Biodegradation of Polychlorinated Biphenyls

  • Soumya Nair
  • Jayanthi Abraham
Part of the Microorganisms for Sustainability book series (MICRO, volume 10)


Polychlorinated biphenyls (PCBs) are organic molecules that are stable in nature. They were widely used in the early 1940s. PCBs have entered the ecosystem due to their wide applications via legal and illegal use. Due to its insoluble nature, these environmental contaminants are persistent in the environment, thereby contaminating different ecosystem. This affects the flora and fauna. The environmental persistence of these chlorinated molecules results mainly in the inability of aquatic fauna and soil biota to utilize the compound at a substantial rate. PCBs pose a toxicological risk to the environment and the human due to its ubiquitous distribution. PCBs are linked with many genetic diseases such as cancers, birth defects, tumours, etc. to name a few. Conventional methods of removal such as incineration or desorption are unsafe, expensive and time consuming. The application of microorganisms in the degradation process of PCBs is an excellent alternative which began in the early 1990s. Much research has been conducted on PCB degradation assisted by the microorganisms to determine the methods by which the degradation rate can be improvised. PCB molecule can be utilized and degraded using the aerobic and the anaerobic method. The route of degradation completely depends on the PCB molecule, type of microbial strain, and the interaction between them. The current book chapter reviews the different ways via which the PCB molecule can be biodegraded.


Polychlorinated biphenyls Incineration Desorption Bioaccumulation Carcinogenic Microbe-mediated degradation or biodegradation 


  1. Abraham, J., & Chauhan, R. (2018). Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech, 8, 22.Google Scholar
  2. Agency for toxic substances and disease registry. (1993). Toxicological profile for selected PCBs; TP-92/16.Google Scholar
  3. Ahmad, D. R., Masse, R., Sylvestre, M., & Sandossi, M. (1991). Bioconversion of 2-hydroxy-6-oxo-6-(40 -chlorobi-phenyl) hexa-2,4-dienoic acid: The meta-cleavage product of 4-chloro biphenyl. Journal of General Microbiology, 137, 1375–1385. 2012 J. Borja et al./Process Biochemistry 40 (2005) 1999–2013.Google Scholar
  4. Ahmed, M., & Focht, D. D. (1972). Degradation of polychlorinated biphenyls by two species of Achromobacter. Canadian Journal of Microbiology, 19, 42–82.Google Scholar
  5. Albro, P. W., & McKinney, J. D. (1981). The relationship between polarity of polychlorinated biphenyls and their induction of mixed function oxidase activity. Chemico-Biological Interactions, 34, 373–378.Google Scholar
  6. ATSDR (Agency for Toxic Substances and Disease Registry). (2000). Chapter 4: Chemical and physical information for PCBs.
