Polychlorinated Biphenyls (PCBs): Environmental Fate, Challenges and Bioremediation

  • Seethalaksmi Elangovan
  • Sathish Babu Soundra Pandian
  • Geetha S. J.
  • Sanket J. JoshiEmail author
Part of the Microorganisms for Sustainability book series (MICRO, volume 10)


Synthetic chlorinated organic compounds—polychlorinated biphenyls (PCBs)—have been used in several industrial applications for over 50 years and are among the most persistent classes of xenobiotic pollutants. PCBs remain in the environment for a long period due to their low reactivity and stability in harsh environmental conditions. Samples of PCBs can be analysed using chromatographic methods (gas or liquid) coupled with mass spectrometry after various pre-treatment and extraction methods. Hydrophobicity and a chemically stable nature cause them to break down very slowly under natural conditions. Catabolism by microbial enzymes is an efficient route for environmental biodegradation of PCBs, but as chlorination substitution in the biphenyl ring increases, the microbial degradation rate decreases. Different types of microbes are reported to degrade PCBs under anaerobic and/or aerobic conditions by reducing and oxidizing dechlorination mechanisms, respectively. Four main enzymes are reported for the biodegradation pathway of PCBs: biphenyl dioxygenase (bphA), dihydrodiol dehydrogenase (bphB), 2,3-dihydroxybiphenyl dioxygenase (bphC) and 2-hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase (bphD). Different types of bacteria are reported to successfully degrade PCBs, but only a few fungi are possible degraders in the absence of alternative carbon sources.


Polychlorinated biphenyls Stir-bar sorptive extraction Solid-phase microextraction Extraction syringe Matrix solid-phase dispersion Ultrasonic extraction 



The authors would like to kindly acknowledge Dr. Samuel Premkumar, CAARU, for deducing the chemical structures, and facilities and support provided by Sultan Qaboos University while preparing this chapter.


  1. Abramowicz, D. A. (1990). Aerobic and anaerobic biodegradation of PCBs: A review. Critical Reviews in Biotechnology, 10, 241–251.Google Scholar
  2. Abramowicz, D. A. (1995). Aerobic and anaerobic PCB biodegradation in the environment. Environmental Health Perspectives, 103, 97–99.Google Scholar
  3. Abramowicz, D. A., & Olson, D. R. (1995). Accelerated biodegradation of PCBs. ChemTech, 25, 36–41.Google Scholar
  4. Adrian, L., Dudkova, V., Demnerova, K., & Bedard, D. L. (2009). “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Applied and Environmental Microbiology, 75, 4516–4524.Google Scholar
  5. Ahmed, F. E. (2003). Analysis of polychlorinated biphenyls in food products. TrAC Trends in Analytical Chemistry, 22, 170–185.Google Scholar
  6. Ahmed, M., & Focht, D. D. (1973). Degradation of polychlorinated biphenyls by two species of Achromobacter. Canadian Journal of Microbiology, 19, 47–52.Google Scholar
  7. Aken, B. V., Correa, P. A., & Schnoor, J. L. (2009). Phytoremediation of polychlorinated biphenyls: New trends and promises. Environmental Science & Technology, 44, 2767–2776.Google Scholar
  8. Arnett, C. M., Parales, J. V., & Haddock, J. D. (2000). Influence of chlorine substituents on the rates of oxidation of chlorinated biphenyls by the biphenyl dioxygenase of Burkholderia sp. strain LB400. Applied and Environmental Microbiology, 66, 2928–2933.Google Scholar
  9. Ballschmiter, K., & Zell, M. (1980). Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography. Fresenius Zeitung der Analytische Chemie, 302, 20–31.Google Scholar
  10. Barker, S. A. (2007). Matrix solid phase dispersion (MSPD). Journal of Biochemical and Biophysical Methods, 70, 151–162.Google Scholar
  11. Barska, I., Guz-Ryczyńska, W., Skrzyński, I., Szlinder-Richert, J., Usydus, Z., Bykowski, P., Hove, H., Heggstad, K., & Bjordal, A. (2005). Non-ortho Polychlorinated biphenyls in Baltic fish in the 1999–2003 period. Bulletin of the Sea Fisheries Institute, 1, 164.Google Scholar
