Regar, R. K., & Manickam, N. (2018). Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresource Technology, 254, 174–179.Google Scholar
  76. Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). In-situ remediation approaches for the management of contaminated sites: A comprehensive overview. In P. de Voogt (Ed.), Reviews of environmental contamination and toxicology (Vol. 236, pp. 1–115). Cham: Springer.Google Scholar
  77. Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968.Google Scholar
  78. Lamichhane, S., Bal Krishna, K. C., & Sarukkalige, R. (2017). Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. Journal of Environmental Management, 199, 46–61.Google Scholar
  79. Latimer, J. S., & Zheng, J. (2003). The sources, transport, and fate of PAHs in the marine environment. In P. E. T. Douben (Ed.), PAHs: An ecotoxicological perspective (pp. 7–33). Chichester: Wiley.Google Scholar
  80. Lee, H., Jang, Y., Choi, Y.-S., Kim, M.-J., Lee, J., Lee, H., Hong, J.-H., Lee, Y. M., Kim, G.-H., & Kim, J.-J. (2014). Biotechnological procedures to select white rot fungi for the degradation of PAHs. Journal of Microbiological Methods, 97, 56–62.Google Scholar
  81. Lee, D. W., Lee, H., Lee, A. H., Kwon, B.-O., Khim, J. S., Yim, U. H., Kim, B. S., & Kim, J.-J. (2018). Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environmental Pollution, 234, 503–512.Google Scholar
  82. Li, C.-H., Wong, Y.-S., & Tam, N. F.-Y. (2010). Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry. Bioresource Technology, 101, 8083–8092.Google Scholar
  83. Liang, L., Song, X., Kong, J., Shen, C., Huang, T., & Hu, Z. (2014). Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biodegradation, 25, 825–833.Google Scholar
  84. Liang, X., Guo, C., Liao, C., Liu, S., Wick, L. Y., Peng, D., Yi, X., Lu, G., Yin, H., Lin, Z., & Dang, Z. (2017). Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). Environmental Pollution, 225, 129–140.Google Scholar
  85. Liao, C., Liang, X., Lu, G., Thai, T., Xu, W., & Dang, Z. (2015). Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.). Ecotoxicology and Environmental Safety, 112, 1–6.Google Scholar
  86. Liu, K., Han, W., Pan, W. P., & Riley, J. T. (2001). Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system. Journal of Hazardous Materials, 84, 175–188.Google Scholar
  87. Liu, S.-L., Luo, Y.-M., Wu, L.-H., & Cao, Z.-H. (2010). Effects of fungi on co-metabolic degradation of benzo [a] pyrene in droughty red soil. Huan Jing Ke Xue, 31, 1944–1950.Google Scholar
  88. Liu, J., Liu, S., Sun, K., Sheng, Y., Gu, Y., & Gao, Y. (2014a). Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS One, 9, e108249.Google Scholar
  89. Liu, R., Xiao, N., Wei, S., Zhao, L., & An, J. (2014b). Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named fire Phoenix. Science of the Total Environment, 473–474, 350–358.Google Scholar
  90. Lu, X., Zhang, T., Han-Ping Fang, H., Leung, K. M. Y., & Zhang, G. (2011). Biodegradation of naphthalene by enriched marine denitrifying bacteria. International Biodeterioration and Biodegradation, 65, 204–211.Google Scholar
  91. Luo, L., Wang, P., Lin, L., Luan, T., Ke, L., & Tam, N. F. Y. (2014). Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochemistry, 49, 1723–1732.Google Scholar
  92. Mao, J., & Guan, W. (2016). Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 66, 399–405.Google Scholar
  93. Marco-Urrea, E., García-Romera, I., & Aranda, E. (2015). Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnology, 32, 620–628.Google Scholar
  94. Marozava, S., Mouttaki, H., Müller, H., Laban, N. A., Probst, A. J., & Meckenstock, R. U. (2018). Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture. Biodegradation, 29, 23–39.Google Scholar
  95. Márquez-Rocha, F. J., Hernández-Rodríguez, V. Z., & Vázquez-Duhalt, R. (2000). Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnology Letters, 22, 469–472.Google Scholar
  96. Merkl, N., Schultze-Kraft, R., & Infante, C. (2004). Phytoremediation in the tropics—The effect of crude oil on the growth of tropical plants. Bioremediation Journal, 8, 177–184.Google Scholar