  7. Banks, M. K., Kulakow, P., Schwab, A. P., Chen, Z., & Rathbone, K. (2003). Degradation of crude oil in the rhizosphere of sorghum bicolor. International Journal of Phytoremediation, 5, 225–234.Google Scholar
  8. Baxter, R. A., Gilbert, P. E., Lidgett, R. A., Mainprize, J. H., & Vodden, H. A. (1975). The degradation of polychlorinated biphenyls by microorganisms. Science Total Environment, 4, 53–61.Google Scholar
  9. Bedard, D. L., & Harbel, M. I. (1990). Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyl by eight bacterial strains. Microbial Ecology, 20, 87–102.Google Scholar
  10. Bedard, B. L., Unterman, R., Bopp, L. H., Brennan, M. J., Harbel, M. I., & Johnson, C. (1986). Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Applied and Environmental Microbiology, 51, 761–768.Google Scholar
  11. Benvinakatti, B. G., & Ninnebar, H. Z. (1992). Degradation of biphenyl by a Micrococcus species. Applied Microbiology and Biotechnology, 38, 273–275.Google Scholar
  12. Boyle, A. W., Silvin, C. J., Hassett, J. P., Nakas, J. P., & Tanenbaum, S. W. (1992). Bacterial PCB biodegradation. Biodegradation, 3, 285–298.Google Scholar
  13. Brown, J., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., & Wagner, R. E. (1987). Polychlorinated biphenyl dechlorination in aquatic sediments. Science, 236, 709–712.Google Scholar
  14. Buczkowski, R., Kondzielski, I., & Szymański, T. (2002). Metodyremediacjiglebzanieczyszczo- nychmetalamiciężkimi. Toruniu: Uniwersytet MikołajaKopernika.Google Scholar
  15. Centeno, C., Gallardo, S., & Abella, L. (2003). Alternative technology options for the chemical treatment of polychlorinated biphenyls. Inhenyeriya, 3, 58–68.Google Scholar
  16. Chakraborty, P., & Abraham, J. (2017). Comparative study on degradation of norfloxacin and ciprofloxacin by Ganoderma lucidum JAPC1. Korean Journal of Chemical Engineering, 34(4), 1122–1128.Google Scholar
  17. Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. J. (2005). Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science Pollution Researches, 12, 34–48.Google Scholar
  18. Clark, M. (1997). Health effects of polychlorinated biphenyls. Research Triangle Park: EPA.Google Scholar
  19. Clark, R. R., Chian, E. S. K., & Griffin, R. A. (1979). Degradation of polychlorinated biphenyls by mixed microbial cultures. Applied and Environmental Microbiology, 37, 680–685.Google Scholar
  20. Comandeur, L. C. M., May, R. J., Mokross, H., Bedard, D. L., Reinke, W., Harvie, A. J., et al. (1996). Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JB1: Metabolites and enzymes. Biodegradation, 7, 435–443.Google Scholar
  21. Cookson, J. T., Jr. (1995). Bioremediation engineering: Design and application. New York: McGraw Hill.Google Scholar
  22. Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Tibtech Journal, 13, 393–397.Google Scholar
  23. Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 56, pp. 55–114). San Diego: Academic Press.Google Scholar
  24. Dams, R. I., Paton, G. I., & Killham, K. (2007). Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere, 68, 864–870.Google Scholar
  25. Dobbins, D. C. (1995). Biodegradation of pollutants (Encyclopedia of environmental biology) (Vol. 1). New York: Academic.Google Scholar
  26. Doughtery, E. J., McPeters, A. L., Overcash, M. R., & Carbonell, R. G. (1993). Theoretical analysis of a method for in situ decontamination of soil containing 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environmental Science Technology, 27, 505–515.Google Scholar
  27. Engwall, M., & Hjelm, K. (2000). Uptake of dioxin-like compounds from sewage sludge into various plant species – Assessment of levels using a sensitive bioassay. Chemosphere, 40, 1189–1195.Google Scholar
  28. Erickson, M. P. (1997). Analytical chemistry of PCBs (2nd ed.). New York: CRC Lewis Publishers.Google Scholar