  12. Bedard, D. L., Unterman, R., Bopp, L. H., Brennan, M. J., Haberl, M. L., & Johnson, C. (1986). Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Applied and Environmental Microbiology, 51, 761–768.Google Scholar
  13. Bedard, D. L., Haberl, M. L., May, R. J., & Brennan, J. (1987). Evidence for novel mechanisms of polyclorinated biphenyl metabolism in Alcaligeneseutrophus H850. Applied and Environmental Microbiology, 53, 1103–1112.Google Scholar
  14. Bedard, D. L., Bailey, J. J., Reiss, B. L., & Jerzak, G. V. S. (2006). Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Applied and Environmental Microbiology, 72, 2460–2470.Google Scholar
  15. Berkaw, M., Sowers, K. R., & May, H. D. (1996). Anaerobic orthodechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Applied and Environmental Microbiology, 62, 2534–2539.Google Scholar
  16. Beurskens, J. E. M., & Stortelder, P. B. M. (1995). Microbial transformation of PCBs in sediments: What can we learn to solve practical problems? Water Science and Technology, 31, 99–107.Google Scholar
  17. Billingsley, K. A., Backus, S. M., Juneson, C., & Ward, P. (1997). Comparison of the degradation patterns of polychlorinated biphenyl congeners in Aroclors by a Pseudomonas sp. LB400 after growth on various carbon sources. Canadian Journal of Microbiology, 43, 1172–1179.Google Scholar
  18. Bjoërklund, E., Holst, C., & Anklam, E. (2002). Fast extraction, clean-up and detection methods for the rapid analysis and screening of seven indicator PCBs in food matrices. Trends in Analytical Chemistry, 21, 40–53.Google Scholar
  19. Borja, J., Marie-Teleon, D., Auresenia, J., & Gallardo, S. (2005). Polychlorinated biphenyls and their biodegradation. Process Biochemistry, 40, 1999–2013.Google Scholar
  20. Boyle, A. W., Silvin, C. J., Hassett, J. P., Nakas, J. P., & Tanenbaum, S. W. (1992). Bacterial PCB biodegradation. Biodegradation, 3, 285–298.Google Scholar
  21. Cao, Y. M., Xu, L., & Jia, L. Y. (2011). Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation. New Biotechnology, 29, 90–98.Google Scholar
  22. Chaudhry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiological Reviews, 55, 59–79.Google Scholar
  23. Chen, R., & Pignatello, J. (1997). Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environmental Science & Technology, 31, 2399–2406.Google Scholar
  24. Clark, R. R., Chian, E. S. K., & Griffin, R. A. (1979). Degradation of polychlorinated biphenyls by mixed microbial cultures. Applied and Environmental Microbiology, 37, 680–685.Google Scholar
  25. Cohen, B. S. (2010). An assessment of historical PCB contamination in Arctic mammals. ENVI Independent Study. Williams College USA. Fall 2009–Winter 2010.Google Scholar
  26. Cranor, W. L., Perkins, S. D., Clark, R. C., & Tegerdine, G. A. (2005). Analysis of SPMD samples from the October/November 2004 deployment in Lake Anna, VA for PCBs as bioavailable organic contaminants. The Columbia Environmental Research Center, 27, 43.Google Scholar
  27. Criado, M. R., Pereiro, I. R., & Torrijos, R. C. (2003). Optimization of a microwave-assisted extraction method for the analysis of polychlorinated biphenyls in ash samples. Journal of Chromatography A, 985, 137–145.Google Scholar
  28. De, J., Ramaiah, N., & Sarkar, A. (2006). Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World Journal of Microbiology and Biotechnology, 22, 1321–1327.Google Scholar
  29. Devrukhkar, S., Kothare, A., Kochar, D., & Surti, A. (2017). Aerobic degradation of Aroclor 1242 by Pseudomonas mendocina strain CL-10.4. International Journal of Advanced Research and Development, 2, 128–132.Google Scholar
  30. Dietrich, D., Hickey, W. J., & Lamar, R. (1995). Degradation of 4,49-dichlorobiphenyl, 3,39,4,49-tetrachlorobiphenyl, and 2,29,4,49,5,59-hexachlorobiphenyl by the White Rot fungus Phanerochaetechrysosporium. Applied and Environmental Microbiology, 61, 3904–3909.Google Scholar
  31. Dingyi, Y., Quensen, J. F., III, Tiedje, J. M., & Boyd, S. A. (1995). Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria. Applied and Environmental Microbiology, 61, 2166–2171.Google Scholar