  97. Messias, J. M., da Costa, B. Z., de Lima, V. M. G., Dekker, R. F. H., Rezende, M. I., Krieger, N., & Barbosa, A. M. (2009). Screening Botryosphaeria species for lipases: Production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzyme and Microbial Technology, 45, 426–431.Google Scholar
  98. Mester, T., & Tien, M. (2000). Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. International Biodeterioration and Biodegradation, 46, 51–59.Google Scholar
  99. Mineki, S., Suzuki, K., Iwata, K., Nakajima, D., & Goto, S. (2015). Degradation of Polyaromatic hydrocarbons by Fungi isolated from soil in Japan. Polycyclic Aromatic Compounds, 35, 120–128.Google Scholar
  100. Mitra, S., Pramanik, A., Banerjee, S., Haldar, S., Gachhui, R., & Mukherjee, J. (2013). Enhanced biotransformation of fluoranthene by intertidally derived Cunninghamella elegans under biofilm-based and niche-mimicking conditions. Applied and Environmental Microbiology, 79, 7922–7930.Google Scholar
  101. Mohan, S. V., Kisa, T., Ohkuma, T., Kanaly, R. A., & Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Technology, 5, 347–374.Google Scholar
  102. Moreira, M. T., Feijoo, G., & Lema, J. M. (2000). Manganese peroxidase production by Bjerkandera sp. BOS55. Bioprocess Engineering, 23, 657–661.Google Scholar
  103. Morelli, I. S., Saparrat, M. C. N., Panno, M. T. D., Coppotelli, B. M., & Arrambari, A. (2013). Bioremediation of PAH-contaminated soil by fungi. In E. M. Goltapeh, Y. R. Danesh, & A. Varma (Eds.), Fungi as bioremediators (pp. 159–179). Berlin/Heidelberg: Springer.Google Scholar
  104. Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Biotechnology, 15, 225–230.Google Scholar
  105. Ning, D., Wang, H., Ding, C., & Lu, H. (2010). Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation, 21, 889–901.Google Scholar
  106. Novosad, J., Fiala, Z., Borská, L., & Krejsek, J. (2002). Immunosuppressive effect of polycyclic aromatic hydrocarbons by induction of apoptosis of pre-B lymphocytes of bone marrow. Acta Medica, 45, 123–128.Google Scholar
  107. Nzila, A. (2018). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environmental Pollution, 239, 788–802.Google Scholar
  108. Page, T. J., MacWilliams, P. S., Suresh, M., Jefcoate, C. R., & Czuprynski, C. J. (2004). 7-12 Dimethylbenz[a]anthracene-induced bone marrow hypocellularity is dependent on signaling through both the TNFR and PKR. Toxicology and Applied Pharmacology, 198, 21–28.Google Scholar
  109. Pagé, A. P., Yergeau, É., & Greer, C. W. (2015). Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons. PLoS One, 10, e0132062.Google Scholar
  110. Patel, J. G., Nirmal Kumar, J. I., Kumar, R. N., & Khan, S. R. (2015). Enhancement of pyrene degradation efficacy of Synechocystis sp., by construction of an artificial microalgal-bacterial consortium. Cogent Chemistry, 1, 221.Google Scholar
  111. Peng Jing-Jingwang Ningli. (2011). Microbial degradation mechanisms of soil high molecular weight PAHs and affecting factors: A review. Chinese Journal of Ecology.Google Scholar
  112. Peng, R.-H., Fu, X.-Y., Zhao, W., Tian, Y.-S., Zhu, B., Han, H.-J., Xu, J., & Yao, Q.-H. (2014). Phytoremediation of Phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. Environmental Science & Technology, 48, 12824–12832.Google Scholar
  113. Phillips, D. H. (1999). Polycyclic aromatic hydrocarbons in the diet. Mutation Research, 443, 139–147.Google Scholar
  114. Potin, O., Rafin, C., & Veignie, E. (2004). Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. International Biodeterioration and Biodegradation, 54, 45–52.Google Scholar
  115. Pozdnyakova, N., Dubrovskaya, E., Chernyshova, M., Makarov, O., Golubev, S., Balandina, S., & Turkovskaya, O. (2018). The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biology, 122, 363–372.Google Scholar
  116. Pugazhendi, A., Qari, H., Al-Badry Basahi, J. M., Godon, J. J., & Dhavamani, J. (2017). Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. International Biodeterioration and Biodegradation, 121, 44–54.Google Scholar