  29. Ferro, A. M., Rock, S. A., Kennedy, J., Herrick, J. J., & Turner, D. L. (1999). Phytoremediation of soils contaminated with wood preservatives: Greenhouse and field evaluations. International Journal of Phytoremediation, 1, 289–306.Google Scholar
  30. Focht, D. D., & Brunner, W. (1985). Kinetics of biphenyl and chlorinated biphenyl metabolism in soil. Applied and Environmental Microbiology, 50, 1058–1063.Google Scholar
  31. Furukawa, K. (1982). Microbial degradation of polychlorinated biphenyls. In A. M. Chakrabarty (Ed.), Biodegradation and detoxification of environmental pollutant. Boca Raton: CRC Press, Inc.Google Scholar
  32. Furukawa, K. (1986). Modification of PCBs by bacteria and other microorganisms. In S. Waid John (Ed.), PCBs and the environment (pp. 89–100). Boca Raton: CRC Press.Google Scholar
  33. Furukawa, K., & Matsumura, F. (1976). Microbial metabolism of PCBs: Studies on the relative degradability of PCB components by Alcaligenes sp. Agricultural and Food Chemistry, 24, 251–255.Google Scholar
  34. Furukawa, K., Tonomura, K., & Kamibayashi, A. (1978). Effect of chlorine substitution on the biodegradability of polychlorinated biphenyl. Applied and Environmental Microbiology, 35, 223–227.Google Scholar
  35. Gerhard, K. E., Huang, X.-D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176, 20–30.Google Scholar
  36. Gianfreda, L., & Rao, M. A. (2004). Potential of extra cellular enzymes in remediation of polluted soils: A review. Enzyme Microbiology Technology Journal, 35, 339–354.Google Scholar
  37. Global chemical treaty (opinion/editorial). Manila Bulletin. June 18, 2001.Google Scholar
  38. Gregor, A. W., & Fletcher, J. S. (1988). The influence of increasing chlorine content on the accumulation and metabolism of polychlorinated biphenyls by Pau’s Scarlet Rose cells. Plant Cell Response, 7, 329–332.Google Scholar
  39. Holden, P. A., & Firestone, M. K. (1997). Soil microorganisms in soil cleanup: How can we improve our understanding? Journal of Environmental Quality, 26, 32–40.Google Scholar
  40. Holliger, C., Wohlfarth, G., & Diekert, G. (1998). Reductive dechlorination in the energy metabolism of an Jones KC, Burnett V, Duarte-Davidson R and Waterhouse KS (1991) PCBS in the environment. Chemistry in Britain. pp. 435–438. Aerobic bacteria. FEMS Microbiology Reviews, 22, 383–398.Google Scholar
  41. Hülster, A., & Marschner, H. (1993). Transfer of PCDD/PCDF from contaminated soils to food and fodder crop plants. Chemosphere, 27, 439–446.Google Scholar
  42. Hülster, A., Mueller, J. F., & Marschner, H. (1994). Soil–plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environmental Science and Technology, 28, 1110–1115.Google Scholar
  43. Hutzinger, O. (1974). Chemistry of PCBs. Englewood Cliffs: Westport Publishing Group.Google Scholar
  44. Jou, J. J., Chung, J. C., Weng, Y. M., Liawc, S. L., & Wang, M. K. (2007). Identification of dioxin and dioxin-like polychlorbiphenyls in plant tissues and contaminated soils. Journal of Hazardous Material, 149, 174–179.Google Scholar
  45. Katers, R. L. (2000). The history of PCBs, when were health problems detected? Fox River Watch, Clean Water Action Council (CWAC).
  46. Komancova´, M., Jurcˇova´, I., Kocha’nkova´, L., & Burkhard, J. (2003). Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere, 50, 537–543.Google Scholar
  47. Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: A beneficial plant–microbe interaction. Molecular Plant Microbe Interactions, 17, 6–15.Google Scholar
  48. Lamoureux, G. L., & Flear, D. S. (1979). Pesticide metabolism in higher plants: In vitro enzyme studies. In G. D. Paulson, D. S. Frear, & E. P. Marks (Eds.), Xenobiotic metabolism. In vitro methods (American Chemical Society symposium series) (Vol. 97, pp. 263–266). Washington DC: ASC.Google Scholar