  32. Dobbins, D. C. (1995). Biodegradation of pollutants. In Encyclopaedia of environmental biology (Vol. 1). New Delhi: Academic.Google Scholar
  33. Dolfing, J. (1990). Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium strain DCB-1. Archives of Microbiology, 153, 264–266.Google Scholar
  34. Dolfing, J., & Tiedje, T. M. (1987). Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogeniccoculture. Archives of Microbiology, 149, 102–105.Google Scholar
  35. Evans, B. S., Dudley, C. A., & Klasson, K. T. (1996). Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Applied Biochemistry and Biotechnology, 57(8), 885–894.Google Scholar
  36. Fava, F., Gentilucci, S., & Zanaroli, G. (2003). Anaerobic biodegradation of weathered polychlorinated biphenyls (PCBs) in contaminated sediments of Porto Marghera (Venice Lagoon, Italy). Chemosphere, 53, 101–109.Google Scholar
  37. Fennell, D. E., Nijenhuis, I., Wilson, S. F., Zinder, S. H., & Häggblom, M. M. (2004). Dehalococcoidesethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology, 38, 2075–2081.Google Scholar
  38. Fiedler, H. (2007). National PCDD/PCDF release inventories under the Stockholm convention on persistent organic pollutants. Chemosphere, 67, S96–S108.Google Scholar
  39. Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation and degradation of poly-chlorinated biphenyls. Environmental Pollution, 155, 1–12.Google Scholar
  40. Flanagan, W. P., & May, R. J. (1993). Metabolite detection as evidence for naturally occurring aerobic PCB biodegradation in Hudson River sediments. Environmental Science & Technology, 27, 2207–2212.Google Scholar
  41. Fukuda, M. (1993). Diversity of chloroaromaticoxygenases. Current Opinion in Biotechnology, 4, 339–343.Google Scholar
  42. Furukawa, K. (1982). Microbial degradation of polychlorinated biphenyls. In A. M. Chakrabarty (Ed.), Biodegradation and detoxification of environmental pollutants (pp. 33–57). Boca Raton: CRC Press.Google Scholar
  43. Furukawa, K., & Chakrabarty, A. M. (1982). Involvement of plasmids in total degradation of chlorinated biphenyls. Applied and Environmental Microbiology, 44, 619–626.Google Scholar
  44. Furukawa, K., & Matsumura, F. (1976). Microbial metabolism of polychlorinated biphenyls. Studies on the relative degradability of polychlorinated biphenyl components by Alcaligenes sp. Journal of Agricultural and Food Chemistry, 42, 543–548.Google Scholar
  45. Furukawa, K., & Miyazaki, T. (1986). Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. Journal of Bacteriology, 166, 392–398.Google Scholar
  46. Furukawa, K., Tomizuka, N., & Kamibayashi, A. (1979). Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Applied and Environmental Microbiology, 38, 301–310.Google Scholar
  47. Halfadji, A., Touabet, & Yacine, A. (2003). Comparison of soxhlet extraction, microwave-assisted extraction and ultrasonic extraction for the determination of PCB’s congeners in spiked soils by transformer oil (ASKAREL). International Journal of Advances in Engineering & Technology, 5, 63–75.Google Scholar
  48. Hofer, B., Backhaus, S., & Timmis, K. N. (1994). The biphenyl/polychlorinated Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene, 144, 9–16.Google Scholar
  49. Hou, L. H., & Dutta, S. K. (2000). Phylogenetic characterization of several para- and meta-PCB dechlorinating Clostridium species: 16S rDNA sequence analyses. Letters in Applied Microbiology, 30, 238–243.Google Scholar
  50. Hülsmeyer, M., Hecht, H.-J., Niefind, K., Schomburg, D., Hofer, B., Timmis, K. N., & Eltis, L. D. (1998). Crystal structure of cis-biphenyl-2,3-dihydrodiol-2,3-dehydrogenase from a PCB degrader at 2.0 Å resolution. Protein Science, 7, 1286–1293.Google Scholar
  51. Ju, Q., Zouboulis, C. C., & Xia, L. (2009). Environmental pollution and acne: Chloracne. Dermato-endocrinology, 1, 125–128.Google Scholar
  52. Kamei, I., Kogura, R., & Kondo, R. (2006). Metabolism of 4,4′-dichlorobiphenylby white-rot fungi Phanerochaetechrysosporium and Phanerochaete sp. MZ42. Applied Microbiology and Biotechnology, 72, 566–575.Google Scholar
