Gynecologic Tumor PET/CT Imaging

  • Qian Xia
  • Gang Huang


PET/CT is a mature noninvasive molecular imaging tool in modern oncology that can detect changes in tissue biology, and functional changes usually occur earlier than structural changes. PET/CT can also provide quantitative information that plays an important role in monitoring disease status over time or in treatment. At present, the most commonly used radiotracer for PET/CT is 18F-FDG. 18F-FDG is a glucose analog that is abnormally active in malignant tissue relative to normal tissues, and 18F-FDG accumulates in malignant tumors. In addition, many oncogenes of malignant tumors are abnormally activated and form tumor-specific expression markers, which also provide additional targets for PET/CT molecular imaging. Designed targeted imaging agents have been widely used in gynecological malignancies, including 11C-methionine, 18F-fluoro-17-β-estradiol (18F-FES), and 60Cu-diacetyl-bis (N4 methylthiosemicarbazide) (ATSM) and 64Cu-ATSM. However, 18F-FDG is still the most important tracer currently used. Below we will mainly discuss the clinical application of 18F-FDG PET/CT in gynecological tumors.


  1. 1.
    Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90CrossRefGoogle Scholar
  2. 2.
    Wang SS, Carreon JD, Gomez SL et al (2010) Cervical cancer incidence among 6 Asian ethnic groups in the United States,1996 through 2004. Cancer 116:949–956CrossRefGoogle Scholar
  3. 3.
    Howlader N, Noone AM, Krapcho M et al (2013) SEER cancer statistics review, 1975-2010. National Cancer Institute.
  4. 4.
    Marnitz S, Köhler C, Roth C et al (2005) Is there a benefit of pretreatment laparoscopic transperitoneal surgical staging in patients with advanced cervical cancer? Gynecol Oncol 99:536–544CrossRefGoogle Scholar
  5. 5.
    Yildirim Y, Sehirali S, Avci ME et al (2008) Integrated PET/CT for the evaluation of para-aortic nodal metastasis in locally advanced cervical cancer patients with negative conventional CT findings. Gynecol Oncol 108(1):154–159CrossRefGoogle Scholar
  6. 6.
    UEG week 2015 poster presentations (2015) United Eur Gastroenterol J 3(5 suppl):146–687.
  7. 7.
    Sironi S, Buda A, Picchio M et al (2006) Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology 238:272–279CrossRefGoogle Scholar
  8. 8.
    Kidd EA, Siegel BA, Dehdashti F et al (2007) The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive bio-marker for cervical cancer treatment response and survival. Cancer 110(8):1738–1744CrossRefGoogle Scholar
  9. 9.
    Lee YY, Choi CH, Kim CJ (2009) The prognostic significance of the SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) of the cervical tumor in PET imaging for early cervical cancer: preliminary results. Gynecol Oncol 115(1):65–68CrossRefGoogle Scholar
  10. 10.
    Yen TC, See LC, Lai CH et al (2008) Standardized up-take value in paraaortic lymph nodes is a significant prognostic factor in patients with primary advanced squamous cervical cancer. Eur J Nucl Med Mol Imaging 35(3):493–501CrossRefGoogle Scholar
  11. 11.
    Tran BN, Grigsby PW, Dehdashti F et al (2003) Occult supraclavicular lymph node metastasis identified by FDG-PET in patients with carcinoma of the uterine cervix. Gynecol Oncol 90:572–576CrossRefGoogle Scholar
  12. 12.
    Bodurka-Bevers D, Morris M, Eifel P et al (2000) Post-therapy surveillance of women with cervical cancer: an outcomes analysis. Gynecol Oncol 78:187–193CrossRefGoogle Scholar
  13. 13.
    Van der Veldt AA, Buist MR, van Baal MW et al (2008) Clarifying the diagnosis of clinically suspected recurrence of cervical cancer: impact of 18F-FDG PET. J Nucl Med 49(12):1936–1943CrossRefGoogle Scholar
  14. 14.
    Meads C, Davenport C, Małysiak S et al (2014) Evaluating PET-CT in the detection and management of recurrent cervical cancer: systematic reviews of diagnostic accuracy and subjective elicitation. BJOG 121(4):398–407CrossRefGoogle Scholar
  15. 15.
    Chung HH, Kim SK, Kim TH et al (2006) Clinical impact of FDG-PET imaging in post-therapy surveillance of uterine cervical cancer: from diagnosis to prognosis. Gynecol Oncol 103:165–170CrossRefGoogle Scholar
  16. 16.
    Nishiyama Y, Yamamoto Y, Kanenishi K et al (2008) Monitoring the neoadjuvant therapy response in gynecological cancer patients using FDG PET. Eur J Nucl Med Mol Imaging 35(2):287–295CrossRefGoogle Scholar
  17. 17.
    Schwarz JK, Siegel BA, Dehdashti F et al (2007) Association of post therapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA 298(19):2289–2295CrossRefGoogle Scholar
  18. 18.
    Chao A, Ho KC, Wang CC et al (2008) Positron emission tomography in evaluating the feasibility of curative intent in cervical cancer patients with limited distant lymph node metastases. Gynecol Oncol 110(2):172–178CrossRefGoogle Scholar