  49. Laukers, J. D. (1986). Disposal and destruction of waste PCBs. In S. Waid John (Ed.), PCBs and the environment (pp. 83–152). Boca Raton: CRC Press.Google Scholar
  50. Lee, K. W. (1995). Practical management of chemicals and hazardous wastes: An environmental and safety professional guide. New Jersey: Prentice Hall.Google Scholar
  51. Leigh, M. B., Fletcher, J. S., Fu, X., & Schmitz, F. J. (2002). Root turnover: An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environmental Science and Technology, 36, 1579–1583.Google Scholar
  52. Leigh, M. B., Prouzovà, P., Mackovà, M., Macek, T., Nagle, D. P., & Fletcher, J. S. (2006). Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB contaminated site. Applied and Environmental Microbiology, 72(4), 2331–2342.Google Scholar
  53. Liu, L., Jiang, C.-Y., Liu, X.-Y., Wu, J.-F., Han, J.-G., & Liu, S.-J. (2007). Plant–microbe association for rhizoremediation of chloronitro aromatic pollutants with Comamonas sp. strain CNB-1. Environmental Microbiology, 9, 465–473.Google Scholar
  54. Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39, 461–490.Google Scholar
  55. Macek, T., Mackova, M., Brkhar, J., & Demnerova, K. (1998). Introduction of green plants for the control of metals and organics I environmental remediation. In F. W. Holm (Ed.), Effluents from alternative demilitarization technologies (NATO PS series) (pp. 71–85). Gent: Environmental Biotechnology, Technological Institute.Google Scholar
  56. Macek, T., Mackova, M., & Kas, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, 18, 23–34.Google Scholar
  57. Macek, T., Mackova, M., Kucerova, P., Chroma, L., Burkhard, J., & Demnerova, K. (2002). Phytoremediation. In S. N. Agathos & W. Reineke (Eds.), Biotechnology for the environment: Soil remediation (pp. 115–137). Brussels: Kluwer Academic Publishers.Google Scholar
  58. Macek, T., Francova, K., Kochankova, L., Lovecka, P., Ryslava, E., Rezek, J., Sura, M., Triska, J., Demnerova, K., & Mackova, M. (2004). Phytoremediation: Biological cleaning of a polluted environment. Reviews on Environmental Health, 19, 63–82.Google Scholar
  59. Mackova, M., Macek, T., Ocenaskova, J., Burkhard, J., Demnerova, K., & Pazlarova, J. (1996). Selection of the potential plant degraders of PCB. ChemickéListy, 90, 712–713.Google Scholar
  60. Mackova, M., Macek, T., Kucerova, P., Burkhard, J., Tiska, J., & Demnerova, K. (1998). Plant tissue cultures in model studies of transformation of polychlorinated biphenyls. Chemical Papers, 52, 599–600.Google Scholar
  61. Mackova, M., Vrchotova, B., Francova, K., Sylvestre, M., Tomaniova, M., Lovecka, P., Demnerova, K., & Macek, M. (2007). Biotransformation of PCBs by plants and bacteria –consequences of plant-microbe interactions. European Journal of Soil Biology, 43, 233–241.Google Scholar
  62. Masse’, R., Messier, F., Peloquin, L., Ayote, C., & Sylvestre, M. (1984). Microbial biodegradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyl. Applied and Environmental Microbiology, 47, 947–951.Google Scholar
  63. McEldowney, S., Hardman, D. J., & Wait, S. (1993). Pollution: Ecology and biotreatment. New York: Longman Scientific and Technical.Google Scholar
  64. Mikszewsk, A. (2004). Emerging technologies for the in situ remediation of PCB contaminated soils and sediments: Bioremediation and nanoscale zero-valent iron. Washington, DC: U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response.Google Scholar
  65. Mohn, W. W., & Tiedje, J. M. (1992). Microbial reductive dechlorination. Microbiological Reviews, 56, 482–507.Google Scholar
  66. Morris, P. J., Mohn, W. W., Quensen, J. F., III, Tiedje, J. M., & Boyd, S. A. (1992). Establishment of a PCB degrading enrichment culture with predominantly meta-dechlorination. Applied and Environmental Microbiology, 58, 3088–3094.Google Scholar