  53. Kim, J., & Rhee, G. Y. (1997). Population dynamics of polychlorinated biphenyl-dechlorinating microorganisms in contaminated sediments. Applied and Environmental Microbiology, 63, 1771–1776.Google Scholar
  54. Kimbara, K., Hashimoto, T., Fukuda, M., Koana, T., Takagi, M., Oishi, M., & Yano, K. (1988). Isolation and characterization of a mixed culture that degrades polychlorinated biphenyls. Agricultural and Biological Chemistry, 52, 2885–2891.Google Scholar
  55. Krcmár, P., Kubatova, A., Votruba, J., Erbanova, P., Novotny, C., & Sasek, V. (1999). Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaetechrysosporium produced in a perforated plate bioreactor. World Journal of Microbiology and Biotechnology, 15, 269–276.Google Scholar
  56. Kubatova, A., Erbanova, P., Eichlerova, I., Homolka, L., Nerud, F., & Sasek, V. (2001). PCB congener selective biodegradation by the white rot fungus Pleurotusostreatus in contaminated soil. Chemosphere, 43, 207–215.Google Scholar
  57. Kusch, P. (2018). Headspace solid-phase microextraction coupled with gas chromatography–Mass spectrometry for the characterization of polymeric materials. LCGC North America, 36, 52–61.Google Scholar
  58. Lang, V. (1992). Polychlorinated biphenyls in the environment. Journal of Chromatography, 595, 1–43.Google Scholar
  59. Larsson, P. (1987). Uptake of polychlorinated biphenyls (PCBs) by the macroalga, Cladophoraglomerata. Bulletin of Environmental Contamination and Toxicology, 38, 58–62.Google Scholar
  60. Llompart, M., Li, K., & Fingas, M. (1998). Solid-phase microextraction and headspace solid-phase microextraction for the determination of polychlorinated biphenyls in water samples. Analytical Chemistry, 70, 2510–2515.Google Scholar
  61. Mancera-Lopez, M., Esparza-Garcia, F., Chavez-Gomez, B., Rodriguez-Vazquez, R., Saucedo-Castaneda, G., & Barrera-Cortes, J. (2008). Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. International Biodeterioration & Biodegradation, 61, 151–160.Google Scholar
  62. Masai, E., Yamada, A., Healy, J. M., Hatta, T., Kimbara, K., Fukuda, M., & Yano, K. (1995). Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology, 61, 2079–2085.Google Scholar
  63. Matturro, B., Di Lenola, M., Ubaldi, C., & Rossetti, S. (2016). First evidence on the occurrence and dynamics of Dehalococcoidesmccartyi PCB-dechlorinase genes in marine sediment during Aroclor 1254 reductive dechlorination. Marine Pollution Bulletin, 112, 189–194.Google Scholar
  64. McEldowney, S., Hardman, D. J., & Wait, S. (1993). Pollution: Ecology and biotreatment. New York: Longman Scientific and Technical.Google Scholar
  65. McKay, D. B., Seeger, M., Zielinski, M., Hofer, B., & Timmis, K. N. (1997). Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products. Journal of Bacteriology, 179, 1924–1930.Google Scholar
  66. Mckay, D. B., Prucha, M., Reineke, W., Timmis, K. N., & Pieper, D. H. (2003). Substrate specificity and expression of three 2, 3-dihydroxybiphenyl 1, 2-dioxygenases from Rhodococcusgloberulus Strain P6. Journal of Bacteriology, 185, 2944–2951.Google Scholar
  67. Miyata, H., Kashimoto, T., & Kunita, N. (1977). Detection and determination of polychlorinated dibenzofurans in normal human tissues and Kanemi rice oils caused “KanemiYusho” (in Japanese). Journal of the Food Hygienic Society of Japan, 19, 260.Google Scholar
  68. Mohn, W. W., & Tiedje, J. M. (1990). Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe. Journal of Bacteriology, 172, 2065–2070.Google Scholar
  69. Mohn, W. W., & Tiedje, J. M. (1991). Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomoniletiedjei. Archives of Microbiology, 1991, 1–8.Google Scholar
  70. Muir, D., & Sverko, E. (2006). Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: A critical appraisal. Analytical and Bioanalytical Chemistry, 386, 769–789.Google Scholar