  117. Qi, Y.-B., Wang, C.-Y., Lv, C.-Y., Lun, Z.-M., & Zheng, C.-G. (2017). Removal capacities of polycyclic aromatic hydrocarbons (PAHs) by a newly isolated strain from oilfield produced water. International Journal of Environmental Research and Public Health, 14.  https://doi.org/10.3390/ijerph14020215.Google Scholar
  118. Qin, W., Fan, F., Zhu, Y., Huang, X., Ding, A., Liu, X., & Dou, J. (2018). Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Brazilian Journal of Microbiology, 49, 258–268.Google Scholar
  119. Reddy, P. V., Karegoudar, T. B., & Nayak, A. S. (2018). Enhanced utilization of fluorene by Paenibacillus sp. PRNK-6: Effect of rhamnolipid biosurfactant and synthetic surfactants. Ecotoxicology and Environmental Safety, 151, 206–211.Google Scholar
  120. Ren, C.-G., Kong, C.-C., Bian, B., Liu, W., Li, Y., Luo, Y.-M., & Xie, Z.-H. (2017). Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. International Journal of Phytoremediation, 19, 789–797.Google Scholar
  121. Rostami, S., Azhdarpoor, A., & Samaei, M. R. (2017). Removal of pyrene from soil using phytobioremediation (Sorghum Bicolor-Pseudomonas). Health Scope, 6.Google Scholar
  122. Saraswathy, A., & Hallberg, R. (2005). Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiological Research, 160, 375–383.Google Scholar
  123. Sayara, T., Borràs, E., Caminal, G., Sarrà, M., & Sánchez, A. (2011). Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. International Biodeterioration and Biodegradation, 65, 859–865.Google Scholar
  124. Schmidt, N., Boll, E. S., Malmquist, L. M. V., & Christensen, J. H. (2017). PAH metabolism in the earthworm Eisenia fetida – Identification of phase II metabolites of phenanthrene and pyrene. International Journal of Environmental Analytical Chemistry, 97, 1151–1162.Google Scholar
  125. Sherafatmand, M., & Ng, H. Y. (2015). Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresource Technology, 195, 122–130.Google Scholar
  126. Silva, I. S., Grossman, M., & Durrant, L. R. (2009). Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. International Biodeterioration and Biodegradation, 63, 224–229.Google Scholar
  127. Singh, P., & Tiwary, B. N. (2017). Optimization of conditions for polycyclic aromatic hydrocarbons (PAHs) degradation by Pseudomonas stutzeri P2 isolated from Chirimiri coal mines. Biocatalysis and Agricultural Biotechnology, 10, 20–29.Google Scholar
  128. Sinha, R. K., Bharambe, G., & Ryan, D. (2008). Converting wasteland into wonderland by earthworms—A low-cost nature’s technology for soil remediation: A case study of vermiremediation of PAHs contaminated soil. Environmentalist, 28, 466–475.Google Scholar
  129. Sivaram, A. K., Logeshwaran, P., Lockington, R., Naidu, R., & Megharaj, M. (2018). Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils. Chemosphere, 193, 625–634.Google Scholar
  130. Subashchandrabose, S. R., Logeshwaran, P., Venkateswarlu, K., Naidu, R., & Megharaj, M. (2017). Pyrene degradation by Chlorella sp. MM3 in liquid medium and soil slurry: Possible role of dihydrolipoamide acetyltransferase in pyrene biodegradation. Algal Research, 23, 223–232.Google Scholar
  131. Sun, K., Habteselassie, M. Y., Liu, J., Li, S., & Gao, Y. (2018). Subcellular distribution and biotransformation of phenanthrene in pakchoi after inoculation with endophytic Pseudomonas sp. as probed using HRMS coupled with isotope-labeling. Environmental Pollution, 237, 858–867.Google Scholar
  132. Takáčová, A., Smolinská, M., Ryba, J., Mackuľak, T., Jokrllová, J., Hronec, P., & Čík, G. (2014). Biodegradation of benzo[a]pyrene through the use of algae. Central European Journal of Chemistry, 12, 1133–1143.Google Scholar
  133. Tarafdar, A., Sinha, A., & Masto, R. E. (2017). Biodegradation of anthracene by a newly isolated bacterial strain, Bacillus thuringiensis AT.ISM.1, isolated from a fly ash deposition site. Letters in Applied Microbiology, 65, 327–334.Google Scholar
  134. Tauler, M., Vila, J., Nieto, J. M., & Grifoll, M. (2016). Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system. Applied Microbiology and Biotechnology, 100, 3321–3336.Google Scholar