  67. National Research Council. (1979). Polychlorinated biphenyls. Washington, DC: National Academy of Sciences.Google Scholar
  68. Nedunuri, K. V., Govindaraju, R. S., Banks, M. K., Schwab, A. P., & Chen, Z. (2000). Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. Journal of Environmental Engineering, 126, 483–490.Google Scholar
  69. Nemerow, N. L., & Agardy, F. J. (1998). Strategies of industrial and hazardous waste management (pp. 562–563). Van Nostrand: Reinhold.Google Scholar
  70. Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Microbiology, 15, 225–230.Google Scholar
  71. Nichols, T. D., Wolf, D. C., Rogers, H. B., Beyrouty, C. A., & Reynolds, C. M. (1997). Rhizosphere microbial populations in contaminated soils. Water, Air, Soil Pollution, 95, 165–178.Google Scholar
  72. O’Riordan, T. (1995). Environmental sciences for environmental management. New York: John Wiley and Sons.Google Scholar
  73. Ohtsubo, Y., Kudo, T., Tsuda, M., & Nagata, Y. (2004). Strategies for bioremediation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 65(3), 250–258. Scholar
  74. Passatore, L., Rossetti, S., Juwarkar, A. A., & Massacci, A. (2014). Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. Journal of Hazardous Materials, 278, 189–202. Scholar
  75. Pillai, B. V. S., & Swarup, S. (2002). Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Applied and Environmental Microbiology, 68, 143–151.Google Scholar
  76. Pradhan, S. P., Conrad, J. R., Paterek, J. R., & Srivastava, V. J. (1999). Potential of phytoremediation for treatment of PAHs, in: Rainey PB adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environmental Microbiology, 1, 243–257.Google Scholar
  77. Quensen, J. F., III, Boyd, S. A., & Tiedje, J. M. (1990). Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Applied and Environmental Microbiology, 56, 2360–2369.Google Scholar
  78. Rahuman, M. S. M. M., Pistone, L., Trifiro, F., & Miertus, S. (2000). Destruction Technology for Polychlorinated Biphenyls (PCBs). ICS-UNIDO Publications “Proceedings of Expert Group Meetings on POPs and Pesticides Contamination: Remediation Technologies (April 2000) and on Clean Technologies for the Reduction and Elimination of POPs May 2000).Google Scholar
  79. Rainey, P. B. (1999). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environmental Microbiology, 1, 243–257.Google Scholar
  80. Robinson, S. L., Novak, J. T., Widdowsen, M. A., Crosswell, S. B., & Fetterolf, G. J. (2002). Field and laboratory evaluation of the impact of tall fescue on polyaromatic hydrocarbon degradation in aged creosote-contaminated surface oil. Journal of Environmental Engineering, 129, 232–240.Google Scholar
  81. Safe management of PCBs, code of practice. (1989). PCBs core group. Wellington: Hazardous Wastes Task Group.Google Scholar
  82. Sawney, B. L. (1986). Chemistry and properties of PCBs in relation to environmental effects. In S. Waid John (Ed.), PCBs and the environment (pp. 47–64). Boca Raton: CRC Press.Google Scholar
  83. Schnoor, J. L. (2002). Phytoremediation of Soil and Ground-water, GWRT Series, E-Series: TE-02-01; pp. 1–45.Google Scholar
  84. Schnoor, J. L., Licht, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreira, L. H. (1995). Phytoremediation of organic contaminants. Environmental Science and Technology, 29, 318–323.Google Scholar
  85. Shimp, J. F., Tracy, J. C., Davis, L. C., Lee, E., Huang, W., Erickson, L. E., & Schnoor, J. L. (1993). Beneficial effects of plants in the remediation of oil and groundwater contaminated with organic materials. Critical Reviews Environmental Science and Technology, 23, 41–77.Google Scholar
  86. Siciliano, S. D., Germida, J. J., Banks, K., & Greer, C. W. (2003). Changes in microbial community com- position and function during a polyaromatic hydrocarbon phytoremediation field trial. Applied Environmental Microbiology, 69, 483–489.Google Scholar