  71. Mukerjee-Dhar, G., Hatta, T., Shimura, M., & Kimbara, K. (1998). Analysis of changes in congener selectivity during PCB degradation by Burkholderia sp. strain TSN101 with increasing concentrations of PCB and characterization of the bph BCD genes and gene products. Archives of Microbiology, 169, 61–70.Google Scholar
  72. Murínová, S., Dercová, K., & Sová, H. D. (2014). Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. International Biodeterioration & Biodegradation, 91, 52–59.Google Scholar
  73. Namiesnik, J., & Szefer, P. (2009). Analytical measurements in aquatic environments. Boca Raton: CRC Press.Google Scholar
  74. Natarajan, M. R., Wu, W., Wang, H., Bhatnagar, L., & Jain, M. K. (1999). Dechlorination of spiked PCBs in lake sediment by anaerobic microbial granules. Water Research, 32, 3013–3020.Google Scholar
  75. National Research Council. (2001). A risk-management strategy for PCB-contaminated sediments. Washington, DC: National Academic Press.Google Scholar
  76. Nies, L., & Vogel, T. M. (1990). Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediments. Applied and Environmental Microbiology, 56, 2612–2617.Google Scholar
  77. Nies, L., & Vogel, T. M. (1991). Identification of the proton source for the microbial reductive dechlorination of 2,3,4,5,6-pentachlorobiphenyl. Applied and Environmental Microbiology, 57, 2771–2774.Google Scholar
  78. Novotny, C., Vyas, B. R. M., Erbanova, P., Kubatova, A., & Sasek, V. (1997). Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiologica, 42, 136–140.Google Scholar
  79. Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191.Google Scholar
  80. Quensen, J. F., III, Boyd, S. A., & Tiedje, J. M. (1990). Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Applied and Environmental Microbiology, 56, 2360–2369.Google Scholar
  81. Rabinovich, M. L., Bolobova, A. V., & Vasil’chenko, L. G. (2004). Fungal decomposition of natural aromatic structures and xenobiotics: A review. Applied Biochemistry and Microbiology, 40, 1–17.Google Scholar
  82. Rejczak, T., & Tuzimski, T. (2015). A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chemistry, 13, 980–1010.Google Scholar
  83. Rhee, G.-Y., Sokol, R. C., Bush, B., & Bethoney, C. M. (1993). Long-term study of the anaerobic dechlorination of Aroclor 1254 with and without biphenyl enrichment. Environmental Science & Technology, 27, 714–719.Google Scholar
  84. Riaz, M., & Zamorani, E. (1988). Analytical procedure for SPE of PCBs from water. European Application Research Report EUR 11886 EN, Commission of the European Communities, Luxembourg.Google Scholar
  85. Ruiz-Aguilar, G. M. L., Fernandez-Sanchez, J. M., Rodriguez-Vazquez, R., & Poggi-Varaldo, H. (2002). Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Advances in Environmental Research, 6, 559–568.Google Scholar
  86. Sakai, M., Masai, E., Asami, H., Sugiyama, K., Kimbara, K., & Fukuda, M. (2002). Diversity of 2,3-dihydroxybiphenyl dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1. Journal of Bioscience and Bioengineering, 93, 421–427.Google Scholar
  87. Sánchez-Rojas, F., Bosch-Ojeda, C., & Cano-Pavón, J. M. (2009). A review of stir bar sorptive extraction. Chromatographia, 69, 79–94.Google Scholar
  88. Schmidt, H., & Schultz, G. (1881). Einwirkung von Fiinffach Chlorphosphor auf das y- diphenol. Annali di Chimica, 207, 338–344.Google Scholar
  89. Seeger, M., Timmis, K. N., & Hofer, B. (1995). Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Applied and Environmental Microbiology, 61, 2654–2658.Google Scholar
  90. Seeger, M., Timmins, K. N., & Hofer, B. (1997). Bacterial pathways for the degradation of polychlorinated biphenyls. Marine Chemistry, 58, 327–333.Google Scholar
  91. Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., & Yano, K. (1995). A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology, 61, 3353–3358.Google Scholar
  92. Seto, M., Nishibori, K., Masai, E., Fukuda, M., & Ohdaira, Y. (1999). Degradation of polychlorinated biphenyls by a ‘Maitake’ mushroom, Grifolafrondosa. Biotechnology Letters, 21, 27–31.Google Scholar
  93. Sietmann, R., Gesell, M., Hammer, E., & Schauer, F. (2006). Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere, 64, 672–685.Google Scholar