  19. 19.
    Mourits MJ, de Bock GH (2009) Managing hereditary ovarian cancer. Maturitas 64(3):172–176 52CrossRefGoogle Scholar
  20. 20.
    Malander S, Rambech E, Kristoffersson U et al (2006) The contribution of the hereditary nonpolyposis colorectal cancer syndrome to the development of ovarian cancer. Gynecol Oncol 101(2):238–243CrossRefGoogle Scholar
  21. 21.
    Barnholtz-Sloan JS, Schwartz AG, Qureshi F et al (2003) Ovarian cancer: changes in patterns at diagnosis and relative survival over the last three decades. Am J Obstet Gynecol 189(4):1120–1127CrossRefGoogle Scholar
  22. 22.
    Shaaban A, Rezvani M (2009) Ovarian cancer: detection and radiologic staging. Clin Obstet Gynecol 52:73–93CrossRefGoogle Scholar
  23. 23.
    Mironov S, Akin O, Pandit-Taskar N et al (2007) Ovarian cancer. Radiol Clin North Am 45:149–166CrossRefGoogle Scholar
  24. 24.
    Santillan A, Garg R, Zahurak ML et al (2005) Risk of epithelial ovarian cancer recurrence in patients with rising serum CA-125 levels within the normal range. J Clin Oncol 23(36):9338–9343CrossRefGoogle Scholar
  25. 25.
    Nam EJ, Yun MJ, Oh YT et al (2010) Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol 116:389–394CrossRefGoogle Scholar
  26. 26.
    Gu P, Pan LL, Wu SQ et al (2009) CA125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. Eur J Radiol 71(1):164–174CrossRefGoogle Scholar
  27. 27.
    Sebastian S, Lee SI, Horowitz NS et al (2008) PET-CT vs. CT alone in ovarian cancer recurrence. Abdom Imaging 33(1):112–118CrossRefGoogle Scholar
  28. 28.
    Kim CK, Park BK, Choi JY et al (2007) Detection of recurrent ovarian cancer at MRI: comparison with integrated PET/CT. J Comput Assist Tomogr 31(6):868–875CrossRefGoogle Scholar
  29. 29.
    Risum S, Høgdall C, Markova E et al (2009) Influenceof2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography on recurrent ovarian cancer diagnosis and on selection of patients for secondary cytoreductive surgery. Int J Gynecol Cancer 19:600–604CrossRefGoogle Scholar
  30. 30.
    Fulham MJ, Carter J, Baldey A et al (2009) The impact of PET-CT in suspected recurrent ovarian cancer: a prospective multi-centre study as part of the Australian PET Data Collection Project. Gynecol Oncol 112:462–468CrossRefGoogle Scholar
  31. 31.
    Avril N, Sassen S, Schmalfeldt B et al (2005) Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol 23:7445–7453CrossRefGoogle Scholar
  32. 32.
    Mendivil A, Schuler KM, Gehrig PA (2009) Non-endometrioid adenocarcinoma of the uterine corpus: a review of selected histological subtypes. Cancer Control 16:46–52CrossRefGoogle Scholar
  33. 33.
    Smith-Bindman R, Kerlikowske K, Feldstein VA et al (1998) Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. J Am Med Assoc 280:1510–1517CrossRefGoogle Scholar
  34. 34.
    Suzuki R, Miyagi E, Takahashi N et al (2007) Validity of positron emission tomography using fluoro-2-deoxyglucose for the preoperative evaluation of endometrial cancer. Int J Gynecol Cancer 17(4):890–896CrossRefGoogle Scholar
  35. 35.
    Suzuki R, Miyagi E, Takahashi N et al (2007) Validity of positron emission tomography using fluoro-2-deoxyglucose for the preop-erative evaluation of endometrial cancer. Int J Gynecol Cancer 17(4):890–896CrossRefGoogle Scholar
  36. 36.
    Kitajima K, Murakami K, Yamasaki E et al (2008) Accuracy of 18F-FDG PET/ CT in detecting pelvic and paraaortic lymph node metastasis in patients with endometrial cancer. AJR Am J Roentgenol 190(6):1652–1658CrossRefGoogle Scholar
  37. 37.
    Park JY, Kim EN, Kim DY et al (2008) Clinical impact of positron emission tomography or positron emission tomography/computed tomography in the post-therapy surveillance of endometrial carcinoma: evaluation of 88 patients. Int J Gynecol Cancer 18(6):1332–1338CrossRefGoogle Scholar
  38. 38.
    Yamada SD, Burger RA, Brewster WR et al (2000) Pathologic variables and adjuvant therapy as predictors of recurrence and survival for patients with surgically evaluated carcinosarcoma of the uterus. Cancer 88(12):2782–2786CrossRefGoogle Scholar
  39. 39.
    Lamoreaux WT, Grigsby PW, Dehdashti F et al (2005) FDG-PET evaluation of vaginal carcinoma. Int J Radiat Oncol Biol Phys 62(3):733–737CrossRefGoogle Scholar
  40. 40.
    Stehman FB, Look KY (2006) Carcinoma of the vulva. Obstet Gynecol 107(3):719–733CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Qian Xia
    • 1
  • Gang Huang
    • 2
  1. 1.Department of Nuclear MedicineRenJi Hospital, School of Medicine, Shanghai JiaoTong UniversityShanghaiP. R. China
  2. 2.Shanghai Key Laboratory of Molecular ImagingShanghai University of Medicine and Health SciencesShanghaiP. R. China

Personalised recommendations