  135. Truu, J., Truu, M., Espenberg, M., Nõlvak, H., & Juhanson, J. (2015). Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: A review. The Open Biotechnology Journal, 9, 85–92.Google Scholar
  136. Valentín, L., Feijoo, G., Moreira, M. T., & Lema, J. M. (2006). Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. International Biodeterioration and Biodegradation, 58, 15–21.Google Scholar
  137. Varjani, S. J., & Upasani, V. N. (2016). Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresource Technology, 222, 195–201.Google Scholar
  138. Venkatesagowda, B., Ponugupaty, E., Barbosa, A. M., & Dekker, R. F. H. (2012). Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World Journal of Microbiology and Biotechnology, 28, 71–80.Google Scholar
  139. Verdin, A., Lounès-Hadj Sahraoui, A., Newsam, R., Robinson, G., & Durand, R. (2005). Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environmental Pollution, 133, 283–291.Google Scholar
  140. Vidali, M. (2001). Bioremediation. An overview. Journal of Macromolecular Science, Part A Pure and Applied Chemistry, 73, 1163–1172.Google Scholar
  141. Vieira, G. A. L., Magrini, M. J., Bonugli-Santos, R. C., Rodrigues, M. V. N., & Sette, L. D. (2018). Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: Optimization of the degradation process. Brazilian Journal of Microbiology.  https://doi.org/10.1016/j.bjm.2018.04.007.Google Scholar
  142. Wang, C., Sun, H., Li, J., Li, Y., & Zhang, Q. (2009). Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere, 77, 733–738.Google Scholar
  143. Wang, C., Sun, H., Liu, H., & Wang, B. (2014). Biodegradation of pyrene by Phanerochaete chrysosporium and enzyme activities in soils: Effect of SOM, sterilization and aging. Journal of Environmental Sciences, 26, 1135–1144.Google Scholar
  144. Wang, J., Hang Ho, S. S., Huang, R., Gao, M., Liu, S., Zhao, S., Cao, J., Wang, G., Shen, Z., & Han, Y. (2016). Characterization of parent and oxygenated-polycyclic aromatic hydrocarbons (PAHs) in Xi’an, China during heating period: An investigation of spatial distribution and transformation. Chemosphere, 159, 367–377.Google Scholar
  145. Wang, C., Huang, Y., Zhang, Z., & Wang, H. (2018). Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB Express, 8, 67.Google Scholar
  146. Warshawsky, D., Ladow, K., & Schneider, J. (2007). Enhanced degradation of benzo[a]pyrene by Mycobacterium sp. in conjunction with green alga. Chemosphere, 69, 500–506.Google Scholar
  147. Wu, Y., Teng, Y., Li, Z., Liao, X., & Luo, Y. (2008). Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biology and Biochemistry, 40, 789–796.Google Scholar
  148. Wu, Y.-R., Luo, Z.-H., & Vrijmoed, L. L. P. (2010). Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresource Technology, 101, 9666–9672.Google Scholar
  149. Yergeau, E., Tremblay, J., Joly, S., Labrecque, M., Maynard, C., Pitre, F. E., St-Arnaud, M., & Greer, C. W. (2018). Soil contamination alters the willow root and rhizosphere metatranscriptome and the root-rhizosphere interactome. The ISME Journal, 12, 869–884.Google Scholar
  150. Zafra, G., Moreno-Montaño, A., Absalón, Á. E., & Cortés-Espinosa, D. V. (2015). Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environmental Science and Pollution Research International, 22, 1034–1042.Google Scholar
  151. Zafra, G., Taylor, T. D., Absalón, A. E., & Cortés-Espinosa, D. V. (2016). Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. Journal of Hazardous Materials, 318, 702–710.Google Scholar
  152. Zhang, H., Zhang, S., He, F., Qin, X., Zhang, X., & Yang, Y. (2016). Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 320, 265–277.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. Giridhar Babu
    • 1
  • Shahi I. Reja
    • 2
  • Nadeem Akhtar
    • 3
  • Mehar Sultana
    • 4
  • Prashant S. Deore
    • 2
  • Farukh I. Ali
    • 2
  1. 1.Department of Civil EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Department of Chemistry and ToxicologyUniversity of GuelphGuelphCanada
  3. 3.Department of Animal BiosciencesUniversity of GuelphGuelphCanada
  4. 4.Centre for Life ScienceCentral University of JharkhandRanchiIndia

Personalised recommendations