  94. Silva, D. J., Pietri, F. V., Ermirio, J., Moraes, F., Bazito, R. C., & Pereira, C. G. (2012). Treatment of materials contaminated with Polychlorinated Biphenyls (PCBs): Comparison of traditional method and supercritical fluid extraction. American Journal of Analytical Chemistry, 3, 891–898.Google Scholar
  95. Singh, H. (2006). Mycoremediation: Fungal bioremediation. Hoboken: Wiley.Google Scholar
  96. Stellaa, T., Covinoa, S., Carová, M. C., Filipová, A., Petruccioli, M., D’Annibale, A., & Cajthamla, T. (2017). Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous Materials, 324, 701–710.Google Scholar
  97. Taguchi, K., Motoyama, M., & Kudo, T. (2001). PCB/biphenyl degradation gene cluster in Rhodococcusrhodochrous K37, is different from the well-known bph gene clusters in Rhodococcus sp. P6, RHA1, and TA421. Riken Review, 42, 23–26.Google Scholar
  98. Takagi, S., Shirota, C., Sakaguchi, K., Suzukia, J., Suea, T., Nagasakac, H., Hisamatsua, S., & Sonokia, S. (2007). Exoenzymes of Trametesversicolor can metabolize coplanar PCB congeners and hydroxy PCB. Chemosphere, 67, S54–S57.Google Scholar
  99. Tan, G. H., & Chai, M. K. (2011). Sample preparation in the analysis of pesticides residue in food by chromatographic techniques. In M. Stoytcheva (Ed.), Pesticides – strategies for pesticides analysis. Rijeka: InTech.Google Scholar
  100. The Stockholm Convention on Persistent Organic Pollutants (POPs). (2010). United Nations Environment Programme (UNEP).
  101. Tiedje, J. M., Quensen, J. F., III, Chee-Sanford, J., Schimel, J. P., & Boyd, S. A. (1993). Microbial reductive dechlorination of PCBs. Biodegradation, 4, 231–240.Google Scholar
  102. Tu, C., Teng, Y., Luo, Y., Li, X., Sun, X., Li, Z., Liu, W., & Christie, P. (2011). Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobiummeliloti. Journal of Hazardous Materials, 186, 1438–1444.Google Scholar
  103. Urbaniak, M. (2013). Chapter 4: Biodegradation of PCDDs/PCDFs and PCBs. In Biodegradation – Engineering and technology (pp. 73–100). Rijeka: InTech.Google Scholar
  104. Van Dort, H. M., & Bedard, D. L. (1991). Reductive ortho and meta-dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Applied and Environmental Microbiology, 57, 1576–1578.Google Scholar
  105. Vasilyeva, G., & Strijakova, E. (2007). Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology, 76, 639–653.Google Scholar
  106. Verdin, A., Sahraoui, A. L. H., & Durand, R. (2004). Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. International Biodeterioration & Biodegradation, 53, 65–70.Google Scholar
  107. Williams, W. A. (1994). Microbial reductive dechlorination of trichlorobiphenyls in anaerobic sediment slurries. Environmental Science & Technology, 28, 630–635.Google Scholar
  108. Wu, Q., & Wiegel, J. (1997). Two anaerobic polychlorinated biphenyl-dehalogenating enrichments that exhibit different para-dechlorination specificities. Applied and Environmental Microbiology, 63, 4826–4832.Google Scholar
  109. Wu, Q., Sowers, K. R., & May, H. D. (1998). Microbial reductive dechlorination of aroclor 1260 in anaerobic slurries of estuarine sediments. Applied and Environmental Microbiology, 64, 1052–1058.Google Scholar
  110. Yadav, J. S., Quensen, J. F., III, Tiedje, J. M., & Reddy, C. A. (1995). Degradation of biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaetechrysosporium as evidenced by congener-specific analysis. Applied and Environmental Microbiology, 61, 2560–2565.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Seethalaksmi Elangovan
    • 1
  • Sathish Babu Soundra Pandian
    • 2
  • Geetha S. J.
    • 3
  • Sanket J. Joshi
    • 2
    Email author
  1. 1.Department of Biochemistry, Sri Sankara Arts and Science CollegeUniversity of MadrasChennaiIndia
  2. 2.Central Analytical and Applied Research Unit, College of ScienceSultan Qaboos UniversityMuscatOman
  3. 3.Department of Biology, College of ScienceSultan Qaboos UniversityMuscatOman

Personalised recommendations