  87. Sierra, I., Valera, J. L., Marina, M. L., & Laborda, F. (2003). Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Chemosphere, 53, 609–618.Google Scholar
  88. Singer, A. C. (2004). The chemical ecology of pollutant biodegradation. Bioremediation and phytoremediation from mechanistic and ecological perspectives. In M. Mackova, D. Dowling, & T. Macek (Eds.), Phytoremediation and rhizoremediation. Theoretical back-ground. Focus on biotechnology (pp. 5–21). Dordrecht: Springer.Google Scholar
  89. Sullivan, J., & Krieger, G. (1992). Hazardous materials toxicology. Baltimore: Williams and Wilkins Publishing Corp.Google Scholar
  90. Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18, 647–658.Google Scholar
  91. Sylvestre, M. (1985). Total biodegradation of 4-chlorobiphenyl (PCB) by a two-membered bacterial culture. Applied Environmental Biotechnology, 21, 193–197.Google Scholar
  92. Sylvestre, M., & Sandossi, M. (1994). Selection of enhanced PCB-degrading bacterial strains for bioremediation: Consideration of branching pathways. In G. R. Chaudhry (Ed.), Biological degradation and remediation of toxic chemicals. New York: Chapman and Hall.Google Scholar
  93. Thoma, G. J., Lam, T. B., & Wolf, D. C. (2003). A mathematical model of phytoremediation for petroleum contaminated soil: Sensitivity analysis. International Journal of Phytoremedation, 5, 125–136.Google Scholar
  94. U.S. Environmental Protection Agency. (1996). PCBs: A cancer dose-response assessment and applications to environmental mixtures, EPA/600/P96/001F.Google Scholar
  95. UNEP. (1999). Chemicals Guidelines for the identification of PCBs and materials containing PCBs. First issue, Inter-organization program for the sound management of chemicals.Google Scholar
  96. Unterman, R., Bedard, D. L., Brennan, M. J., Bopp, L. H., Mondello, F. J., Brooks, R. E., et al. (1988). Biological approaches for PCB degradation. In: Reducing risk from environmental chemicals through biotechnology. New York: Plenum Press.Google Scholar
  97. Van den Berg, M., Birnbaum, L., Denison, M., & Farland, W. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicology Science, 93, 223–241.Google Scholar
  98. Vasilyeva, G. K., & Strijakova, E. R. (2007). Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology, 76(6), 639–653. Scholar
  99. Vervaeke, P., Luyssaert, S., Mertens, J., Meers, E., Tack, F. M., & Lust, N. (2003). Phytoremediation prospects of willow stands on contaminated sediments: A field trial. Environmental Pollution, 126, 27–282.Google Scholar
  100. Watts, R. J. (1998). Hazardous wastes: Sources, pathways, receptors. New York: John Wiley and Sons.Google Scholar
  101. Whipps, J. M. (1990). Carbon economy. In J. M. Lynch (Ed.), The rhizosphere (pp. 59–97). New York: Wiley.Google Scholar
  102. White, P. M., Jr., Wolf, D. C., Thoma, G. J., & Reynolds, C. M. (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollution, 169, 207–220.Google Scholar
  103. Wiegel, J., & Wu, Q. (2000). Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiology Ecology, 32, 1–15. J. Borja et al. /Process Biochemistry 40 (2005) 1999–2013 2011.Google Scholar
  104. Yagi, D., & Sudo, R. (1980). Degradation of polychlorinated biphenyls by microorganisms. Water Pollution Control Federation, 52, 1035–1043.Google Scholar
  105. Yateem, A., Al-Sharrah, T., & Bin-Haji, A. (2007). Investigation of microbes in the rhizosphere of selected grasses for rhizoremediation of hydrocarbon-contaminated soils. Soil and Sedimentation Contamination, 16, 269–280.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Soumya Nair
    • 1
  • Jayanthi Abraham
    • 1
  1. 1.Microbial Biotechnology Laboratory, School of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations